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Abstract

Machine translation systems require seman-
tic knowledge and grammatical understand-
ing. Neural machine translation (NMT)
systems often assume this information is
captured by an attention mechanism and a
decoder that ensures fluency. Recent work
has shown that incorporating explicit syn-
tax alleviates the burden of modeling both
types of knowledge. However, requiring
parses is expensive and does not explore
the question of what syntax a model needs
during translation. To address both of these
issues we introduce a model that simultane-
ously translates while inducing dependency
trees. In this way, we leverage the bene-
fits of structure while investigating what
syntax NMT must induce to maximize per-
formance. We show that our dependency
trees are 1. language pair dependent and 2.
improve translation quality.

1 Motivation

Language has syntactic structure and translation
models need to understand grammatical dependen-
cies to resolve the semantics of a sentence and pre-
serve agreement (e.g., number, gender, etc). Many
current approaches to MT have been able to avoid
explicitly providing structural information by rely-
ing on advances in sequence to sequence (seq2seq)
models. The most famous advances include at-
tention mechanisms (Bahdanau et al., 2015) and
gating in Long Short-Term Memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997).

In this work we aim to benefit from syntactic
structure, without providing it to the model, and to
disentangle the semantic and syntactic components
of translation, by introducing a gating mechanism
which controls when syntax should be used.

The boy sitting next to the girls ordered a coffee

Figure 1: Our model aims to capture both:
syntactic (verb ordered→ subj/obj boy, coffee)
alignment (noun girls→ determiner the) attention.

Consider the process of translating the sentence
“The boy sitting next to the girls ordered a cof-
fee.” (Figure 1) from English to German. In Ger-
man, translating ordered, requires knowledge of its
subject boy to correctly predict the verb’s number
bestellte instead of bestellten. This is a case where
syntactic agreement requires long-distance infor-
mation. On the other hand, next can be translated
in isolation. The model should uncover these re-
lationships and decide when and which aspects of
syntax are necessary. While in principle decoders
can utilize previously predicted words (e.g., the
translation of boy) to reason about subject-verb
agreement, in practice LSTMs still struggle with
long-distance dependencies. Moreover, Belinkov
et al. (2017) showed that using attention reduces
the decoder’s capacity to learn target side syntax.

In addition to demonstrating improvements in
translation quality, we are also interested in analyz-
ing the predicted dependency trees discovered by
our models. Recent work has begun analyzing task-
specific latent trees (Williams et al., 2018). We
present the first results on learning latent trees with
a joint syntactic-semantic objective. We do this in
the service of machine translation which inherently
requires access to both aspects of a sentence. Fur-
ther, our results indicate that language pairs with
rich morphology require and therefore induce more
complex syntactic structure.

Our use of a structured self attention encoder
(§4) that predicts a non-projective dependency tree
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over the source sentence provides a soft structured
representation of the source sentence that can then
be transferred to the decoder, which alleviates the
burden of capturing target syntax on the target side.

We will show that the quality of the induced trees
depends on the choice of the target language (§7).
Moreover, the gating mechanism will allow us to
examine which contexts require source side syntax.

In summary, in this work:

• We propose a new NMT model that discov-
ers latent structures for encoding and when to
use them, while achieving significant improve-
ments in BLEU scores over a strong baseline.

• We perform an in-depth analysis of the in-
duced structures and investigate where the tar-
get decoder decides syntax is required.

2 Related Work

Recent work has begun investigating what syntax
seq2seq models capture (Linzen et al., 2016), but
this is evaluated via downstream tasks designed to
test the model’s abilities and not its representation.

Simultaneously, recent research in neural ma-
chine translation (NMT) has shown the benefit of
modeling syntax explicitly (Aharoni and Goldberg,
2017; Bastings et al., 2017; Li et al., 2017; Eriguchi
et al., 2017) rather than assuming the model will
automatically discover and encode it.

Bradbury and Socher (2017) presented an
encoder-decoder architecture based on RNNG
(Dyer et al., 2016). However, their preliminary
work was not scaled to a large MT dataset and
omits analysis of the induced trees.

Unlike the previous work on source side latent
graph parsing (Hashimoto and Tsuruoka, 2017),
our structured self attention encoder allows us to
extract a dependency tree in a principled manner.
Therefore, learning the internal representation of
our model is related to work done in unsupervised
grammar induction (Klein and Manning, 2004;
Spitkovsky et al., 2011) except that by focusing
on translation we require both syntactic and seman-
tic knowledge.

