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Abstract

We present two methods that improve the
assessment of cognitive models. The first
method is applicable to models comput-
ing average acceptability ratings. For these
models, we propose an extension that sim-
ulates a full rating distribution (instead of
average ratings) and allows generating indi-
vidual ratings. Our second method enables
Bayesian inference for models generating
individual data. To this end, we propose
to use the cross-match test (Rosenbaum,
2005) as a likelihood function. We exem-
plarily present both methods using cogni-
tive models from the domain of spatial lan-
guage use. For spatial language use, deter-
mining linguistic acceptability judgments
of a spatial preposition for a depicted spa-
tial relation is assumed to be a crucial pro-
cess (Logan and Sadler, 1996). Existing
models of this process compute an average
acceptability rating. We extend the mod-
els and – based on existing data – show
that the extended models allow extracting
more information from the empirical data
and yield more readily interpretable infor-
mation about model successes and failures.
Applying Bayesian inference, we find that
model performance relies less on mech-
anisms of capturing geometrical aspects
than on mapping the captured geometry to
a rating interval.

1 Introduction

Acceptability judgments are an important measure
throughout linguistic research (Sprouse, 2013). For
instance, Alhama et al. (2015) recently proposed
to use confidence ratings to assess models of ar-
tificial language learning. Likewise, in research

on the evaluation of spatial language given visual
displays, a common experimental paradigm is to
ask how well a spatial term describes a depicted sit-
uation (e.g., Regier and Carlson, 2001; Logan and
Sadler, 1996; Burigo et al., 2016; Hörberg, 2008).
This paradigm results in individual acceptability
judgments on Likert scales. These rating data are
the main source for assessing computational mod-
els in the spatial language domain (e.g., Regier
and Carlson, 2001; Coventry et al., 2005; Kluth
and Schultheis, 2014). In other linguistic domains,
similar empirical rating data are predicted by com-
putational models (e.g., grammaticality judgments,
Lau et al., 2017, or semantic plausibility judgments
Padó et al., 2009; see also Chater and Manning,
2006).

Generally speaking, researchers consider a
rating-model appropriate if it can closely account
for empirical mean ratings for the given stimuli
(averaged across subjects) – the closer the fit to
the empirical mean data, the more appropriate the
model. However, the use of mean ratings instead of
full rating distributions misses the opportunity to
use all available empirical information for model
assessment. This is why we present a model ex-
tension that adds the simulation of a probability
distribution over all ratings. We illustrate our ex-
tension by equipping spatial language models with
full empirical rating distributions.

The second proposal of our paper (Bayesian in-
ference) relies on the fact that our proposed model
extension enables the generation of individual rat-
ings by sampling from the simulated probability
distribution. This opens up the possibility to ap-
ply Bayesian inference (e.g., to reason about the
likely values of model parameters). Many cogni-
tive models lack a likelihood function that specifies
how likely the empirical data are given a specific
parameter set. This prevents the use of Bayesian
inference. In this contribution, we propose the



48

cross-match test developed by (Rosenbaum, 2005)
as a means for computing the likelihood for cog-
nitive models that are able to generate individual
data.

Again, we use a spatial language model to ex-
emplify the application of the cross-match method.
The thus computed posterior distribution of the
model’s parameters has surprising implications for
the interpretation of the model. Before we come to
this, we start with presenting the example models,
followed by our model extension to simulate rating
distributions.

1.1 Exemplary Spatial Language Models

We introduce both our methods by exemplarily ap-
plying them to the AVS model (Regier and Carlson,
2001) and the recently proposed AVS-BB, rAVS,
and rAVS-CoO models (Kluth et al., 2017, under
revision). Given a depicted spatial layout and a
spatial sentence (“The [located object] is above the
[reference object]”), these cognitive models gener-
ate mean acceptability ratings, i.e., judgments how
well the linguistic input describes the visual scene.
All models can be interpreted as consisting of two
components: One component that captures geomet-
ric aspects of the depicted spatial configuration and
one component that maps the captured geometry to
a rating interval (representing linguistic acceptabil-
ity judgments).

The models process geometry by defining vec-
tors on all points of one object of the spatial layout.
These vectors point to the second object in the lay-
out. In addition, each vector is weighted by a cer-
tain amount of attention defined by a spotlight-like
distribution of attention. The overall direction of
the vector sum is compared to a reference direction
(e.g., canonical upright for the preposition above).
This angular deviation is the outcome of the first
model component (processing geometry).

