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Abstract

Despite impressive progress in high-
resource settings, Neural Machine Trans-
lation (NMT) still struggles in low-
resource and out-of-domain scenarios, of-
ten failing to match the quality of phrase-
based translation. We propose a novel
technique that combines back-translation
and multilingual NMT to improve perfor-
mance in these difficult cases. Our tech-
nique trains a single model for both di-
rections of a language pair, allowing us
to back-translate source or target mono-
lingual data without requiring an auxiliary
model. We then continue training on the
augmented parallel data, enabling a cycle
of improvement for a single model that
can incorporate any source, target, or par-
allel data to improve both translation di-
rections. As a byproduct, these models
can reduce training and deployment costs
significantly compared to uni-directional
models. Extensive experiments show that
our technique outperforms standard back-
translation in low-resource scenarios, im-
proves quality on cross-domain tasks, and
effectively reduces costs across the board.

1 Introduction

Neural Machine Translation (NMT) has been
rapidly adopted in industry as it consistently out-
performs previous methods across domains and
language pairs (Bojar et al., 2017; Cettolo et al.,
2017). However, NMT systems still struggle com-
pared to Phrase-based Statistical Machine Transla-
tion (SMT) in low-resource or out-of-domain sce-
narios (Koehn and Knowles, 2017). This perfor-
mance gap is a significant roadblock to full adop-
tion of NMT.

In many low-resource scenarios, parallel data
is prohibitively expensive or otherwise impractical
to collect, whereas monolingual data may be more
abundant. SMT systems have the advantage of a
dedicated language model that can incorporate all
available target-side monolingual data to signifi-
cantly improve translation quality (Koehn et al.,
2003; Koehn and Schroeder, 2007). By contrast,
NMT systems consist of one large neural network
that performs full sequence-to-sequence transla-
tion (Sutskever et al., 2014; Cho et al., 2014).
Trained end-to-end on parallel data, these mod-
els lack a direct avenue for incorporating monolin-
gual data. Sennrich et al. (2016a) overcome this
challenge by back-translating target monolingual
data to produce synthetic parallel data that can be
added to the training pool. While effective, back-
translation introduces the significant cost of first
building a reverse system.

Another technique for overcoming a lack of
data is multitask learning, in which domain knowl-
edge can be transferred between related tasks
(Caruana, 1997). Johnson et al. (2017) apply the
idea to multilingual NMT by concatenating par-
allel data of various language pairs and marking
the source with the desired output language. The
authors report promising results for translation be-
tween languages that have zero parallel data. This
approach also dramatically reduces the complexity
of deployment by packing multiple language pairs
into a single model.

We propose a novel combination of back-
translation and multilingual NMT that trains both
directions of a language pair jointly in a single
model. Specifically, we initialize a bi-directional
model on parallel data and then use it to translate
select source and target monolingual data. Train-
ing is then continued on the augmented parallel
data, leading to a cycle of improvement. This ap-
proach has several advantages:
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• A single NMT model with standard architec-
ture that performs all forward and backward
translation during training.

• Training costs reduced significantly com-
pared to uni-directional systems.

• Improvements in translating quality for low-
resource languages, even over uni-directional
systems with back-translation.

• Effectiveness in domain adaptation.

Via comprehensive experiments, we also con-
tribute to best practices in selecting most suitable
combinations of synthetic parallel data and choos-
ing appropriate amount of monolingual data.

2 Approach

In this section, we introduce an efficient method
for improving bi-directional neural machine trans-
lation with synthetic parallel data. We also present
a strategy for selecting suitable monolingual data
for back-translation.