In this work, we attempt to contribute to both
modeling syntax and investigating a more inter-
pretable interface for testing the syntactic content
of a new seq2seq models’ internal representation.

3 Neural Machine Translation

Given a training pair of source and target sen-
tences (x,y) of length n andm respectively, neural
machine translation is a conditional probabilistic
model p(y |x) implemented using neural networks

log p(y |x; θ) =
m∑
j=1

log p(yj |yi<j ,x; θ)

where θ is the model’s parameters. We will omit
the parameters θ herein for readability.

The NMT system used in this work is a seq2seq
model that consists of a bidirectional LSTM en-
coder and an LSTM decoder coupled with an at-
tention mechanism (Bahdanau et al., 2015; Luong
et al., 2015). Our system is based on a PyTorch
implementation1 of OpenNMT (Klein et al., 2017).
Let {si ∈ Rd}ni=1 be the output of the encoder

S = BiLSTM(x) (1)

Here we use S = [s1; . . . ; sn] ∈ Rd×n as a concate-
nation of {si}. The decoder is composed of stacked
LSTMs with input-feeding. Specifically, the inputs
of the decoder at time step t are a concatenation
of the embedding of the previous generated word
yt−1 and a vector ut−1:

ut−1 = g(ht−1, ct−1) (2)

where g is a one layer feed-forward network, ht−1
is the output of the LSTM decoder, and ct−1 is a
context vector computed by an attention mecha-
nism

αt−1 = softmax(hT
t−1WaS) (3)

ct−1 = SαT
t−1 (4)

where Wa ∈ Rd×d is a trainable parameter.
Finally a single layer feed-forward network f

takes ut as input and returns a multinomial distri-
bution over all the target words: yt ∼ f(ut)

4 Syntactic Attention Model

We propose a syntactic attention model2 (Figure 2)
that differs from standard NMT in two crucial as-
pects. First, our encoder outputs two sets of an-
notations: content annotations S and syntactic an-
notations M (Figure 2a). The content annotations
are the outputs of a standard BiLSTM while the

1http://opennmt.net/OpenNMT-py/
2https://github.com/ketranm/sa-nmt

http://opennmt.net/OpenNMT-py/
https://github.com/ketranm/sa-nmt
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syntactic annotations are produced by a head word
selection layer (§4.1). The syntactic annotations M
capture syntactic dependencies amongst the source
words and enable syntactic transfer from the source
to the target. Second, we incorporate the source
side syntax into our model by modifying the stan-
dard attention (from target to source) in NMT such
that it attends to both S and M through a shared at-
tention layer. The shared attention layer biases our
model toward capturing source side dependency. It
produces a dependency context d (Figure 2c) in ad-
dition to the standard context vector c (Figure 2b)
at each time step. Motivated by the example in
Figure 1 that some words can be translated without
resolving their syntactic roles in the source sen-
tence, we include a gating mechanism that allows
the decoder to decide the amount of syntax needed
when it generates the next word. Next, we describe
the head word selection layer and how source side
syntax is incorporated into our model.

4.1 Head Word Selection

The head word selection layer learns to select a
soft head word for each source word. This layer
transforms S into a matrix M that encodes implicit
dependency structure of x using structured self at-
tention. First we apply three trainable weight matri-
ces Wq,Wk,Wv ∈ Rd×d to map S to query, key,
and value matrices Sq = WqS, Sk = WkS, Sv =
WvS ∈ Rd×n respectively. Then we compute the
structured self attention probabilities β ∈ Rn×n

via a function sattn: β = sattn(ST
qSk/

√
d). Finally

the syntactic context M is computed as M = Svβ.
Here n is the length of the source sentence, so

β captures all pairwise word dependencies. Each
cell βi,j of the attention matrix β is the posterior
probability p(xi = head(xj) |x). The structured
self attention function sattn is inspired by the work
of (Kim et al., 2017) but differs in two important
ways. First we model non-projective dependency
trees. Second, we utilize the Kirchhoff’s Matrix-
Tree Theorem (Tutte, 1984) instead of the sum-
product algorithm presented in (Kim et al., 2017)
for fast evaluation of the attention probabilities. We
note that (Liu and Lapata, 2018) were first to pro-
pose using the Matrix-Tree Theorem for evaluating
the marginals in end to end training of neural net-
works. Their work, however, focuses on the task of
natural language inference (Bowman et al., 2015)
and document classification which arguably require
less syntactic knowledge than machine translation.