The first model component is where the two
model families (AVS & AVS-BB vs. rAVS & rAVS-
CoO) differ: The AVS and the AVS-BB models
assume a shift of attention from the reference ob-
ject to the located object (the vectors point from
the reference object to the located object). In con-
trast, the rAVS and rAVS-CoO models assume a
reversed shift of attention from the located object to
the reference object (hence their acronym: reversed
AVS; the vectors point from the located object to
the reference object). The difference within the
model families (i.e., AVS vs. AVS-BB and rAVS

vs. rAVS-CoO) will be introduced in Section 3.
The second model component is the same in all

models: A linear function that maps the angular de-
viation from the first component to a rating interval.
In Section 4.2.1 we introduce some details about
the role of rAVS-CoO’s parameters for the two
model components. Applying our model extension
and the second proposal of our paper (Bayesian
inference), we present evidence that the second
component of the models (mapping geometry to
rating) seems to be more important than the first
one (processing geometry).

2 Model Extension: Rating Distributions

As an illustrating example of our model extension,
consider the empirical rating distribution displayed
as bars in Fig. 1c. This distribution shows 34 ac-
ceptability ratings on a rating scale with K = 9
categories (from 1–9). These ratings come from an
empirical study by Kluth et al. (under revision) in
which they asked 34 participants to judge the ac-
ceptability of the German sentence “Der Punkt ist
über dem Objekt” (“The dot is above the object”).
Specifically, the distribution shown in Fig. 1c cor-
responds to empirical ratings for the left black dot
above the asymmetrical object depicted in Fig. 1a.

Our method of simulating such a rating distribu-
tion is inspired by a common approach of analyzing
ordinal data (i.e., discrete and ordered data) using
generalized linear (regression) models (e.g., Lid-
dell and Kruschke, 2018; Kruschke, 2015, chapter
23). Here, the cumulative probability of a latent
Gaussian distribution between two thresholds is the
probability of one specific rating k (see Fig. 1c).1

Based on this, we propose the following steps to
extend mean-rating-models with the ability of sim-
ulating full rating distributions:

1. Interpret the output of the model as the mean
µ of a Gaussian distribution (see maximum of
dashed curve in Fig. 1c or 1d).

2. Treat σ of the Gaussian distribution and K −
1 − 2 thresholds as additional model param-
eters (see width of dashed curve and vertical
lines in Fig. 1c or 1d; K is the number of all
outcomes; first and last thresholds have fixed
values).

3. Define a discrete probability distribution over
all K ratings like in an ordinal regression (i.e,

1For the first / last outcome it is the cumulative probability
between negative / positive infinity and the first / last threshold.
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cumulative probabilities of the Gaussian distri-
bution between thresholds, see model outputs
in Fig. 1c or 1d).

4. To generate an individual rating: Sample a rat-
ing from the discrete probability distribution
defined in the previous step.

Note that the discrete probability distribution
over all K ratings defined in step 3 is fully deter-
mined by the model parameters (i.e., it will not
change unless you change any of the model pa-
rameters) while the individual rating generated in
step 4 is subject to sampling noise.

To fit such an extended model to empirical data,
we compute the Kullback-Leibler divergence from
the model’s discrete probability distribution (see
model outputs in Fig. 1c or 1d) to the empirical
rating distribution (relative frequencies of ratings,
see bars in Fig. 1c or 1d) – for every dot-object pair
that served as a stimulus. Then we minimize the
mean Kullback-Leibler divergence (averaged over
all stimuli). This procedure requires that individual
empirical data are available.

Note that this approach of comparing model out-
puts to empirical data still operates on the data from
all study participants (but it uses more information
as it does not operate only on a mean value). That
is, instead of explicitly assessing the models on
individual behavior, our fitting approach aims to
capture the overall rating distribution. Given that
with our model extension a model may also gener-
ate individual outcomes, it is in principle possible
to explicitly model single individuals or groups of
individuals with similar rating patterns. We leave
this for future work and note that the work from
Navarro et al. (2006) might prove valuable for this
endeavor.

3 Results: Fitting Models to Rating
Distributions

To exemplarily apply our proposed model exten-
sion, we extended the AVS model (Regier and Carl-
son, 2001) as well as the recently proposed AVS-
BB, rAVS, and rAVS-CoO models (Kluth et al.,
2017, under revision) and fitted them to empirical
data from Kluth et al. (under revision, asymmetri-
cal objects only). We denote the extended models
with a trailing + (see labels in Fig. 1). The source
code and all data are available under open licenses
(GNU GPL and ODbL) from Kluth (2018).