2.1 Bi-Directional NMT with Synthetic
Parallel Data

We use the techniques described by Johnson et al.
(2017) to build a multilingual model that combines
forward and backward directions of a single lan-
guage pair. To begin, we construct training data
by swapping the source and target sentences of a
parallel corpus and appending the swapped ver-
sion to the original. We then add an artificial to-
ken to the beginning of each source sentence to
mark the desired target language, such as <2en>
for English. A standard NMT system can then be
trained on the augmented dataset, which is natu-
rally balanced between language directions.1 A
shared Byte-Pair Encoding (BPE) model is built
on source and target data, alleviating the issue of
unknown words and reducing the vocabulary to a
smaller set of items shared across languages (Sen-
nrich et al., 2016b; Johnson et al., 2017). We fur-
ther reduce model complexity by tying source and
target word embeddings. The full training process
significantly saves the total computing resources
compared to training an individual model for each
language direction.

Generating synthetic parallel data is straight-
forward with a bi-directional model: sentences

1Johnson et al. (2017) report the need to oversample when
data is significantly unbalanced between language pairs.

from both source and target monolingual data can
be translated to produce synthetic sentence pairs.
Synthetic parallel data of the form synthetic
→ monolingual can then be used in the for-
ward direction, the backward direction, or both.
Crucially, this approach leverages both source and
target monolingual data while always placing the
real data on the target side, eliminating the need
for work-arounds such as freezing certain model
parameters to avoid degradation from training on
MT output (Zhang and Zong, 2016).

2.2 Monolingual Data Selection

Given the goal of improving a base bi-directional
model, selecting ideal monolingual data for back-
translation presents a significant challenge. Data
too close to the original training data may not
provide sufficient new information for the model.
Conversely, data too far from the original data
may be translated too poorly by the base model
to be useful. We manage these risks by leveraging
a standard pseudo in-domain data selection tech-
nique, cross-entropy difference (Moore and Lewis,
2010; Axelrod et al., 2011), to rank sentences from
a general domain. Smaller cross-entropy differ-
ence indicates a sentence that is simultaneously
more similar to the in-domain corpus (e.g. real
parallel data) and less similar to the average of the
general-domain monolingual corpus. This allows
us to begin with “safe” monolingual data and in-
crementally expand to higher risk but potentially
more informative data.

3 Experiments

In this section, we describe data, settings, and ex-
perimental methodology. We then present the re-
sults of comprehensive experiments designed to
answer the following questions: (1) How can
synthetic data be most effectively used to im-
prove translation quality? (2) Does the reduc-
tion in training time for bi-directional NMT come
at the cost of lower translation quality? (3) Can
we further improve training speed and translation
quality training with incremental training and re-
decoding? (4) How can we effectively choose
monolingual training data? (5) How well does bi-
directional NMT perform on domain adaptation?

3.1 Data

Diverse Language Pairs: We evaluate our ap-
proach on both high and low-resource data sets:



86

Type Dataset # Sentences
High-resource: German↔English
Training Common Crawl +

Europarl v7 +
News Comm. v12 4,356,324

Dev Newstest 2015+2016 5,168
Test Newstest 2017 3,004
Mono-DE News Crawl 2016 26,982,051
Mono-EN News Crawl 2016 18,238,848
Low-resource: Tagalog↔English
Training News/Blog 50,705
Dev/Test News/Blog 491/508
Dev/Test* Bible 500/500
Sample* Bible 61,195
Mono-TL Common Crawl 26,788,048
Mono-EN ICWSM 2009 blog 48,219,743
Low-resource: Swahili↔English
Training News/Blog 23,900
Dev/Test News/Blog 491/509
Dev/Test* Bible-NT 500/500
Sample* Bible-NT 14,699
Mono-SW Common Crawl 12,158,524
Mono-EN ICWSM 2009 blog 48,219,743

Table 1: Data sizes of training, development, test,
sample and monolingual sets. Sample data serves
as the in-domain seed for data selection.

German↔English (DE↔EN), Tagalog↔English
TL↔EN, and Swahili↔English (SW↔EN). Paral-
lel and monolingual DE↔EN data are provided by
the WMT17 news translation task (Bojar et al.,
2017). Parallel data for TL↔EN and SW↔EN
contains a mixture of domains such as news and
weblogs, and is provided as part of the IARPA
MATERIAL program.2 We split the original cor-
pora into training, dev, and test sets, therefore they
share a homogeneous n-gram distribution. For
these low-resource pairs, TL and SW monolingual
data are provided by the Common Crawl (Buck
et al., 2014) while EN monolingual data is pro-
vided by the ICWSM 2009 Spinn3r blog dataset
(tier-1) (Burton et al., 2009).