Additionally, we will evaluate our structured self
attention on datasets that are up to 20 times larger
than the datasets studied in previous work.

Let z ∈ {0, 1}n×n be an adjacency matrix en-
coding a source’s dependency tree. Let φ =
ST
qSk/

√
d ∈ Rn×n be a scoring matrix such that

cell φi,j scores how likely word xi is to be the
head of word xj . The probability of a dependency
tree z is therefore given by

p(z |x;φ) =
exp

(∑
i,j zi,j φi,j

)
Z(φ)

(5)

where Z(φ) is the partition function.
In the head selection model, we are interested in

the marginal p(zi,j = 1 |x;φ)

βi,j = p(zi,j = 1 |x;φ) =
∑

z : zi,j=1

p(z |x;φ)

We use the framework presented by Koo et al.
(2007) to compute the marginal of non-projective
dependency structures. Koo et al. (2007) use the
Kirchhoff’s Matrix-Tree Theorem (Tutte, 1984) to
compute p(zi,j = 1 |x;φ) by first defining the
Laplacian matrix L ∈ Rn×n as follows:

Li,j(φ) =


n∑

k=1
k 6=j

exp(φk,j) if i = j

− exp(φi,j) otherwise

(6)

Now we construct a matrix L̂ that accounts for root
selection

L̂i,j(φ) =

{
exp(φj,j) if i = 1

Li,j(φ) if i > 1
(7)

The marginals in β are then

βi,j = (1− δ1,j) exp(φi,j)
[
L̂
−1

(φ)
]
j,j

− (1− δi,1) exp(φi,j)
[
L̂
−1

(φ)
]
j,i

(8)

where δi,j is the Kronecker delta. For the root node,
the marginals are given by

βk,k = exp(φk,k)
[
L̂
−1

(φ)
]
k,1

(9)

The computation of the marginals is fully differ-
entiable, thus we can train the model in an end-to-
end fashion by maximizing the conditional likeli-
hood of the translation.
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(a) Structured Self Attention
Encoder: the first layer is
a standard BiLSTM, the top
layer is a syntactic attention
network.

↵ c

(b) Compute the context vec-
tor (blue) as in a standard
NMT model. The attention
weights α are in green.

↵ cd

(c) Use the attention weights
α, as computed in the previ-
ous step, to calculate syntac-
tic vector (purple).

Figure 2: A visual representation of our proposed mechanism for shared attention.

4.2 Incorporating Syntactic Context

Having set the annotations S and M with the en-
coder, the LSTM decoder can utilize this informa-
tion at every generation step by means of attention.
At time step t, we first compute standard attention
weights αt−1 and context vector ct−1 as in Equa-
tions (3) and (4). We then compute a weighted
syntactic vector:

dt−1 = MαT
t−1 (10)

Note that the syntactic vector dt−1 and the context
vector ct−1 share the same attention weights αt−1.
The main idea behind sharing attention weights
(Figure 2c) is that if the model attends to a particu-
lar source word xi when generating the next target
word, we also want the model to attend to the head
word of xi. We share the attention weights αt−1
because we expect that, if the model picks a source
word xi to translate with the highest probability
αt−1[i], the contribution of xi’s head in the syn-
tactic vector dt−1 should also be highest. Figure 3

The boy sitting next to the girls ordered a coffee

Figure 3: A latent tree learned by our model.

shows the latent tree learned by our translation ob-
jective. Unlike the gold tree provided in Figure 1,
the model decided that “the boy” is the head of
“ordered”. This is common in our model because
the BiLSTM context means that a given word’s
representation is actually a summary of its local
context/constituent.

It is not always useful or necessary to access the
syntactic context dt−1 at every time step t. Ideally,

we should let the model decide whether it needs to
use this information or not. For example, the model
might decide to only use syntax when it needs to
resolve long distance dependencies on the source
side. To control the amount of source side syntactic
information, we introduce a gating mechanism:

d̂t−1 = dt−1 � σ(Wght−1) (11)

The vector ut−1 from Eq. (2) now becomes

ut−1 = g(ht−1, ct−1, d̂t−1) (12)

Another approach to incorporating syntactic an-
notations M in the decoder is to use a separate at-
tention layer to compute the syntactic vector dt−1
at time step t:

γt−1 = softmax(hT
t−1WmM) (13)

dt−1 = MγT
t−1 (14)

We will provide a comparison to this approach
in our results.