×◦

d d

(a) Spatial configuration with two exemplary dot locations
used in acceptability rating study by Kluth et al. (under re-
vision). × = center-of-mass, ◦ = center-of-object (of the
asymmetrical object); d = same horizontal distance from ×
for both dots. Participants saw only one dot and the asymmet-
rical object (neither the centers nor the additional lines shown
here).
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(b) Goodness-of-fit (GOF) and simple hold-out (SHO) results
for fitting extended models to whole empirical rating distribu-
tion from Kluth et al. (under revision, 4 asymmetrical objects
× 28 dots × 2 prepositions = 224 data points). Error bars
show 95% confidence intervals of SHO medians.

pr
op

or
tio

n
/p

ro
ba

bi
lit

y

rating

empirical data
rAVS-CoO+ model output
rAVS+ model output
latent distribution rAVS-CoO+
thresholds rAVS-CoO+

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 3 4 5 6 7 8 9

(c) Empirical “über” (“above”) rating distribution and model
probabilities (rAVS+ and rAVS-CoO+) for the left dot shown
in Fig. 1a. Model probabilities were computed using the
parameters from the best fit plotted in Fig. 1b. Participants
never chose rating 1.
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(d) Empirical “über” (“above”) rating distribution and model
probabilities (rAVS+ and rAVS-CoO+) for the right dot
shown in Fig. 1a. Model probabilities were computed using
the parameters from the best fit plotted in Fig. 1b. Participants
never chose ratings 1-4 or 6.

Figure 1: Example experimental display, fits of ex-
tended models, and empirical rating distributions.
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Given a depicted spatial configuration contain-
ing a geometric object and a single dot placed
above / below the object (see Fig. 1a), we asked
34 German native speakers to rate the acceptabil-
ity of the German sentences “Der Punkt ist über
dem Objekt” and “Der Punkt ist unter dem Ob-
jekt” (“The dot is above / below the object”) on a
Likert scale from 1–9 (with lower ratings coding
lower acceptability judgments). We placed 28 dots
above and 28 dots below 4 asymmetrical objects
(i.e., the whole data set consists of 224 data points;
for the current work we did not consider data from
additionally tested rectangular reference objects).

Fig. 1a shows two exemplary dot locations above
one of the used asymmetrical objects. For these
two dots, we expected participants to give equal
“über” (“above”) acceptability ratings (based on
earlier research, e.g., Regier and Carlson, 2001).
However, we found that participants rated the ac-
ceptability of the “über” (“above”) sentence for
the right dot in Fig. 1a higher than for the left dot
(Kluth et al., under revision). This finding gener-
alized reliably to different objects with similar dot
placements suggesting that people possibly prefer
the center-of-object (depicted as ◦ in Fig. 1a) over
the center-of-mass (depicted as × in Fig. 1a) for
their judgments. To account for this finding, Kluth
et al. (under revision) proposed the model refine-
ments AVS-BB and rAVS-CoO (AVS-bounding-
box and rAVS-center-of-object), which both use
the center-of-object instead of the center-of-mass
(as AVS and rAVS do) for their computations.

Here, we use the two dot locations depicted in
Fig. 1a to exemplarily present our approach of sim-
ulating rating distributions. To do so, we first ex-
tended all models with the ability to simulate rating
distributions and then fitted all extended models
to the 224 data points (by minimizing the mean
Kullback-Leibler divergence as described above).
These fits are plotted in Fig. 1b (as goodness-of-fit
values alongside with the outcome of 101 simple
hold-out iterations, a cross-validation measure to
control for overfitting, Schultheis et al., 2013). In
terms of relative model performances, these fits
confirm the results of simpler fits using only aver-
aged rating data reported in Kluth et al. (under re-
vision): Both models that take the center-of-object
into account (the AVS-BB+ and the rAVS-CoO+
models) fit the data more closely (lower mean
Kullback-Leibler divergence) than the models that
consider the center-of-mass (AVS+ and rAVS+).

More interesting for our current purpose are the
plots in Figs. 1c and 1d. These plots each depict
the empirical rating distributions for one of the two
dots in Fig. 1a as bars: Fig. 1c shows the distribu-
tion for the left dot while Fig. 1d depicts the distri-
bution for the right dot. The empirical distributions
show that the left dot received considerably less
“9” ratings and more “2–7” ratings compared to the
right dot. On top of the empirical distributions, we
plotted the probabilities of each rating as computed
with the rAVS+ and the rAVS-CoO+ models. To
compute these probabilities, we used the parame-
ters found by fitting the models to the whole data
set (cf. Fig. 1b). Despite being fit to a much larger
data set, the two plots show that both models gener-
ally capture the qualitative trend of each of the two
single empirical data points. Considering Fig. 1c
and Fig. 1d suggests that the rAVS-CoO+ model
better accounts for the data – confirming (and ex-
plaining, see Kluth et al., under revision) the better
fit on the larger data set shown in Fig. 1b.

