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Introduction

Machine Translation and Generation focusing on Neural Machine Translation (NMT) technology. This
workshop aims to cultivate research on the leading edge in neural machine translation and other aspects
of machine translation, generation, and multilinguality that utilize neural models. In this year’s workshop
we are extremely pleased to be able to host four invited talks from leading lights in the field, namely:
Jacob Devlin Rico Sennrich, Jason Weston, and Yulia Tsvetkov. In addition this year’s workshop will
feature a session devoted to a new shared task on efficient machine translation. We received a total of 25
submissions, and accepted 16 for inclusion in the workshop, an acceptance rate of 64%. Due to the large
number of invited talks, and to encourage discussion, only the two papers selected for best paper awards
will be presented orally, and the remainder will be presented in a single poster session. We would like
to thank all authors for their submissions, and the program committee members for their valuable efforts
in reviewing the papers for the workshop. We would also like to thank Amazon, Apple and Google for
their generous sponsorship.
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Abstract

This document describes the findings of
the Second Workshop on Neural Machine
Translation and Generation, held in con-
cert with the annual conference of the
Association for Computational Linguistics
(ACL 2018). First, we summarize the re-
search trends of papers presented in the
proceedings, and note that there is par-
ticular interest in linguistic structure, do-
main adaptation, data augmentation, han-
dling inadequate resources, and analysis
of models. Second, we describe the re-
sults of the workshop’s shared task on ef-
ficient neural machine translation (NMT),
where participants were tasked with cre-
ating NMT systems that are both accurate
and efficient.

1 Introduction

Neural sequence to sequence models (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015) are now a workhorse be-
hind a wide variety of different natural language
processing tasks such as machine translation, gen-
eration, summarization and simplification. The
2nd Workshop on Neural Machine Translation
and Generation (WNMT 2018) provided a forum
for research in applications of neural models to
machine translation and other language genera-
tion tasks (including summarization (Rush et al.,
2015), NLG from structured data (Wen et al.,
2015), dialog response generation (Vinyals and
Le, 2015), among others). Overall, the workshop
was held with two goals:

First, it aimed to synthesize the current state
of knowledge in neural machine translation and
generation: This year we will continue to encour-
age submissions that not only advance the state of

the art through algorithmic advances, but also an-
alyze and understand the current state of the art,
pointing to future research directions. Towards
this goal, we received a number of high-quality
research contributions on the topics of linguis-
tic structure, domain adaptation, data augmenta-
tion, handling inadequate resources, and analysis
of models, which are summarized in Section 2.

Second, it aimed to expand the research hori-
zons in NMT: Based on panel discussions from
the first workshop, we organized a shared task.
Specifically, the shared task was on “Efficient
NMT”. The aim of this task was to focus on not
only accuracy, but also memory and computa-
tional efficiency, which are paramount concerns in
practical deployment settings. The workshop pro-
vided a set of baselines for the task, and elicited
contributions to help push forward the Pareto fron-
tier of both efficiency and accuracy. The results of
the shared task are summarized in Section 3

2 Summary of Research Contributions

We published a call for long papers, ex-
tended abstracts for preliminary work, and cross-
submissions of papers submitted to other venues.
The goal was to encourage discussion and interac-
tion with researchers from related areas. We re-
ceived a total of 25 submissions, out of which 16
submissions were accepted. The acceptance rate
was 64%. Three extended abstracts, two cross-
submissions and eleven long papers were accepted
after a process of double blind reviewing.

Most of the papers looked at the application
of machine translation, but there is one paper on
abstractive summarization (Fan et al., 2018) and
one paper on automatic post-editing of transla-
tions (Unanue et al., 2018).

The workshop proceedings cover a wide range
of phenomena relevant to sequence to sequence
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model research, with the contributions being con-
centrated on the following topics:

Linguistic structure: How can we incorporate
linguistic structure in neural MT or gener-
ation models? Contributions examined the
effect of considering semantic role struc-
ture (Marcheggiani et al., 2018), latent struc-
ture (Bastings et al., 2018), and structured
self-attention (Bisk and Tran, 2018).

Domain adaptation: Some contributions exam-
ined regularization methods for adapta-
tion (Khayrallah et al., 2018) and “extreme
adaptation” to individual speakers (Michel
and Neubig, 2018)

Data augmentation: A number of the con-
tributed papers examined ways to augment
data for more efficient training. These
include methods for considering multiple
back translations (Imamura et al., 2018),
iterative back translation (Hoang et al.,
2018b), bidirectional multilingual train-
ing (Niu et al., 2018), and document level
adaptation (Kothur et al., 2018)

Inadequate resources: Several contributions in-
volved settings in which resources were in-
sufficient, such as investigating the impact of
noise (Khayrallah and Koehn, 2018), miss-
ing data in multi-source settings (Nishimura
et al., 2018) and one-shot learning (Pham
et al., 2018).

Model analysis: There were also many methods
that analyzed modeling and design decisions,
including investigations of individual neuron
contributions (Bau et al., 2018), parameter
sharing (Jean et al., 2018), controlling output
characteristics (Fan et al., 2018), and shared
attention (Unanue et al., 2018)

3 Shared Task

Many shared tasks, such as the ones run by the
Conference on Machine Translation (Bojar et al.,
2017), aim to improve the state of the art for
MT with respect to accuracy: finding the most
accurate MT system regardless of computational
cost. However, in production settings, the effi-
ciency of the implementation is also extremely im-
portant. The shared task for WNMT (inspired by
the “small NMT” task at the Workshop on Asian

Translation (Nakazawa et al., 2017)) was focused
on creating systems for NMT that are not only ac-
curate, but also efficient. Efficiency can include a
number of concepts, including memory efficiency
and computational efficiency. This task concerns
itself with both, and we cover the detail of the eval-
uation below.