4.3 Hard Attention over Tree Structures
Finally, to simulate the scenario where the model
has access to a dependency tree given by an ex-
ternal parser we report results with hard attention.
Forcing the model to make hard decisions during
training mirrors the extraction and conditioning on
a dependency tree (§7.1). We expect this technique
will improve the performance on grammar induc-
tion, despite making translation lossy. A similar
observation has been reported in (Hashimoto and
Tsuruoka, 2017) which showed that translation per-
formance degraded below their baseline when they
provided dependency trees to the encoder.

Recall the marginal βi,j gives us the probability
that word xi is the head of word xj . We convert
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these soft weights to hard ones β̄ by

β̄k,j =

{
1 if k = arg maxi βi,j

0 otherwise
(15)

We train this model using the straight-through es-
timator (Bengio et al., 2013). In this setup, each
word has a parent but there is no guarantee that the
structure given by hard attention will result in a
tree (i.e., it may contain cycle). A more principled
way to enforce a tree structure is to decode the best
tree T using the maximum spanning tree algorithm
(Chu and Liu, 1965; Edmonds, 1967) and to set
β̄k,j = 1 if the edge (xk → xj) ∈ T . Maximum
spanning tree decoding can be prohibitively slow
as the Chu-Liu-Edmonds algorithm is not GPU
friendly. We therefore greedily pick a parent word
for each word xj in the sentence using Eq. (15).
This is actually a principled simplification as greed-
ily assigning a parent for each word is the first step
in Chu-Liu-Edmonds algorithm.

5 Experiments

Next we will discuss our experimental setup and
report results for English↔German (En↔De),
English↔Russian (En↔Ru), and Russian→Arabic
(Ru→Ar) translation models.

5.1 Data

We use the WMT17 (Bojar et al., 2017) data in our
experiments. Table 1 shows the statistics of the data.
For En↔De, we use a concatenation of Europarl,
Common Crawl, Rapid corpus of EU press releases,
and News Commentary v12. We use newstest2015
for development and newstest2016, newstest2017
for testing. For En↔Ru, we use Common Crawl,
News Commentary v12, and Yandex Corpus. The
development data comes from newstest2016 and
newstest2017 is reserved for testing. For Ru→Ar,
we use the data from the six-way sentence-aligned
subcorpus of the United Nations Parallel Corpus
v1.0 (Ziemski et al., 2016). The corpus also con-
tains the official development and test data. Our lan-

Train Valid Test Vocabulary

En↔De 5.9M 2,169 2,999 / 3,004 36,251 / 35,913
En↔Ru 2.1M 2,998 3,001 34,872 / 34,989
Ru→Ar 11.1M 4,000 4,000 32,735 / 32,955

Table 1: Statistics of the data.

guage pairs were chosen to compare results across

and between morphologically rich and poor lan-
guages. This will prove particularly interesting
in our grammar induction results where different
pairs must preserve different amounts of syntactic
agreement information.

We use BPE (Sennrich et al., 2016) with 32,000
merge operations. We run BPE for each language
instead of using BPE for the concatenation of both
source and target languages.

5.2 Baselines

Our baseline is an NMT model with input-feeding
(§3). As we will be making several modifications
from the basic architecture in our proposed struc-
tured self attention NMT (SA-NMT), we will ver-
ify each choice in our architecture design empiri-
cally. First we validate the structured self attention
module by comparing it to a self-attention mod-
ule (Lin et al., 2017; Vaswani et al., 2017). Self
attention computes attention weights β simply as
β = softmax(φ). Since self-attention does not as-
sume any hierarchical structure over the source sen-
tence, we refer it as flat-attention NMT (FA-NMT).
Second, we validate the benefit of using two sets of
annotations in the encoder. We combine the hidden
states of the encoder h with syntactic context d to
obtain a single set of annotation using the following
equation:

s̄i = si + σ(Wgsi)� di (16)

Here we first down-weight the syntactic context
di before adding it to si. The sigmoid function
σ(Wgsi) decides the weight of the head word of xi
based on whether translating xi needs additionally
dependency information. We refer to this baseline
as SA-NMT-1set. Note that in this baseline, there
is only one attention layer from the target to the
source S̄ = {s̄i}n1 .