Fitting the models to rating distributions allows
for a more fine-grained model assessment com-
pared to model fits to averaged data. For example,
the main source of the different performances of
the rAVS+ and the rAVS-CoO+ models seems to be
their ability to account for the frequency of the high-
est rating “9” (cf. Fig. 1c and Fig. 1d). Compare
this with the situation where only averaged data is
used: Here the only information are mean ratings
(for the left dot 7.38, for the right dot 8.18) and
fits of the models to these mean ratings. Using the
same parameter settings as before, this yields for
the left dot 0.1326 (rAVS fit, normalized root mean
square error: nRMSE2) or 0.0093 (rAVS-CoO fit,
nRMSE) and for the right dot 0.0333 (rAVS fit,
nRMSE) or 0.1029 (rAVS-CoO fit, nRMSE). None
of these numbers provides information about the
models’ properties as intuitive and informative as
the fit of the extended models using full rating dis-
tributions. Moreover, our extension also enables
the generation of individual data by sampling from
the models’ discrete rating distribution (see step 4
on page 3). This property can be used to analyze
the models with Bayesian inference as we show
next.

2 RMSE =
√

1
n

∑n
i (datai −modelOutputi)2

nRMSE = RMSE/(ratingmax − ratingmin)
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4 Method: Bayesian Inference

The Bayesian framework is a fruitful and theoret-
ically sound approach to reason with probability
distributions over model parameters. However, this
framework requires that the analyzed model can be
interpreted in a probabilistic sense. As for many
other cognitive models, this is not the case for any
of the models discussed here (AVS, AVS-BB, rAVS,
rAVS-CoO or their extended versions) because they
lack a likelihood function that specifies how likely
empirical data are given a model with a specific
parameter set. We propose to use the cross-match
test developed by Rosenbaum (2005) as the likeli-
hood function of cognitive models that are able to
generate individual data (e.g., the derivatives of the
AVS+ model).

4.1 Cross-match Test

The cross-match test is a statistical test that com-
putes the probability of whether multivariate re-
sponses of two differently treated subject groups
come from the same distribution. In our case, the
first group are empirical individual data and the
second group are model-generated individual data
(see top and bottom of Tab. 1), so the cross-match
test becomes a measure of how likely it is that the
model-generated data come from the same distribu-
tion as the empirical data. Given that we can only
change the model-generated data (by using differ-
ent parameter sets), this amounts to a likelihood
function.

Internally, the cross-match test is based on group-
ing the multivariate responses (rows in Tab. 1)
into pairs with minimal distances (Mahalanobis
distances of ranks). The more of these pairs “cross-
match” between the two groups, the more similar
are the data of the two groups and hence the higher
is the probability that the cross-match test com-
putes (for more details see Rosenbaum, 2005).

4.2 Estimating the Posterior Distribution

To apply the cross-match test as a likelihood func-
tion of AVS+ derivatives, we propose the following
procedure3:

1. For each stimulus, simulate as many ratings
with the model as there were participants in

3Note that for clarity of presentation we stay in our exem-
plary domain: rating-models for spatial language. In principle,
our approach is applicable to all models that are able to gener-
ate individual data points (not necessarily ratings).

data type left dot right dot . . .

empirical 7 8 . . .
empirical 9 9 . . .
. . . . . . . . . . . .

model 8 9 . . .
model 5 8 . . .
. . . . . . . . . . . .

Table 1: Example input for the cross-match
test (Rosenbaum, 2005). Each row describes
the response of one subject (empirical or model-
generated), each column describes the response to
a stimulus (e.g., the left or right dot from Fig. 1a).

the study by applying the procedure of gener-
ating individual ratings described in step 4 on
page 3.

2. Compute the cross-match test comparing the
empirical data with the model-generated data.

3. To account for sampling noise (see step 4 on
page 3 in the generation of individual data)
and provide reliable cross-match results for
the same model parameters:

(a) For every individual rating to be gener-
ated in step 1, sample s times and use the
mean outcome as generated rating.

(b) Use the following average of cross-
match computations as likelihood value:

i. Compute the mean number of cross-
matches from c cross-match tests and
store the probability for this number
of cross-matches.

ii. Repeat step i for b blocks and use the
mean of these b probabilities as the
likelihood value.