Diverse Domain Settings: For WMT17
DE↔EN, we choose news articles from 2016 (the
closest year to the test set) as in-domain data
for back-translation. For TL↔EN and SW↔EN,
we identify in-domain and out-of-domain mono-

2https://www.iarpa.gov/index.php/
research-programs/material

lingual data and apply data selection to choose
pseudo in-domain data (see Section 2.2). We use
the training data as in-domain and either Common
Crawl or ICWSM as out-of-domain. We also
include a low-resource, long-distance domain
adaptation task for these languages: training on
News/Blog data and testing on Bible data. We
split a parallel Bible corpus (Christodoulopoulos
and Steedman, 2015) into sample, dev, and test
sets, using the sample data as the in-domain seed
for data selection.

Preprocessing: Following Hieber et al. (2017),
we apply four pre-processing steps to paral-
lel data: normalization, tokenization, sentence-
filtering (length 80 cutoff), and joint source-target
BPE with 50,000 operations (Sennrich et al.,
2016b). Low-resource language pairs are also
true-cased to reduce sparsity. BPE and true-
casing models are rebuilt whenever the training
data changes. Monolingual data for low-resource
settings is filtered by retaining sentences longer
than nine tokens. Itemized data statistics after pre-
processing can be found in Table 1.

3.2 NMT Configuration

We use the attentional RNN encoder-decoder ar-
chitecture implemented in the Sockeye toolkit
(Hieber et al., 2017). Our translation model uses
a bi-directional encoder with a single LSTM layer
of size 512, multilayer perceptron attention with
a layer size of 512, and word representations of
size 512 (Bahdanau et al., 2015). We apply layer
normalization (Ba et al., 2016) and tie source
and target embedding parameters. We train us-
ing the Adam optimizer with a batch size of 64
sentences and checkpoint the model every 1000
updates (10,000 for DE↔EN) (Kingma and Ba,
2015). Training stops after 8 checkpoints with-
out improvement of perplexity on the development
set. We decode with a beam size of 5.

For TL↔EN and SW↔EN, we add dropout to
embeddings and RNNs of the encoder and decoder
with probability 0.2. We also tie the output layer’s
weight matrix with the source and target embed-
dings to reduce model size (Press and Wolf, 2017).
The effectiveness of tying input/output target em-
beddings has been verified on several low-resource
language pairs (Nguyen and Chiang, 2018).

For TL↔EN and SW↔EN, we train four ran-
domly seeded models for each experiment and
combine them in a linear ensemble for decod-

https://www.iarpa.gov/index.php/research-programs/material
https://www.iarpa.gov/index.php/research-programs/material
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ID Training Data TL→EN EN→TL SW→EN EN→SW DE→EN EN→DE
U-1 L1→L2 31.99 31.28 32.60 39.98 29.51 23.01
U-2 L1→L2 + L1*→L2 24.21 29.68 25.84 38.29 33.20 25.41
U-3 L1→L2 + L1→L2* 22.13 27.14 24.89 36.53 30.89 23.72
U-4 L1→L2 + L1*→L2 + L1→L2* 23.38 29.31 25.33 37.46 33.01 25.05

L1=EN L2=TL L2=SW L2=DE
B-1 L1↔L2 32.72 31.66 33.59 39.12 28.84 22.45
B-2 L1↔L2 + L1*↔L2 32.90 32.33 33.70 39.68 29.17 24.45
B-3 L1↔L2 + L2*↔L1 32.71 31.10 33.70 39.17 31.71 21.71
B-4 L1↔L2 + L1*↔L2 + L2*↔L1 33.25 32.46 34.23 38.97 30.43 22.54
B-5 L1↔L2 + L1*→L2 + L2*→L1 33.41 33.21 34.11 40.24 31.83 24.61
B-5* L1↔L2 + L1*→L2 + L2*→L1 33.79 32.97 34.15 40.61 31.94 24.45
B-6* L1↔L2 + L1*→L2 + L2*→L1 34.50 33.73 34.88 41.53 32.49 25.20