3.1 Evaluation Measures

The first step to the evaluation was deciding what
we want to measure. In the case of the shared task,
we used metrics to measure several different as-
pects connected to how good the system is. These
were measured for systems that were run on CPU,
and also systems that were run on GPU.

Accuracy Measures: As a measure of translation
accuracy, we used BLEU (Papineni et al.,
2002) and NIST (Doddington, 2002) scores.

Computational Efficiency Measures: We mea-
sured the amount of time it takes to translate
the entirety of the test set on CPU or GPU.
Time for loading models was measured by
having the model translate an empty file, then
subtracting this from the total time to trans-
late the test set file.

Memory Efficiency Measures: We measured:
(1) the size on disk of the model, (2) the
number of parameters in the model, and (3)
the peak consumption of the host memory
and GPU memory.

These metrics were measured by having par-
ticipants submit a container for the virtualization
environment Docker1, then measuring from out-
side the container the usage of computation time
and memory. All evaluations were performed on
dedicated instances on Amazon Web Services2,
specifically of type m5.large for CPU evalu-
ation, and p3.2xlarge (with a NVIDIA Tesla
V100 GPU).

3.2 Data

The data used was from the WMT 2014 English-
German task (Bojar et al., 2014), using the pre-
processed corpus provided by the Stanford NLP
Group3. Use of other data was prohibited.

1https://www.docker.com/
2https://aws.amazon.com/
3https://nlp.stanford.edu/projects/

nmt/
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Figure 1: Time and memory vs. accuracy measured by BLEU, calculated on both CPU and GPU

3.3 Baseline Systems

Two baseline systems were prepared:

Echo: Just send the input back to the output.

Base: A baseline system using attentional LSTM-
based encoder-decoders with attention (Bah-
danau et al., 2015).

3.4 Submitted Systems

Four teams, Team Amun, Team Marian, Team
OpenNMT, and Team NICT submitted to the
shared task, and we will summarize each below.
Before stepping in to the details of each system,
we first note general trends that all or many sys-
tems attempted. The first general trend was a
fast C++ decoder, with Teams Amun, Marian, and
NICT using the Amun or Marian decoders in-
cluded in the Marian toolkit,4 and team OpenNMT

4https://marian-nmt.github.io

using the C++-decoder decoder for OpenNMT.5.
The second trend was the use of data augmenta-
tion techniques allowing the systems to train on
data other than the true references. Teams Amun,
Marian, and OpenNMT all performed model dis-
tillation (Kim and Rush, 2016), where a larger
teacher model is used to train a smaller student
model, while team NICT used back translation,
training the model on sampled translations from
the target to the source (Imamura et al., 2018).
Finally, a common optimization was the use of
lower-precision arithmetic, where Teams Amun,
Marian, and OpenNMT all used some variety of
16/8-bit or integer calculation, along with the cor-
responding optimized CPU or GPU operations.
These three improvements seem to be best prac-
tices for efficient NMT implementation.

5http://opennmt.net
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3.4.1 Team Amun

Team Amun’s contribution (Hoang et al., 2018a)
was based on the “Amun” decoder and consisted
of a number of optimizations to improve transla-
tion speed on GPU. The first major unique con-
tribution was a strategy of batching together com-
putations from multiple hypotheses within beam
search to exploit parallelism of hardware. An-
other contribution was a methodology to create
a fused GPU kernel for the softmax calculation,
that calculates all of the operations within the
softmax (e.g. max, exponentiation, and sum) in
a single kernel. In the end they submitted two
systems, Amun-FastGRU and Amun-MLSTM,
which use GRU (Cho et al., 2014) and multiplica-
tive LSTM (Krause et al., 2016) units respectively.

3.4.2 Team Marian

Team Marian’s system (Junczys-Dowmunt et al.,
2018) used the Marian C++ decoder, and con-
centrated on new optimizations for the CPU.
The team distilled a large self-attentional model
into two types of “student” models: a smaller
self-attentional model using average attention
networks (Zhang et al., 2018), a new higher-
speed version of the original Transformer model
(Vaswani et al., 2017), and a standard RNN-based
decoder. They also introduced an auto-tuning
approach that chooses which of multiple matrix
multiplication implementations is most efficient
in the current context, then uses this implementa-
tion going forward. This resulted in the Marian-
TinyRNN system using an RNN-based model,
and the Marian-Trans-Small-AAN, Marian-
Trans-Base-AAN, Marian-Trans-Big, Marian-
Trans-Big-int8 systems, which use different vari-
eties and sizes of self-attentional models.

3.4.3 Team OpenNMT

Team OpenNMT (Senellart et al., 2018) built a
system based on the OpenNMT toolkit. The
model was based on a large self-attentional teacher
model distilled into a smaller, fast RNN-based
model. The system also used a version of vo-
cabulary selection (Shi and Knight, 2017), and a
method to increase the size of the encoder but
decrease the size of the decoder to improve the
efficiency of beam search. They submitted two
systems, OpenNMT-Small and OpenNMT-Tiny,
which were two variously-sized implementations
of this model.

3.4.4 Team NICT

Team NICT’s contribution (Imamura and Sumita,
2018) to the shared task was centered around us-
ing self-training as a way to improve NMT accu-
racy without changing the architecture. Specifi-
cally, they used a method of randomly sampling
pseudo-source sentences from a back-translation
model (Imamura et al., 2018) and used this to aug-
ment the data set to increase coverage. They tested
two basic architectures for the actual translation
model, a recurrent neural network-based model
trained using OpenNMT, and a self-attentional
model trained using Marian, finally submitting the
self-attentional model using Marian as their sole
contribution to the shared task NICT.