Step 3 (b) basically repeats steps 1 and 2 b · c
times. In our case, we found a sufficiently stable
likelihood by applying step 3 with s = 10, b = 20,
and c = 4 (standard error of averaged cross-match
result < 0.05). Note that a too large value of s
will generate model outputs that are too similar to
each other and thus possibly reduces the number
of cross-matches too much. The problem of an
unstable likelihood value will reduce when more
empirical individual data are available.

Having the likelihood function defined in this
way, one can apply standard Markov Chain Monte
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Carlo (MCMC) techniques to estimate the poste-
rior distribution. Specifically, we implemented a
Metropolis-Hastings algorithm and improved its
performance by adding the adaptation algorithm
proposed by Garthwaite et al. (2016). For the cross-
match test, we used the R package crossmatch
(Heller et al., 2012) and re-implemented parts of
it using the C++ library Armadillo (Sander-
son and Curtin, 2016). The R package ggmcmc
(Fernández-i Marín, 2016) helped in visualizing
and analyzing the MCMC samples. Again, all
source code is available under the GNU GPL li-
cense from (Kluth, 2018).

4.2.1 Example rAVS-CoO+: Model
Parameters & Prior Distributions

We exemplarily estimated the posterior distribution
of the parameters of the rAVS-CoO+ model. The
rAVS-CoO+ model has four free parameters (not
considering the additional parameters of our ordi-
nal model extension: σ and thresholds). The two
parameters α and highgain are part of the compo-
nent that processes the geometry of the depicted
spatial configuration (cf. Section 1.1). In particular
α controls the extraction of an angular deviation
from the spatial relation. This angular deviation
is mapped to a linguistic rating with the second
component of the model. Specifically, high angular
deviation results in a low rating and low angular
deviation results in a high rating. This is realized
with a linear function that maps angular deviation
to rating. The intercept and slope parameters are
the parameters of this linear function.

Since this is the first study that investigates prob-
ability distributions over the model parameters of
the rAVS-CoO+ model, we had no prior informa-
tion available about the likely values of the model
parameters. Accordingly, we used uniform distri-
butions within the following parameter ranges as
“uninformative” prior distributions:

α ∈ [0.001, 5]; highgain ∈[0, 10]
intercept ∈ [0.7, 1.3]; slope ∈[−1/45, 0]

5 Results: Bayesian Inference

We exemplarily estimated the posterior distribution
of the parameters of the rAVS-CoO+ model for
the same data set to which we fitted the model ear-
lier (consisting of ratings for dots above / below
asymmetrical objects, see Fig. 1b for model fits).
We used 4 MCMC chains with 125,000 samples in
each chain and checked the chains for convergence

by monitoring the potential scale reduction factor
R̂ (Gelman and Rubin, 1992). To obtain converg-
ing chains, we had to change the parameterization
of the slope parameter to measure “change per ra-
dian” instead of “change per degree”. Furthermore,
we kept the additional model parameters for the
ordinal regression (σ of the latent Gaussian distri-
bution and thresholds) constant on the values of the
best rAVS-CoO+ fit to the whole data set, because
we were primarily interested in the original model
parameters. This parameter reduction improved the
convergence of the MCMC chains while it did not
affect the qualitative results. The results of the pos-
terior estimation are plotted as density estimates of
the marginal posterior distribution for each model
parameter of the rAVS-CoO+ model in Fig. 2. The
different colors code the different MCMC chains.
The high overlap of the colors confirms the conver-
gence of the chains.

At a first glance, the marginal posterior distribu-
tions are surprising as they lack clear maxima for
any parameter in the considered ranges. In particu-
lar the α and the highgain parameter seem to have
little effect on the model output in terms of gener-
ating data similar to empirical data. On the other
hand, the marginal posterior distributions suggest
that the following regions in the parameter space
should result in relatively poor model performance:
α < 0.5, intercept > 1.0, and slope > −0.25.

To double-check these regions, we picked two
parameter sets and computed the model fits to
the empirical data with these parameters (mean
Kullback-Leibler divergence). The first parameter
set lies in the presumably bad-performance region
(highgain = 5.0, α = 0.2, intercept = 1.25,
slope = −0.05) while the second parameter set
consists of parameter values from regions with
high posterior density (highgain = 5.0, α = 3.0,
intercept = 0.9, slope = −0.625). Indeed, the
presumably bad-performing parameter set fits the
data worse than the other parameter set (mean
Kullback-Leibler divergence: 0.484 vs. 0.266, re-
spectively). This trend was confirmed with fits of
the same parameter sets using mean ratings instead
of rating distributions (nRMSE for worse parame-
ters 0.301 vs. 0.145 for better parameters). These
tests provide evidence that using the cross-match
test as a likelihood function appropriately captures
model performance.