Table 2: BLEU scores for uni-directional models (U-*) and bi-directional NMT models (B-*) trained
on different combinations of real and synthetic parallel data. Models in B-5* are fine-tuned from base
models in B-1. Best models in B-6* are fine-tuned from precedent models in B-5* and underscored
synthetic data is re-decoded using precedent models. Scores with largest improvement within each zone
are highlighted.

ing. For DE↔EN experiments, we train a sin-
gle model and average the parameters of the best
four checkpoints for decoding (Junczys-Dowmunt
et al., 2016). We report case-insensitive BLEU
with standard WMT tokenization.3

3.3 Uni-Directional NMT
We first evaluate the impact of synthetic parallel
data on standard uni-directional NMT. Baseline
systems trained on real parallel data are shown
in row U-1 of Table 2.4 In all tables, we use
L1→L2 to indicate real parallel data where the
source language is L1 and the target language is
L2. Synthetic data is annotated by asterisks, such
as L1*→L2 indicating that L1* is the synthetic
back-translation of real monolingual data L2.

We always select monolingual data as an integer
multiple of the amount of real parallel data n, i.e.
|L1→L2*| = |L1*→L2| = kn. For DE↔ENmod-
els, we simply choose the top-n sentences from
shuffled News Crawl corpus. For all models of
low-resource languages, we select the top-3n sen-
tences ranked by cross-entropy difference as de-
scribed in Section 2.2. The choice of k is dis-
cussed in Section 3.4.2.

Shown in rows U-2 through U-4 of Table 2,
we compare the results of incorporating differ-

3We use the script https://github.com/
EdinburghNLP/nematus/blob/master/data/
multi-bleu-detok.perl

4Baseline BLEU scores are higher than expected on low-
resource language pairs. We hypothesize that the data is ho-
mogeneous and easier to translate.

ent combinations of real and synthetic parallel
data. Models trained on only real data of tar-
get language (i.e. in U-2) achieve better perfor-
mance in BLEU than using other combinations.
This is an expected result since translation qual-
ity is highly correlated with target language mod-
els. By contrast, standard back-translation is not
effective for our low-resource scenarios. A signif-
icant drop (∼7 BLEU comparing U-1 and U-2 for
TL/SW→EN) is observed when back-translating
English. One possible reason is that the quality
of the selected monolingual data, especially En-
glish, is not ideal. We will encounter this issue
again when using bi-directional models with the
same data in Section 3.4.

3.4 Bi-Directional NMT

We map the same synthetic data combinations
to bi-directional NMT, comparing against uni-
directional models with respect to both translation
quality and training time. Training bi-directional
models requires doubling the training data by
adding a second copy of the parallel corpus where
the source and target are swapped. We use the no-
tation L1↔L2 to represent the concatenation of
L1→L2 and its swapped copy L2→L1 in Table 2.

Compared to independent models (i.e. U-1),
the bi-directional DE↔EN model in B-1 is slightly
worse (by ∼0.6 BLEU). These losses match ob-
servations by Johnson et al. (2017) on many-to-
many multilingual NMT models. By contrast, bi-
directional low-resource models slightly outper-

https://github.com/EdinburghNLP/nematus/blob/master/data/multi-bleu-detok.perl
https://github.com/EdinburghNLP/nematus/blob/master/data/multi-bleu-detok.perl
https://github.com/EdinburghNLP/nematus/blob/master/data/multi-bleu-detok.perl
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Model TL→EN EN→TL SW→EN EN→SW DE→EN EN→DE
Baseline 76 78 63 66 41 48

Uni-directional Synthetic 177 176 137 104 88 75
TOTAL 507 371 252
Baseline 125 93 61