3.5 Shared Task Results

A brief summary of the results of the shared task
(for newstest2015) can be found in Figure 1, while
full results tables for all of the systems can be
found in Appendix A. From this figure we can
glean a number of observations.

First, encouragingly all the submitted systems
handily beat the baseline system in speed and ac-
curacy.

Secondly, observing the speed/accuracy curves,
we can see that Team Marian’s submissions tended
to carve out the Pareto frontier, indicating that the
large number of optimizations that went into creat-
ing the system paid off in aggregate. Interestingly,
on GPU, RNN-based systems carved out the faster
but less accurate part of the Pareto curve, while on
CPU self-attentional models were largely found to
be more effective. None of the submissions con-
sisted of a Transformer-style model so small that
it under-performed the RNN models, but a fur-
ther examination of where the curves cross (if they
do) would be an interesting examination for future
shared tasks.

Next, considering memory usage, we can see
again that the submissions from the Marian team
tend to be the most efficient. One exception is the
extremely small memory system OpenNMT-Tiny,
which achieves significantly lower translation ac-
curacies, but fits in a mere 220MB of memory on
the CPU.

In this first iteration of the task, we attempted
to establish best practices and strong baselines
upon which to build efficient test-time methods
for NMT. One characteristic of the first iteration
of the task was that the basic model architectures
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used relatively standard, with the valuable contri-
butions lying in solid engineering work and best
practices in neural network optimization such as
low-precision calculation and model distillation.
With these contributions, we now believe we have
very strong baselines upon which future iterations
of the task can build, examining novel architec-
tures or methods for further optimizing the train-
ing speed. We also will examine other considera-
tions, such as efficient adaptation to new training
data, or latency from receiving a sentence to trans-
lating it.

4 Conclusion

This paper summarized the results of the Sec-
ond Workshop on Neural Machine Translation and
Generation, where we saw a number of research
advances, particularly in the area of efficiency in
neural MT through submissions to the shared task.
The workshop series will continue next year, and
continue to push forward the state of the art on
these topics for faster, more accurate, more flex-
ible, and more widely applicable neural MT and
generation systems.
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A Full Shared Task Results

For completeness, in this section we add tables of
the full shared task results. These include the full
size of the image file for the translation system
(Table 1), the comparison between compute time
and evaluation scores on CPU (Table 2) and GPU
(Table 3), and the comparison between memory
and evaluation scores on CPU (Table 4) and GPU
(Table 5).

6



Table 1: Image file sizes of submitted systems.

Team System Size [MiB]
edin-amun fastgru 4823.43

mlstm.1280 5220.72
Marian cpu-transformer-base-aan 493.20

cpu-transformer-big 1085.93
cpu-transformer-big-int8 1085.92
cpu-transformer-small-aan 367.92
gpu-amun-tinyrnn 399.08
gpu-transformer-base-aan 686.59
gpu-transformer-big 1279.32
gpu-transformer-small-aan 564.32

NICT marian-st 2987.57
OpenNMT cpu1 339.02

cpu2 203.89
Organizer echo 110.42

nmt-1cpu 1668.25
nmt-1gpu 3729.40

Table 2: Time consumption and MT evaluation metrics (CPU systems).

Dataset Team System
Time Consumption [s]

BLEU % NIST
CPU Real Diff

Empty Marian cpu-transformer-base-aan 6.48 6.55 — — —
cpu-transformer-big 7.01 9.02 — — —
cpu-transformer-big-int8 7.31 7.51 — — —
cpu-transformer-small-aan 6.32 6.33 — — —

OpenNMT cpu1 0.64 0.65 — — —
cpu2 0.56 0.56 — — —

Organizer echo 0.05 0.06 — — —
nmt-1cpu 1.50 1.50 — — —

newstest2014 Marian cpu-transformer-base-aan 281.72 281.80 275.25 27.44 7.362
cpu-transformer-big 1539.34 1541.00 1531.98 28.12 7.436
cpu-transformer-big-int8 1173.32 1173.41 1165.90 27.50 7.355
cpu-transformer-small-aan 100.36 100.42 94.08 25.99 7.169

OpenNMT cpu1 471.41 471.43 470.78 25.77 7.140
cpu2 77.41 77.42 76.86 23.11 6.760

Organizer echo 0.05 0.06 0.00 2.79 1.479
nmt-1cpu 4436.08 4436.27 4434.77 16.79 5.545

newstest2015 Marian cpu-transformer-base-aan 223.86 223.96 217.41 29.59 7.452
cpu-transformer-big 1189.04 1190.97 1181.95 30.56 7.577
cpu-transformer-big-int8 907.95 908.43 900.92 30.15 7.514
cpu-transformer-small-aan 80.21 80.25 73.92 28.61 7.312

OpenNMT cpu1 368.93 368.95 368.30 28.60 7.346
cpu2 59.02 59.02 58.46 25.75 6.947

Organizer echo 0.05 0.06 0.00 3.24 1.599
nmt-1cpu 3401.99 3402.14 3400.64 18.66 5.758
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Table 3: Time consumption and MT evaluation metrics (GPU systems).