After establishing the validity of the unexpected
results, we discuss what we can learn from them.
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Figure 2: Marginal posterior distributions for the
rAVS-CoO+ model given rating data from Kluth
et al. (under revision, asymmetrical objects only)
and “uninformative” prior distributions (uniform
distributions).

Keep in mind that the following conclusions are
only valid for the exemplary data set and model
for which we computed the posterior estimation
and may change with data highlighting different
aspects of spatial language use.

Despite the great range of the parameter
highgain its value does not affect the model per-
formance. Accordingly, the parameter highgain
seems to be irrelevant for the quality of the model
output. Almost the same is true for the parameter α,
although the marginal posterior distribution shows
weak performance for values less than 0.5. The role
of the parameter α in the rAVS-CoO+ model can be
understood as an importance weight of two geomet-
ric features known to affect spatial language accept-
ability judgments: the proximal orientation and the
center-of-object orientation (Regier and Carlson,
2001; Kluth et al., under revision). The closer α is
to 0.0, the more important gets the proximal orienta-
tion and the less important gets the center-of-object

orientation for the rAVS-CoO+ model. Thus, the
marginal posterior distribution provides evidence
that the center-of-object orientation is more impor-
tant than the proximal orientation to account for
this data set.

The intercept and slope parameters control the
second model component (cf. Section 1.1): they
are the parameters of a linear function contained in
the rAVS-CoO+ model that maps angular deviation
to rating (between 0 and 1). These two parame-
ters have a greater influence on model performance
than α and highgain (more diverse posterior pro-
files for intercept and slope compared to α and
highgain, see Figure 2). That is, changing the val-
ues of the intercept or slope parameters affects the
models’ ability to fit empirical data more strongly
than changing the values of α or highgain.

This is interesting, because one can interpret the
rAVS-CoO+ model (and related models such as
AVS+, AVS-BB+, rAVS+) as consisting of (i) a
geometric component (capturing / formalizing the
geometric properties of the involved objects and
their spatial relation) and (ii) a mapping compo-
nent (mapping the captured geometric aspects onto
a rating range, see Section 1.1). Given that one
of the prime research question motivating the de-
velopment of these models concerns the influence
of geometric properties (such as relative spatial
location of the objects or asymmetrical objects)
on spatial language use, most researchers focused
on the geometric component of the models. Our
results, however, suggest that the geometric compo-
nent may be less important for model performance
than commonly assumed – in particular, less im-
portant than the mapping component. That is, to
unravel effects of geometry on spatial language
use, it might be more insightful to re-consider the
mapping of assumed intermediate geometric rep-
resentations (e.g., angular deviations) to linguistic
judgments instead of modeling the computation of
these representations.

6 Discussion & Conclusion

Acceptability judgments are common in linguistic
research (Sprouse, 2013). Many cognitive models
of linguistic processes compute mean acceptabil-
ity ratings. We propose a model extension that
enables these models (i) to simulate a probability
distribution over all possible ratings and (ii) to gen-
erate individual ratings. To fit simulated probability
distributions to empirical rating distributions, we
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propose to minimize the mean Kullback-Leibler
divergence from the simulated to the empirical dis-
tributions. This model extension moves the model
fits on a level that is closer to the actual empiri-
cal data (by using full rating distributions instead
of mean ratings) while it avoids the problematic
treatment of ordinal data as metric (Liddell and Kr-
uschke, 2018). As future steps in this direction, we
envision an analysis whether the additional model
parameters can be mapped onto cognitive structures
and mechanisms and subsequently the explicit mod-
eling of (groups of) individuals (e.g, via Navarro
et al., 2006).

Since many cognitive models lack a likelihood
function, our additional contribution is to introduce
the cross-match test (Rosenbaum, 2005) as a possi-
ble approximation of the likelihood function. This
adds the possibility to apply full Bayesian inference
for the parameters of all cognitive models that are
able to generate individual data (e.g., mean-rating-
models enhanced with our model extension).

In the related work of Approximate Bayesian
Computation (ABC, for review see Turner and
Van Zandt, 2012), researchers have developed sam-
pling strategies to enable “likelihood-free infer-
ence”. These techniques enable a modeler to use
the Bayesian toolkit without explicitly defining a
likelihood function. However, ABC sampling algo-
rithms add additional overhead to the workflow of
cognitive modelers, as they diverge from standard
MCMC techniques used in Bayesian estimations.
To overcome this overhead, we propose to use the
cross-match test as an explicit likelihood function.
We are currently evaluating our approach in com-
parison to existing ABC algorithms.