Bi-directional Synthetic 285 218 113
TOTAL ↓ 19% 410 ↓ 14% 311 ↓ 31% 174

(fine-tuning) Synthetic ↓ 23% 219 ↓ 44% 122 ↓ 24% 86

Table 3: Number of checkpoints (= |updates|/1000 for TL/SW↔EN or |updates|/10,000 for
DE↔EN) used by various NMT models. Bi-directional models reduce the training time by 15-30% (com-
paring ‘TOTAL’ rows). Fine-tuning bi-directional baseline models on synthetic parallel data reduces the
training time by 20-40% (comparing ‘Synthetic’ rows).

form independent models. We hypothesize that in
low-resource scenarios the neural model’s capac-
ity is far from exhausted due to the redundancy
in neural network parameters (Denil et al., 2013),
and the benefit of training on twice as much data
surpasses the detriment of confusing the model by
mixing two languages.

We generate synthetic parallel data from the
same monolingual data as in the uni-directional
experiments. If we build training data symmet-
rically (i.e. B-2,3,4), back-translated sentences
are distributed equally on the source and target
sides, forcing the model to train on some amount
of synthetic target data (MT output). For DE↔EN
models, the best BLEU scores are achieved when
synthetic training data is only present on the
source side while for low-resource models, the re-
sults are mixed. We see a particularly counter-
intuitive result when using monolingual English
data — no significant improvement (see B-3 for
TL/SW→EN). As bi-directional models are able to
leverage monolingual data of both languages, bet-
ter results are achieved when combining all syn-
thetic parallel data (see B-4 for TL/SW→EN). By
further excluding potentially harmful target-side
synthetic data (i.e. B-4 → B-5), the most unified
and slim models achieve best overall performance.

While the best bi-directional NMT models
thus far (B-5) outperform the best uni-directional
models (U-1,2) for low-resource language pairs,
they struggle to match performance in the high-
resource DE↔EN scenario.

In terms of efficiency, bi-directional models
consistently reduce the training time by 15-30%
as shown in Table 3. Note that checkpoints are
summed over all independent runs when ensemble
decoding is used.

3.4.1 Fine-Tuning and Re-Decoding
Training new NMT models from scratch after
generating synthetic data is incredibly expensive,
working against our goal of reducing the overall
cost of deploying strong translation systems. Fol-
lowing the practice of mixed fine-tuning proposed
by Chu et al. (2017), we continue training baseline
models on augmented data as shown in B-5* of Ta-
ble 2. These models achieve comparable transla-
tion quality to those trained from scratch (B-5) at a
significantly reduced cost, up to 20-40% comput-
ing time in the experiments illustrated in Table 3.

We also explore re-decoding the same monolin-
gual data using improved models (Sennrich et al.,
2016a). Underscored synthetic data in B-6* is re-
decoded by models in B-5*, leading to the best
results for all low-resource scenarios and compet-
itive results for our high-resource scenario.

3.4.2 Size of Selected Monolingual Data
In our experiments, the optimal amount of mono-
lingual data for constructing synthetic parallel data
is task-dependent. Factors such as size and lin-
guistic distribution of data and overlap between
real parallel data, monolingual data, and test data
can influence the effectiveness curve of synthetic
data. We illustrate the impact of varying the size
of selected monolingual data in our low-resource
scenario. Shown in Figure 1, all language pairs
have an increasing momentum and tend to con-
verge with more synthetic parallel data. The op-
timal point is a hyper-parameter that can be em-
pirically determined.

3.4.3 Domain Adaptation
We evaluate the performance of using the same
bi-directional NMT framework on a long-distance
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Figure 1: BLEU scores for four translation directions vs. the size of selected monolingual data. n in
x-axis equals to the size of real parallel data. EN→SW models use BLEU in parentheses in y-axis. All
language pairs have an increasing momentum and tend to converge with more synthetic parallel data.