In all the models, we share the weights of target
word embeddings and the output layer as suggested
by Inan et al. (2017) and Press and Wolf (2017).

5.3 Hyper-parameters and Training

For all the models, we set the word embedding
size to 1024, the number of LSTM layers to 2,
and the dropout rate to 0.3. Parameters are initial-
ized uniformly in (−0.04, 0.04). We use the Adam
optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.001. We evaluate our models on
development data every 10,000 updates for De–En
and Ru→Ar, and 5,000 updates for Ru–En. If the
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validation perplexity increases, we decay the learn-
ing rate by 0.5. We stop training after decaying the
learning rate five times as suggested by Denkowski
and Neubig (2017). The mini-batch size is 64 in
Ru→Ar experiments and 32 in the rest. Finally, we
report BLEU scores computed using the standard
multi-bleu.perl script.

In our experiments, the SA-NMT models are
twice slower than the baseline NMT measuring by
the number of target words generated per second.

5.4 Translation Results

Table 2 shows the BLEU scores in our experiments.
We test statistical significance using bootstrap re-
sampling (Riezler and Maxwell, 2005). Statisti-
cal significances are marked as †p < 0.05 and
‡p < 0.01 when compared against the baselines.
Additionally, we also report statistical significances
Mp < 0.05 and Np < 0.01 when comparing against
the FA-NMT models that have two separate atten-
tion layers from the decoder to the encoder. Over-
all, the SA-NMT (shared) model performs the best
gaining more than 0.5 BLEU De→En on wmt16, up
to 0.82 BLEU on En→De wmt17 and 0.64 BLEU
En→Ru direction over a competitive NMT base-
line. The gain of the SA-NMT model on Ru→Ar
is small (0.45 BLEU) but significant. The results
show that structured self attention is useful when
translating from English to languages that have
long-distance dependencies and complex morpho-
logical agreements. We also see that the gain is
marginal compared to self-attention models (FA-
NMT-shared) and not significant. Within FA-NMT
models, sharing attention is helpful. Our results
also confirm the advantage of having two separate
sets of annotations in the encoder when modeling
syntax. The hard structured self attention model
(SA-NMT-hard) performs comparably to the base-
line. While this is a somewhat expected result from
the hard attention model, we will show in Section 7
that the quality of induced trees from hard attention
is often far better than those from soft attention.

6 Gate Activation Visualization

As mentioned earlier, our models allow us to ask
the question: When does the target LSTM need to
access source side syntax? We investigate this by
analyzing the gate activations of our best model,
SA-NMT (shared). At time step t, when the model
is about to predict the target word yt, we compute

the norm of the gate activations

zt = ‖σ(Wght−1)‖2 (17)

The activation norm zt allows us to see how much
syntactic information flows into the decoder. We
observe that zt has its highest value when the de-
coder is about to generate a verb while it has its
lowest value when the end of sentence token </s>
is predicted. Figure 4 shows some examples of Ger-
man target sentences. The darker colors represent
higher activation norms.

Figure 4: Visualization of gate norm. Darker means
the model is using more syntactic information.

It is clear that translating verbs requires struc-
tural information. We also see that after verbs,
the gate activation norms are highest at nouns Zeit
(time), Mut (courage), Dach (roof ) and then tail
off as we move to function words which require
less context to disambiguate. Below are the fre-
quencies with which the highest activation norm
in a sentence is applied to a given part-of-speech
tag on newstest2016. We include the top 7 most
common activations. We see that while nouns are
often the most common tag in a sentence, syntax is
disproportionately used for translating verbs.

ADP 38 189

PUNCT 580 184

ADJ 43 170

DET 33 160

ADV 42

SCONJ 3

PART 3

X 11

PRON 79

NUM 12

PROPN 226

CONJ 1

Gold Pred

ADJ 0.01433811270423470.0665622552858262

ADP 0.01267089029676560.0740015661707126
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AUX 0.001667222407469160.0755677368833203
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7 Grammar Induction

NLP has long assumed hierarchical structured rep-
resentations are important to understanding lan-
guage. In this work, we borrowed that intuition to
inform the construction of our model. We inves-
tigate whether the internal latent representations
discovered by our models share properties previ-
ously identified within linguistics and if not, what
important differences exist. We investigate the in-
terpretability of our model’s representations by: 1)
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Model Shared De→En Ru→En En→De En→Ru Ru→Ar
wmt16 wmt17 wmt17 wmt16 wmt17 wmt17 un-test