Dataset Team System
Time Consumption [s]

BLEU % NIST
CPU Real Diff

Empty edin-amun fastgru 4.18 4.24 — — —
mlstm.1280 4.44 4.50 — — —

Marian gpu-amun-tinyrnn 4.27 4.33 — — —
gpu-transformer-base-aan 5.62 5.68 — — —
gpu-transformer-big 6.00 6.05 — — —
gpu-transformer-small-aan 5.48 5.54 — — —

NICT marian-st 5.78 5.84 — — —
Organizer nmt-1gpu 3.73 3.80 — — —

newstest2014 edin-amun fastgru 5.68 5.74 1.50 17.74 5.783
mlstm.1280 8.64 8.70 4.20 23.85 6.833

Marian gpu-amun-tinyrnn 5.90 5.96 1.63 24.06 6.879
gpu-transformer-base-aan 14.58 14.64 8.95 27.80 7.415
gpu-transformer-big 36.74 36.80 30.74 28.34 7.486
gpu-transformer-small-aan 12.46 12.52 6.97 26.34 7.219

NICT marian-st 82.07 82.14 76.30 27.59 7.375
Organizer nmt-1gpu 51.24 82.14 47.50 16.79 5.545

newstest2015 edin-amun fastgru 5.41 5.47 1.23 19.26 5.905
mlstm.1280 8.15 8.22 3.71 26.51 7.015

Marian gpu-amun-tinyrnn 5.62 5.68 1.35 26.86 7.065
gpu-transformer-base-aan 12.67 12.73 7.04 30.10 7.526
gpu-transformer-big 30.81 30.90 24.84 30.87 7.630
gpu-transformer-small-aan 11.04 11.10 5.56 28.87 7.379

NICT marian-st 72.84 72.90 67.06 30.19 7.541
Organizer nmt-1gpu 39.95 40.01 36.21 18.66 5.758
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Table 4: Peak memory consumption (CPU systems).

Dataset Team System
Memory [MiB]

Host GPU Both
Empty Marian cpu-transformer-base-aan 531.39 — 531.39

cpu-transformer-big 1768.56 — 1768.56
cpu-transformer-big-int8 1193.13 — 1193.13
cpu-transformer-small-aan 367.22 — 367.22

OpenNMT cpu1 403.86 — 403.86
cpu2 194.61 — 194.61

Organizer echo 1.15 — 1.15
nmt-1cpu 1699.71 — 1699.71

newstest2014 Marian cpu-transformer-base-aan 761.07 — 531.39
cpu-transformer-big 1681.81 — 1768.56
cpu-transformer-big-int8 2084.66 — 1193.13
cpu-transformer-small-aan 476.21 — 367.22

OpenNMT cpu1 458.08 — 403.86
cpu2 219.79 — 194.61

Organizer echo 1.20 — 1.15
nmt-1cpu 1770.69 — 1699.71

newstest2015 Marian cpu-transformer-base-aan 749.29 — 531.39
cpu-transformer-big 1712.08 — 1768.56
cpu-transformer-big-int8 2086.02 — 1193.13
cpu-transformer-small-aan 461.27 — 367.22

OpenNMT cpu1 455.21 — 403.86
cpu2 217.64 — 194.61

Organizer echo 1.11 — 1.15
nmt-1cpu 1771.35 — 1699.71
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Table 5: Peak memory consumption (GPU systems).

Dataset Team System
Memory [MiB]

Host GPU Both
Empty edin-amun fastgru 442.55 668 1110.55

mlstm.1280 664.88 540 1204.88
Marian gpu-amun-tinyrnn 346.80 522 868.80

gpu-transformer-base-aan 487.18 484 971.18
gpu-transformer-big 1085.29 484 1569.29
gpu-transformer-small-aan 366.26 484 850.26

NICT marian-st 510.43 484 994.43
Organizer nmt-1gpu 378.81 640 1018.81

newstest2014 edin-amun fastgru 456.29 1232 1688.29
mlstm.1280 686.29 5144 5830.29

Marian gpu-amun-tinyrnn 346.93 1526 1872.93
gpu-transformer-base-aan 492.91 1350 1842.91
gpu-transformer-big 1081.69 2070 3151.69
gpu-transformer-small-aan 366.55 1228 1594.55

NICT marian-st 922.53 1780 2702.53
Organizer nmt-1gpu 377.18 2178 2555.18

newstest2015 edin-amun fastgru 473.72 1680 2153.72
mlstm.1280 684.84 6090 6774.84

Marian gpu-amun-tinyrnn 350.19 1982 2332.19
gpu-transformer-base-aan 489.62 1350 1839.62
gpu-transformer-big 1082.52 2198 3280.52
gpu-transformer-small-aan 372.56 1228 1600.56

NICT marian-st 929.70 1778 2707.70
Organizer nmt-1gpu 383.02 2178 2561.02
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Abstract

Automatic post-editing (APE) systems
aim to correct the systematic errors made
by machine translators. In this paper, we
propose a neural APE system that encodes
the source (src) and machine translated
(mt) sentences with two separate encoders,
but leverages a shared attention mecha-
nism to better understand how the two in-
puts contribute to the generation of the
post-edited (pe) sentences. Our empiri-
cal observations have showed that when
the mt is incorrect, the attention shifts
weight toward tokens in the src sentence
to properly edit the incorrect translation.
The model has been trained and evaluated
on the official data from the WMT16 and
WMT17 APE IT domain English-German
shared tasks. Additionally, we have used
the extra 500K artificial data provided by
the shared task. Our system has been able
to reproduce the accuracies of systems
trained with the same data, while at the
same time providing better interpretability.

1 Introduction

In current professional practice, translators tend to
follow a two-step approach: first, they run a ma-
chine translator (MT) to obtain a first-cut transla-
tion; then, they manually correct the MT output
to produce a result of adequate quality. The lat-
ter step is commonly known as post-editing (PE).
Stemming from this two-step approach and the re-
cent success of deep networks in MT (Sutskever
et al., 2014; Bahdanau et al., 2014; Luong et al.,
2015), the MT research community has devoted
increasing attention to the task of automatic post-
editing (APE) (Bojar et al., 2017).