We exemplarily applied both our proposals using
computational cognitive models of spatial language
use like the AVS model (Regier and Carlson, 2001)
and its derivatives (Kluth et al., 2017, under revi-
sion). Given a depicted spatial layout and a spatial
preposition, these models compute mean accept-
ability ratings. We showed that simulating rating
distributions allows a more fine-grained model as-
sessment compared to model fits using mean rat-
ings.

An example application of Bayesian inference
revealed surprising insights: We estimated the pos-
terior distribution of rAVS-CoO+’s parameters and
found that the values of almost all parameters were
less important for model performance than we
thought. Future research in this direction will help

to precisely identify and quantify the role of model
parameters for the rAVS-CoO+ model (and the re-
lated models AVS+, AVS-BB+, and rAVS+). In ad-
dition, the Bayesian toolkit comprises several other
methods for model inspection and model compari-
son.

Acknowledgments

This research was supported by the Cluster of Ex-
cellence Cognitive Interaction Technology ‘CITEC’
(EXC 277) at Bielefeld University, which is funded
by the German Research Foundation (DFG).

References
Raquel G. Alhama, Remko Scha, and Willem Zuidema.

2015. How should we evaluate models of segmenta-
tion in artificial language learning? In Proceedings
of the 13th International Conference on Cognitive
Modeling.

Michele Burigo, Kenny R. Coventry, Angelo Can-
gelosi, and Dermot Lynott. 2016. Spatial language
and converseness. Quarterly Journal of Experimen-
tal Psychology, 69(12):2319–2337.

Nick Chater and Christopher D Manning. 2006. Prob-
abilistic models of language processing and acquisi-
tion. Trends in Cognitive Sciences, 10(7):335–344.

Kenny R. Coventry, Angelo Cangelosi, Rohanna Ra-
japakse, Alison Bacon, Stephen Newstead, Dan
Joyce, and Lynn V. Richards. 2005. Spatial preposi-
tions and vague quantifiers: Implementing the func-
tional geometric framework. In Spatial Cognition
IV. Reasoning, Action, Interaction. Springer.

Paul H. Garthwaite, Yanan Fan, and Scott A. Sis-
son. 2016. Adaptive optimal scaling of Metropolis–
Hastings algorithms using the Robbins–Monro pro-
cess. Communications in Statistics-Theory and
Methods, 45(17):5098–5111.

Andrew Gelman and Donald B. Rubin. 1992. Inference
from iterative simulation using multiple sequences.
Statistical Science, 7(4):457–472.

Ruth Heller, Dylan Small, and Paul Rosenbaum. 2012.
crossmatch: The cross-match test. R package ver-
sion 1.3-1.

Thomas Hörberg. 2008. Influences of form and func-
tion on the acceptability of projective prepositions
in Swedish. Spatial Cognition & Computation,
8(3):193–218.

Thomas Kluth. 2018. A C++ implementation
of cognitive models of spatial language under-
standing as well as pertinent empirical data
and analyses. will soon be published un-
der https://pub.uni-bielefeld.de/
person/54885831/data.

https://doi.org/10.1080/17470218.2015.1124894
https://doi.org/10.1080/17470218.2015.1124894
https://doi.org/10.1016/j.tics.2006.05.006
https://doi.org/10.1016/j.tics.2006.05.006
https://doi.org/10.1016/j.tics.2006.05.006
https://doi.org/10.1007/978-3-540-32255-9_6
https://doi.org/10.1007/978-3-540-32255-9_6
https://doi.org/10.1007/978-3-540-32255-9_6
https://doi.org/10.1080/03610926.2014.936562
https://doi.org/10.1080/03610926.2014.936562
https://doi.org/10.1080/03610926.2014.936562
https://CRAN.R-project.org/package=crossmatch
https://doi.org/10.1080/13875860801993652
https://doi.org/10.1080/13875860801993652
https://doi.org/10.1080/13875860801993652
https://doi.org/10.4119/unibi/2918231
https://doi.org/10.4119/unibi/2918231
https://doi.org/10.4119/unibi/2918231
https://doi.org/10.4119/unibi/2918231
https://pub.uni-bielefeld.de/person/54885831/data
https://pub.uni-bielefeld.de/person/54885831/data


55

Thomas Kluth, Michele Burigo, and Pia Knoeferle.
2017. Modeling the directionality of attention
during spatial language comprehension. In Jaap
van den Herik and Joaquim Filipe, editors, Agents
and Artificial Intelligence, Lecture Notes in Com-
puter Science. Springer International Publishing
AG.