NMT - 33.16 28.94 30.17 29.92 23.44 26.41 37.04

FA-NMT yes 33.55 29.43 30.22 30.09 24.03 26.91 37.41
no 33.24 29.00 30.34 29.98 23.97 26.75 37.20

SA-NMT-1set - 33.51 29.15 30.34 30.29† 24.12 26.96 37.34
SA-NMT-hard yes 33.38 28.96 29.98 29.93 23.84 26.71 37.33

SA-NMT yes 33.73‡M 29.45‡N 30.41 30.22 24.26‡M 27.05‡ 37.49‡M

no 33.18 29.19 30.15 30.17 23.94 27.01 37.22

Table 2: Results for translating En↔De, En↔Ru, and Ru→Ar. Statistical significances are marked as
†p < 0.05 and ‡p < 0.01 when compared against the baselines and M/N when compared against the
FA-NMT (no-shared). The results indicate the strength of our proposed shared-attention for NMT.

FA SA Baseline

no-shared shared no-shared shared hard L R Un

EN (→DE) 17.0/25.2 27.6/41.3 23.6/33.7 27.8/42.6 31.7/45.6 34.0 7.8 40.9EN (→RU) 35.2/48.5 36.5/48.8 12.8/25.5 33.1/48.9 33.7/46.0

DE (→EN) 21.1/33.3 20.1/33.6 12.8/22.5 21.5/38.0 26.3/40.7 34.4 8.6 41.5

RU (→EN) 19.2/33.2 20.4/34.9 19.3/34.4 24.8/41.9 23.2/33.3 32.9 15.2 47.3RU (→AR) 21.1/41.1 22.2/42.1 11.6/21.4 28.9/50.4 30.3/52.0

Table 3: Directed and Undirected (DA/UA) model accuracy (without punctuation) compared to branching
baselines: left (L), right (R) and undirected (Un). Our results show an intriguing effect of the target
language on induction. Note the accuracy discrepancy between translating RU to EN versus AR.

A quantitative attachment accuracy and 2) A quali-
tative look at its output.

Our results corroborate and refute previous work
(Hashimoto and Tsuruoka, 2017; Williams et al.,
2018). We provide stronger evidence that syntactic
information can be discovered via latent structured
self attention, but we also present preliminary re-
sults indicating that conventional definitions of syn-
tax may be at odds with task specific performance.

Unlike in the grammar induction literature our
model is not specifically constructed to recover
traditional dependency grammars nor have we pro-
vided the model with access to part-of-speech tags
or universal rules (Naseem et al., 2010; Bisk and
Hockenmaier, 2013). The model only uncovers
the syntactic information necessary for a given lan-
guage pair, though future work should investigate
if structural linguistic constraints benefit MT.

7.1 Extracting a Tree

For extracting non-projective dependency trees, we
use Chu-Liu-Edmonds algorithm (Chu and Liu,
1965; Edmonds, 1967). First, we must collapse
BPE segments into words. Assume the k-th word
corresponds to BPE tokens from index u to v. We
obtain a new matrix φ̂ by summing over φi,j that

are the corresponding BPE segments.

φ̂i,j =


φi,j if i 6∈ [u, v] ∧ j 6∈ [u, v]∑v

l=uφi,l if j = k ∧ i 6∈ [u, v]∑v
l=uφl,j if i = k ∧ j 6∈ [u, v]∑v
l,h=uφl,h otherwise

7.2 Grammatical Analysis
To analyze performance we compute unlabeled di-
rected and undirected attachment accuracies of our
predicted trees on gold annotations from the Uni-
versal Dependencies (UD version 2) dataset.3 We
chose this representation because of its availability
in many languages, though it is atypical for gram-
mar induction. Our five model settings in addition
to left and right branching baselines are presented
in Table 3. The results indicate that the target lan-
guage effects the source encoder’s induction per-
formance and several settings are competitive with
branching baselines for determining headedness.
Recall that syntax is being modeled on the source
language so adjacent rows are comparable.

We observe a huge boost in DA/UA scores for
EN and RU in FA-NMT and SA-NMT-shared mod-
els when the target languages are morphologically

3http://universaldependencies.org

http://universaldependencies.org
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I still have surgically induced hair loss

I went to this urgent care center and was blown away with their service

(a) Gold parses.