The rationale of an APE system is to be able to

automatically correct the systematic errors made
by the MT and thus dispense with or reduce the
work of the human post-editors. The data for train-
ing and evaluating these systems usually consist of
triplets (src, mt, pe), where src is the sentence in
the source language, mt is the output of the MT,
and pe is the human post-edited sentence. Note
that the pe is obtained by correcting the mt, and
therefore these two sentences are closely related.
An APE system is “monolingual” if it only uses
the mt to predict the post-edits, or “contextual” if
it uses both the src and the mt as inputs (Béchara
et al., 2011).

Despite their remarkable progress in recent
years, neural APE systems are still elusive when it
comes to interpretability. In deep learning, highly
interpretable models can help researchers to over-
come outstanding issues such as learning from
fewer annotations, learning with human-computer
interactions and debugging network representa-
tions (Zhang and Zhu, 2018). More specifically
in APE, a system that provides insights on its deci-
sions can help the human post-editor to understand
the system’s errors and consequently provide bet-
ter corrections. As our main contribution, in this
paper we propose a contextual APE system based
on the seq2seq model with attention which allows
for inspecting the role of the src and the mt in the
editing. We modify the basic model with two sep-
arate encoders for the src and the mt, but with a
single attention mechanism shared by the hidden
vectors of both encoders. At each decoding step,
the shared attention has to decide whether to place
more weight on the tokens from the src or the mt.
In our experiments, we clearly observe that when
the mt translation contains mistakes (word order,
incorrect words), the model learns to shift the at-
tention toward tokens in the source language, aim-
ing to get extra “context” or information that will
help to correctly edit the translation. Instead, if
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the mt sentence is correct, the model simply learns
to pass it on word by word. In Section 4.4, we
have plotted the attention weight matrices of sev-
eral predictions to visualize this finding.

The model has been trained and evaluated
with the official datasets from the WMT16 and
WMT17 Information Technology (IT) domain
APE English-German (en-de) shared tasks (Bojar
et al., 2016, 2017). We have also used the 500K
artificial data provided in the shared task for extra
training. For some of the predictions in the test
set, we have analysed the plots of attention weight
matrices to shed light on whether the model relies
more on the src or the mt at each time step. More-
over, our model has achieved higher accuracy than
previous systems that used the same training set-
ting (official datasets + 500K extra artificial data).

2 Related work

In an early work, (Simard et al., 2007) combined
a rule-based MT (RBMT) with a statistical MT
(SMT) for monolingual post-editing. The reported
results outperformed both systems in standalone
translation mode. In 2011, (Béchara et al., 2011)
proposed the first model based on contextual post-
editing, showing improvements over monolingual
approaches.

More recently, neural APE systems have at-
tracted much attention. (Junczys-Dowmunt and
Grundkiewicz, 2016) (the winner of the WMT16
shared task) integrated various neural machine
translation (NMT) components in a log-linear
model. Moreover, they suggested creating artifi-
cial triplets from out-of-domain data to enlarge the
training data, which led to a drastic improvement
in PE accuracy. Assuming that post-editing is re-
versible, (Pal et al., 2017) have proposed an atten-
tion mechanism over bidirectional models, mt→
pe and pe → mt. Several other researchers have
proposed using multi-input seq2seq models for
contextual APE (Bérard et al., 2017; Libovickỳ
et al., 2016; Varis and Bojar, 2017; Pal et al.,
2017; Libovickỳ and Helcl, 2017; Chatterjee et al.,
2017). All these systems employ separate en-
coders for the two inputs, src and mt.

2.1 Attention mechanisms for APE

A key aspect of neural APE systems is the atten-
tion mechanism. A conventional attention mech-
anism for NMT first learns the alignment scores
(eij) with an alignment model (Bahdanau et al.,

2014; Luong et al., 2015) given the j-th hid-
den vector of the encoder (hj) and the decoder’s
hidden state (si−1) at time i − 1 (Equation 1).
Then, Equation 2 computes the normalized atten-
tion weights, with Tx the length of the input sen-
tence. Finally, the context vector is computed as
the sum of the encoder’s hidden vectors weighed
by the attention weights (Equation 3). The de-
coder uses the computed context vector to predict
the output.

eij = aligment model(hj , si−1) (1)

αij =
exp(eij)

∑Tx
m=1 exp(e

im)
(2)

ci =
Tx∑

j=1

αi,jhj (3)

In the APE literature, two recent papers have
extended the attention mechanism to contextual
APE. (Chatterjee et al., 2017) (the winner of
the WMT17 shared task) have proposed a two-
encoder system with a separate attention for each
encoder. The two attention networks create a con-
text vector for each input, csrc and cmt, and con-
catenate them using additional, learnable param-
eters, Wct and bct, into a merged context vector,
cmerge (Equation 4).

cimerge = [cisrc; cimt] ∗Wct + bct (4)

(Libovickỳ and Helcl, 2017) have proposed,
among others, an attention strategy named the
flat attention. In this approach, all the attention
weights corresponding to the tokens in the two in-
puts are computed with a joint soft-max:

αij
(k) =

exp(eij(k))

∑2
n=1

∑T
(n)
x

m=1 exp(e
im
(n))

(5)

where eij(k) is the attention energy of the j-th step
of the k-th encoder at the i-th decoding step and
T
(k)
x is the length of the input sequence of the k-th

encoder. Note that because the attention weights
are computed jointly over the different encoders,
this approach allows observing whether the sys-
tem assigns more weight to the tokens of the src
or the mt at each decoding step. Once the atten-
tion weigths are computed, a single context vector
(c) is created as:
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ci =
N∑

k=1

T
(k)
x∑

j=1

αi,j
(k)Uc(k)h

j
(k)

(6)

where hj
(k) is the j-th hidden vector from the k-

th encoder, T (k)
x is the number of hidden vectors

from the k-th encoder, and Uc(k) is the projection
matrix for the k-th encoder that projects its hidden
vectors to a common-dimensional space. This pa-
rameter is also learnable and can further re-weigh
the two inputs.