Thomas Kluth, Michele Burigo, Holger Schultheis, and
Pia Knoeferle. under revision. Does direction mat-
ter? Linguistic asymmetries reflected in visual atten-
tion. Cognition.

Thomas Kluth and Holger Schultheis. 2014. Atten-
tional distribution and spatial language. In Christian
Freksa, Bernhard Nebel, Mary Hegarty, and Thomas
Barkowsky, editors, Spatial Cognition IX, Lecture
Notes in Computer Science. Springer.

John K. Kruschke. 2015. Doing Bayesian data analy-
sis: A tutorial with R, JAGS, and Stan, 2nd edition.
Academic Press.

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2017. Grammaticality, acceptability, and probabil-
ity: a probabilistic view of linguistic knowledge.
Cognitive Science, 41(5):1202–1241.

Torrin M. Liddell and John K. Kruschke. 2018. An-
alyzing ordinal data with metric models: What
could possibly go wrong? Preprint, retrieved from
osf.io/9h3et.

Gordon D. Logan and Daniel D. Sadler. 1996. A com-
putational analysis of the apprehension of spatial re-
lations. In Paul Bloom, Mary A. Peterson, Lynn
Nadel, and Merill F. Garrett, editors, Language and
Space, chapter 13. The MIT Press.

Xavier Fernández-i Marín. 2016. ggmcmc: Analysis of
MCMC samples and Bayesian inference. Journal of
Statistical Software, 70(9):1–20.

Daniel J. Navarro, Thomas L. Griffiths, Mark Steyvers,
and Michael D. Lee. 2006. Modeling individual dif-
ferences using Dirichlet processes. Journal of Math-
ematical Psychology, 50(2):101–122.

Ulrike Padó, Matthew W. Crocker, and Frank Keller.
2009. A probabilistic model of semantic plausi-
bility in sentence processing. Cognitive Science,
33(5):794–838.

Terry Regier and Laura A. Carlson. 2001. Ground-
ing spatial language in perception: An empirical and
computational investigation. Journal of Experimen-
tal Psychology: General, 130(2):273–298.

Paul R. Rosenbaum. 2005. An exact distribution-free
test comparing two multivariate distributions based
on adjacency. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 67(4):515–
530.

Conrad Sanderson and Ryan Curtin. 2016. Armadillo:
a template-based C++ library for linear algebra.
Journal of Open Source Software, 1:26.

Holger Schultheis, Ankit Singhaniya, and Deven-
dra Singh Chaplot. 2013. Comparing model com-
parison methods. In Proc. of the 35th Annual Con-
ference of the Cognitive Science Society, pages 1294
– 1299, Austin, TX. Cognitive Science Society.

Jon Sprouse. 2013. Acceptability judgments. In Ox-
ford Bibliographies. Oxford University Press.

Brandon M. Turner and Trisha Van Zandt. 2012. A tu-
torial on approximate Bayesian computation. Jour-
nal of Mathematical Psychology, 56(2):69–85.

https://doi.org/10.1007/978-3-319-53354-4_16
https://doi.org/10.1007/978-3-319-53354-4_16
https://doi.org/10.1007/978-3-319-11215-2_6
https://doi.org/10.1007/978-3-319-11215-2_6
https://doi.org/10.1111/cogs.12414
https://doi.org/10.1111/cogs.12414
https://doi.org/10.17605/OSF.IO/9H3ET
https://doi.org/10.17605/OSF.IO/9H3ET
https://doi.org/10.17605/OSF.IO/9H3ET
https://doi.org/10.18637/jss.v070.i09
https://doi.org/10.18637/jss.v070.i09
https://doi.org/10.1016/j.jmp.2005.11.006
https://doi.org/10.1016/j.jmp.2005.11.006
https://doi.org/10.1111/j.1551-6709.2009.01033.x
https://doi.org/10.1111/j.1551-6709.2009.01033.x
https://doi.org/10.1037//0096-3445.130.2.273
https://doi.org/10.1037//0096-3445.130.2.273
https://doi.org/10.1037//0096-3445.130.2.273
https://doi.org/10.1111/j.1467-9868.2005.00513.x
https://doi.org/10.1111/j.1467-9868.2005.00513.x
https://doi.org/10.1111/j.1467-9868.2005.00513.x
https://doi.org/10.21105/joss.00026
https://doi.org/10.21105/joss.00026
https://doi.org/10.1093/obo/9780199772810-0097
https://doi.org/10.1016/j.jmp.2012.02.005
https://doi.org/10.1016/j.jmp.2012.02.005