I still have surgically induced hair loss

I went to this urgent care center and was blown away with their service

(b) SA-NMT (shared)

Figure 6: Samples of induced trees for English by our (En→Ru) model. Notice the red arrows from
subject↔verb which are necessary for translating Russian verbs.

rich (RU and AR respectively). In comparison to
previous work (Belinkov et al., 2017; Shi et al.,
2016) on an encoder’s ability to capture source side
syntax, we show a stronger result that even when
the encoders are designed to capture syntax explic-
itly, the choice of the target language influences the
amount of syntax learned by the encoder.

We also see gains from hard attention and sev-
eral models outperform baselines for undirected
dependency metrics (UA). Whether hard attention
helps in general is unclear. It appears to help when
the target languages are morphologically rich.

Successfully extracting linguistic structure with
hard attention indicates that models can capture in-
teresting structures beyond semantic co-occurrence
via discrete actions. Our approach also outperforms
(Hashimoto and Tsuruoka, 2017) despite lacking
access to additional resources like POS tags.4

7.3 Dependency Accuracies & Discrepancies

While the SA-NMT-hard model gives the best di-
rected attachment scores on EN→DE, DE→EN
and RU→AR, the BLEU scores of this model are
below other SA-NMT models as shown in Table 2.
The lack of correlation between syntactic perfor-
mance and NMT contradicts the intuition of previ-
ous work and suggests that useful structures learned
in service of a task might not necessarily benefit
from or correspond directly to known linguistic
formalisms. We want to raise three important dif-
ferences between these induced structures and UD.

First, we see a blurred boundary between de-
pendency and constituency representations. As
noted earlier, the BiLSTM provides a local sum-
mary. When the model chooses a head word, it is
actually choosing hidden states from a BiLSTM
and therefore gaining access to a constituent or re-
gion. This means there is likely little difference
between attending to the noun vs the determiner in

4The numbers are not directly comparable since they use
WSJ corpus to evaluate the UA score.

a phrase (despite being wrong according to UD).
Future work might force this distinction by replac-
ing the BiLSTM with a bag-of-words but this will
likely lead to substantial losses in MT performance.

Second, because the model appears to use syn-
tax for agreement, often verb dependencies link
to subjects directly to capture predicate argument
structures like those in CCG or semantic role label-
ing. UD instead follows the convention of attaching
all verbs that share a subject to one another or their
conjunctions. We have colored some subject–verb
links in Figure 6: e.g., between I, went and was.

Finally, the model’s notion of headedness is atyp-
ical as it roughly translates to “helpful when trans-
lating”. The head word gets incorporated into the
shared representation which may cause the arrow
to flip from traditional formalisms. Additionally,
because the model can turn on and off syntax as
necessary, it is likely to produce high confidence
treelets rather than complete parses. This means
arcs produced from words with weak gate activa-
tions (Figure 4) are not actually used during trans-
lation and likely not-syntactically meaningful.

We will not speculate if these are desirable prop-
erties or issues to address with constraints, but the
model’s decisions appear well motivated and our
formulation allows us to have the discussion.

8 Conclusion

We have proposed a structured self attention en-
coder for NMT. Our models show significant gains
in performance over a strong baseline on standard
WMT benchmarks. The models presented here do
not access any external information such as parse-
trees or part-of-speech tags yet appear to use and in-
duce structure when given the opportunity. Finally,
we see our induction performance is language pair
dependent, which invites an interesting research
discussion as to the role of syntax in translation
and the importance of working with morphologi-
cally rich languages.
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A Attention Visualization

Figure 7 shows a sample visualization of structured
attention models trained on En→De data. It is
worth noting that the shared SA-NMT model (Fig-
ure 7a) and the hard SA-NMT model (Figure 7b)
capture similar structures of the source sentence.
We hypothesize that when the objective function
requires syntax, the induced trees are more consis-
tent unlike those discovered by a semantic objective
(Williams et al., 2018). Both models correctly iden-
tify that the verb is the head of pronoun (hope→I,
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said→she). While intuitively it is clearly beneficial
to know the subject of the verb when translating
from English into German, the model attention is
still somewhat surprising because long distance de-
pendency phenomena are less common in English,
so we would expect that a simple content based ad-
dressing (i.e., standard attention mechanism) would
be sufficient in this translation
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(a) SA-NMT (shared) attention.
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(b) SA-NMT with hard structured attention.

Figure 7: A visualization of attention distributions
over head words (on y-axis).