3 The proposed model

The main focus of our paper is on the interpretabil-
ity of the predictions made by neural APE sys-
tems. To this aim, we have assembled a contex-
tual neural model that leverages two encoders and
a shared attention mechanism, similarly to the flat
attention of (Libovickỳ and Helcl, 2017). To de-
scribe it, let us assume that Xsrc = {x1src, ..., xNsrc}
is the src sentence and Xmt = {x1mt, ..., xMmt} is
the mt sentence, where N and M are their respec-
tive numbers of tokens. The two encoders encode
the two inputs separately:

hj
src = encsrc(xjsrc,h

j−1
src ) j = 1, ..., N

hj
mt = encmt(xjmt,h

j−1
mt ) j = 1, ...,M

(7)

All the hidden vectors outputs by the two en-
coders are then concatenated as if they were com-
ing from a single encoder:

hjoin = {h1
src, ...,h

N
src,h

1
mt, ...,h

M
mt} (8)

Then, the attention weights and the context vec-
tor at each decoding step are computed from the
hidden vectors of hjoin (Equations 9-11):

eij = aligment model(hj
join, s

i−1) (9)

αij =
exp(eij)

∑N+M
m=1 exp(eim)

(10)

ci =
N+M∑

j=1

αi,jhj
join (11)

where i is the time step on the decoder side, j is
the index of the hidden encoded vector. Given that

the αi,j weights form a normalized probability dis-
tribution over j, this model is “forced” to spread
the weight between the src and mt inputs. Note
that our model differs from that proposed by (Li-
bovickỳ and Helcl, 2017) only in that we do not
employ the learnable projection matrices, Uc(k).
This is done to avoid re-weighing the contribution
of the two inputs in the context vectors and, ul-
timately, in the predictions. More details of the
proposed model and its hyper-parameters are pro-
vided in Section 4.3.

4 Experiments

4.1 Datasets

For training and evaluation we have used
the WMT17 APE1 IT domain English-German
dataset. This dataset consists of 11,000 triplets for
training, 1,000 for validation and 2,000 for test-
ing. The hyper-parameters have been selected us-
ing only the validation set and used unchanged
on the test set. We have also trained the model
with the 12,000 sentences from the previous year
(WMT16), for a total of 23,000 training triplets.

4.2 Artificial data

Since the training set provided by the shared
task is too small to effectively train neural net-
works, (Junczys-Dowmunt and Grundkiewicz,
2016) have proposed a method for creating extra,
“artificial” training data using round-trip transla-
tions. First, a language model of the target lan-
guage (German here) is learned using a mono-
lingual dataset. Then, only the sentences from
the monolingual dataset that have low perplex-
ity are round-trip translated using two off-the-
shelf translators (German-English and English-
German). The low-perplexity sentences from the
monolingual dataset are treated as the pe, the
German-English translations as the src, and the
English-German back-translations as the mt. Fi-
nally, the (src, mt, pe) triplets are filtered to only
retain sentences with comparable TER statistics
to those of the manually-annotated training data.
These artificial data have proved very useful for
improving the accuracy of several neural APE
systems, and they have therefore been included
in the WMT17 APE shared task. In this paper,
we have limited ourselves to using 500K artificial
triplets as done in (Varis and Bojar, 2017; Bérard

1http://www.statmt.org/wmt17/ape-task.html
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# encoders 2
encoder type B-LSTM
encoder layers 2
encoder hidden dim 500
# decoders 1
decoder type LSTM
decoder layers 2
decoder hidden dim 500
word vector dim 300
attention type general
dropout 0.3
beam size 5

Table 1: The model and its hyper-parameters.

et al., 2017). To balance artificial and manually-
annotated data during training, we have resampled
the official 23K triplets 10 times.

4.3 Training and hyper-parameters

Hereafter we provide more information about the
model’s implementation, its hyper-parameters, the
pre-processing and the training to facilitate the re-
producibility of our results. We have made our
code publicly available2.

To implement the encoder/decoder with sepa-
rate encoders for the two inputs (src, mt) and a
single attention mechanism, we have modified the
open-source OpenNMT code (Klein et al., 2017).

Table 1 lists all hyper-parameters which have
all been chosen using only training and validation
data. The two encoders have been implemented
using a Bidirectional Long Short-Term Memory
(B-LSTM) (Hochreiter and Schmidhuber, 1997)
while the decoder uses a unidirectional LSTM.
Both the encoders and the decoder use two hidden
layers. For the attention network, we have used the
OpenNMT’s general option (Luong et al., 2015).

As for the pre-processing, the datasets come al-
ready tokenized. Given that German is a mor-
phologically rich language, we have learned the
subword units using the BPE algorithm (Sennrich
et al., 2015) only over the official training sets
from the WMT16 and WMT17 IT-domain APE
shared task (23,000 sentences). The number of
merge operations has been set to 30,000 under the
intuition that one or two word splits per sentence
could suffice. Three separate vocabularies have
been used for the (src, mt and pe) sentences. Each
vocabulary contains a maximum of 50,000 most-

2https://github.com/ijauregiCMCRC/Shared
Attention for APE

Model TER BLEU
MT (Bojar et al., 2017) 24.48 62.49
SPE (Bojar et al., 2017) 24.69 62.97
(Varis and Bojar, 2017) 24.03 64.28
(Bérard et al., 2017) 22.81 65.91
train 11K 41.58 43.05
train 23K 30.23 57.14
train 23K + 500K 22.60 66.21

Table 2: Results on the WMT17 IT domain
English-German APE test set.

frequent subword units; the remaining tokens are
treated as unknown (<unk>).