L2=TL L2=SW
ID Training Data (L1=EN) TL→EN EN→TL SW→EN EN→SW
A-1 L1↔L2 11.03 10.17 6.56 3.80
A-2 L1↔L2 + L1*→L2 + L2*→L1 16.49 22.33 8.70 7.47
A-3 L1↔L2 + L1*→L2 + L2*→L1 18.91 23.41 11.01 8.06

Table 4: BLEU scores for bi-directional NMT models on Bible data. Models in A-2 are fine-tuned from
baseline models in A-1. Highlighted best models in A-3 are fine-tuned from precedent models in A-2
and underscored synthetic data is re-decoded using precedent models. Baseline models are significantly
improved in terms of BLEU.

domain adaptation task: News/Blog to Bible. This
task is particularly challenging because out-of-
vocabulary rates of Bible test sets are as high as
30-45% when training on News/Blog. Significant
linguistic differences also exist between modern
and Biblical language use. The impact of this do-
main mismatch is demonstrated by the incredibly
low BLEU scores of baseline News/Blog systems
(Table 4, A-1). After fine-tuning baseline models
on augmented parallel data (A-2) and re-decoding
(A-3),5 we see BLEU scores increase by 70-130%.
Despite being based on extremely weak baseline
performance, they still show the promise of our
approach for domain adaptation.

4 Related Work

Leveraging monolingual data in NMT is challeng-
ing. For example, integrating language models in
the decoder (Gülçehre et al., 2015) or initializing
the encoder and decoder with pre-trained language
models (Ramachandran et al., 2017) would require

5The concatenation of development sets from both
News/Blog and Bible serves for validation.

significant changes to system architecture.

In this work, we build on the elegant and ef-
fective approach of turning incomplete (monolin-
gual) data into complete (parallel) data by back-
translation. Sennrich et al. (2016a) used an aux-
iliary reverse-directional NMT system to gener-
ate synthetic source data from real monolingual
target data, with promising results (+3 BLEU on
strong baselines). Symmetrically, Zhang and Zong
(2016) used an auxiliary same-directional transla-
tion system to generate synthetic target data from
the real source language. However, parameters of
the decoder have to be frozen while training on
synthetic data, otherwise the decoder would fit to
noisy MT output. By contrast, our approach ef-
fectively leverages synthetic data from both trans-
lation directions, with consistent gains in trans-
lation quality. A similar idea is used by Zhang
et al. (2018) with a focus on re-decoding itera-
tively. However, their NMT models of both di-
rections are still trained independently.

Another technique for using monolingual data
in NMT is round-trip machine translation. Sup-
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pose sentence f from a monolingual dataset
is translated forward to e and then translated
back to f ′, then f ′ and f should be identical
(Brislin, 1970). Cheng et al. (2016) optimize
argmaxθ P (f

′|f ; θ) as an autoencoder; Wang
et al. (2018) minimize the difference between
P (f) and P (f ′|θ) based on the law of total prob-
ability, while He et al. (2016) set the quality of
both e and f ′ as rewards for reinforcement learn-
ing. They all achieve promising improvement but
rely on non-standard training frameworks.

Multitask learning has been used in past work to
combine models trained on different parallel cor-
pora by sharing certain components. These com-
ponents, such as the attention mechanism (Firat
et al., 2016), benefit from being trained on an ef-
fectively larger dataset. In addition, the more pa-
rameters are shared, the faster a joint model can
be trained — this is particularity beneficial in in-
dustry settings. Baidu built one-to-many transla-
tion systems by sharing both encoder and attention
(Dong et al., 2015). Google enabled a standard
NMT framework to support many-to-many trans-
lation directions by simply attaching a language
specifier to each source sentence (Johnson et al.,
2017). We adopted Google’s approach to build bi-
directional systems that successfully combine ac-
tual and synthetic parallel data.

5 Conclusion

We propose a novel technique for bi-directional
neural machine translation. A single model with
a standard NMT architecture performs both for-
ward and backward translation, allowing it to
back-translate and incorporate any source or target
monolingual data. By continuing training on aug-
mented parallel data, bi-directional NMT models
consistently achieve improved translation quality,
particularly in low-resource scenarios and cross-
domain tasks. These models also reduce train-
ing and deployment costs significantly compared
to standard uni-directional models.
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