As mentioned in Section 4.2, we have trained
our model with 500K extra triplets as in (Bérard
et al., 2017). We have oversampled the 23K offi-
cial triplets 10 times, added the extra 500K, and
trained the model for 20 epochs. We have used
Stochastic Gradien Descent (SGD) with a learn-
ing rate of 1 and a learning rate decay of 0.5. The
learning rate decays if there are no improvements
on the validation set.

In all cases, we have selected the models and
hyper-parameters that have obtained the best re-
sults on the validation set (1,000 sentences), and
reported the results blindly over the test set (2,000
sentences). The performance has been evaluated
in two ways: first, as common for this task, we
have reported the accuracy in terms of Translation
Error Rate (TER) (Snover et al., 2006) and BLEU
score (Papineni et al., 2002). Second, we present
an empirical analysis of the attention weight ma-
trices for some notable cases.

4.4 Results

Table 2 compares the accuracy of our model on the
test data with two baselines and two state-of-the-
art comparable systems. The MT baseline simply
consists of the accuracy of the mt sentences with
respect to the pe ground truth. The other baseline
is given by a statistical PE (SPE) system (Simard
et al., 2007) chosen by the WMT17 organizers.
Table 2 shows that when our model is trained with
only the 11K WMT17 official training sentences,
it cannot even approach the baselines. Even when
the 12K WMT16 sentences are added, its accuracy
is still well below that of the baselines. However,
when the 500K artificial data are added, it reports a
major improvement and it outperforms them both
significantly. In addition, we have compared our
model with two recent systems that have used our
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Figure 1: An example of perfect correction of an
mt sentence.

Figure 2: Partial improvement of an mt sentence.

Figure 3: Passing on a correct mt sentence.

Figure 4: A completely incorrect prediction.
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same training settings (500K artificial triplets +
23K manual triplets oversampled 10 times), re-
porting a slightly higher accuracy than both (1.43
TER and 1.93 BLEU p.p. over (Varis and Bojar,
2017) and 0.21 TER and 0.30 BLEU p.p. over
(Bérard et al., 2017)). Since their models explic-
itly predicts edit operations rather than post-edited
sentences, we speculate that these two tasks are of
comparable intrinsic complexity.

In addition to experimenting with the proposed
model (Equation 11), we have also tried to add
the projection matrices of the flat attention of (Li-
bovickỳ and Helcl, 2017) (Equation 6). However,
the model with these extra parameters showed ev-
ident over-fitting, with a lower perplexity on the
training set, but unfortunately also a lower BLEU
score of 53.59 on the test set. On the other hand,
(Chatterjee et al., 2017) and other participants of
the WMT 17 APE shared task 3 were able to
achieve higher accuracies by using 4 million ar-
tificial training triplets. Unfortunately, using such
a large dataset sent the computation out of mem-
ory on a system with 32 GB of RAM. Nonetheless,
our main goal is not to establish the highest pos-
sible accuracy, but rather contribute to the inter-
pretability of APE predictions while reproducing
approximately the same accuracy of current sys-
tems trained in a comparable way.

For the analysis of the interpretability of the sys-
tem, we have plotted the attention weight matrices
for a selection of cases from the test set. These
plots aim to show how the shared attention mech-
anism shifts the attention weights between the to-
kens of the src and mt inputs at each decoding
step. In the matrices, the rows are the concatena-
tion of the src and mt sentences, while the columns
are the predicted pe sentence. To avoid cluttering,
the ground-truth pe sentences are not shown in the
plots, but they are commented upon in the discus-
sion. Figure 1 shows an example where the mt sen-
tence is almost correct. In this example, the atten-
tion focuses on passing on the correct part. How-
ever, the start (Wählen) and end (Längsschnitte)
of the mt sentence are wrong: for these tokens, the
model learns to place more weight on the English
sentence (click and Select Profiles). The predicted
pe is eventually identical to the ground truth.

Conversely, Figure 2 shows an example where
the mt sentence is rather incorrect. In this case,
the model learns to focus almost completely on

3http://www.statmt.org/wmt17/ape-task.html

Sentence Focus
src 23%
mt 45%
Both 31%

Table 3: Percentage of the decoding steps with
marked attention weight on either input (src, mt)
or both.

the English sentence, and the prediction is very
aligned with it. The predicted pe is not identical
to the ground truth, but it is significantly more ac-
curate than the mt. Figure 3 shows a case of a per-
fect mt translation where the model simply learns
to pass the sentence on word by word. Eventually,
Figure 4 shows an example of a largely incorrect
mt where the model has not been able to properly
edit the translation. In this case, the attention ma-
trix is scattered and defocused.

In addition to the visualizations of the attention
weights, we have computed an attention statistic
over the test set to quantify the proportions of the
two inputs. At each decoding time step, we have
added up the attention weights corresponding to
the src input (αi

src =
∑N

j=1 α
ij) and those cor-

responding to the mt (αi
mt =

∑N+M
j=N+1 α

ij). Note
that, obviously, αi

src+α
i
mt = 1. Then, we have set

an arbitrary threshold, t = 0.6, and counted step i
to the src input if αi

src > t. If instead αi
src < 1−t,

we counted the step to the mt input. Eventually, if
1 − t ≤ αi

src ≤ t, we counted the step to both in-
puts. Table 3 shows this statistic. Overall, we have
recorded 23% decoding steps for the src, 45% for
the mt and 31% for both. It is to be expected that
the majority of the decoding steps would focus on
the mt input if it is of sufficient quality. However,
the percentage of focus on the src input is signifi-
cant, confirming its usefulness.

5 Conclusion

In this paper, we have presented a neural APE sys-
tem based on two separate encoders that share a
single, joined attention mechanism. The shared
attention has proved a key feature for inspecting
how the selection shifts on either input, (src and
mt), at each decoding step and, in turn, under-
standing which inputs drive the predictions. In ad-
dition to its easy interpretability, our model has re-
ported a competitive accuracy compared to recent,
similar systems (i.e., systems trained with the of-
ficial WMT16 and WMT17 data and 500K extra
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training triplets). As future work, we plan to con-
tinue to explore the interpretability of contempo-
rary neural APE architectures.
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Hanna Béchara, Yanjun Ma, and Josef van Genabith.
2011. Statistical post-editing for a statistical mt sys-
tem. In MT Summit. volume 13, pages 308–315.

Olivier Bérard, Alexandre Pietquin, and Laurent Be-
sacier. 2017. Lig-cristal system for the wmt17 au-
tomatic post-editing task. In Proceedings of the
Second Conference on Machine Translation. pages
623–629.
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Abstract

We present iterative back-translation, a
method for generating increasingly bet-
ter synthetic parallel data from monolin-
gual data to train neural machine trans-
lation systems. Our proposed method
is very simple yet effective and highly
applicable in practice. We demonstrate
improvements in neural machine trans-
lation quality in both high and low re-
sourced scenarios, including the best re-
ported BLEU scores for the WMT 2017
German↔English tasks.

1 Introduction

The exploitation of monolingual training data for
neural machine translation is an open challenge.
One successful method is back-translation (Sen-
nrich et al., 2016b), whereby an NMT system is
trained in the reverse translation direction (target-
to-source), and is then used to translate target-side
monolingual data back into the source language
(in the backward direction, hence the name back-
translation). The resulting sentence pairs consti-
tute a synthetic parallel corpus that can be added
to the existing training data to learn a source-to-
target model. Figure 1 illustrates this idea.

In this paper, we show that the quality of back-
translation matters and propose iterative back-
translation, where back-translated data is used to
build better translation systems in forward and
backward directions, which in turn is used to re-
back-translate monolingual data. This process can
be “iterated” several times. This is a form of
co-training (Blum and Mitchell, 1998) where the
two models over both translation directions can
be used to train one another. We show that it-
erative back-translation leads to improved results
over simple back-translation, under both high and

reverse system

final system

real

synthetic

real+synthetic

Figure 1: Creating a synthetic parallel corpus
through back-translation. First, a system in the re-
verse direction is trained and then used to translate
monolingual data from the target side backward
into the source side, to be used in the final system.

low resource conditions, improving over the state
of the art.

2 Related Work

The idea of back-translation dates back at least to
statistical machine translation, where it has been
used for semi-supervised learning (Bojar and Tam-
chyna, 2011), or self-training (Goutte et al., 2009,
ch.12, p.237). In modern NMT research, Sen-
nrich et al. (2017) reported significant gains on
the WMT and IWSLT shared tasks. They showed
that even simply duplicating the monolingual tar-
get data into the source was sufficient to realise
some benefits. Currey et al. (2017) reported sim-
ilar findings for low resource conditions, show-
ing that even poor translations can be beneficial.
Gwinnup et al. (2017) mention in their system de-
scription iteratively applying back-translation, but
did not report successful experiments.

A more refined idea of back-translation is the
dual learning approach of He et al. (2016) which
integrates training on parallel data and training on
monolingual data via round-tripping. We have
to admit that we extensively experimented with
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English-German English-French100K English-French1M English-Farsi

parallel en 141 280 704 2 651 040 26 464 159 2 233 688
parallel l2 134 638 256 2 962 318 29 622 370 2 473 608
mono en 322 529 936 2 154 175 053 2 154 175 053 2 154 175 053
mono l2 301 736 163 766 646 932 766 646 932 65 585 281

Table 1: Parallel and monolingual corpora used, including English-German, English-French and English-
Farsi. Numbers denote the number of words, and l2 is the second language in each pair. The de-en data
is from WMT 2017 (parallel) and a subset of News 2016 (monolingual).

an implementation of this approach, but did not
achieve any gains.

An alternative way to make use of monolingual
data is the integration of a separately trained lan-
guage model into the neural machine translation
architecture (Gülçehre et al., 2015), but this has
not yet to be proven to be as successful as back-
translation.

Lample et al. (2018) explore the use of back-
translated data generated by neural and statistical
machine translation systems, aided by denoising
with a language model trained on the target side.

3 Impact of Back-Translation Quality

Our work is inspired by the intuition that a better
back-translation system will lead to a better syn-
thetic corpus, hence producing a better final sys-
tem. To empirically validate this hypothesis and
measure the correlation between back-translation
system quality and final system quality, we use
a set of machine translation systems of differing
quality (trained in the reverse “back-translation”
direction), and check how this effects the final sys-
tem quality.

We carried out experiments on the high-
resource WMT German↔English news transla-
tion tasks (Bojar et al., 2017). For these tasks,
large parallel corpora are available from related
domains.1 In addition, in-domain monolingual
news corpora are provided as well, in much larger
quantities. We sub-sampled the 2016 news corpus
(see Table 1) for about twice as large as corpus as
the parallel training corpus.

Following Sennrich et al. (2016b), a synthetic
parallel corpus is created from the in-domain news
monolingual data, in equal amounts to the ex-
isting real parallel corpus. The systems used to
translate the monolingual data are canonical atten-

1EU Parliament Proceedings, official EU announcements,
news commentaries, and web crawled data.

German–English Back Final
no back-translation - 29.6
10k iterations 10.6 29.6 (+0.0)
100k iterations 21.0 31.1 (+1.5)
convergence 23.7 32.5 (+2.9)

English–German Back Final
no back-translation - 23.7
10k iterations 14.5 23.7 (+0.0)
100k iterations 26.2 25.2 (+1.5)
convergence 29.1 25.9 (+2.2)

Table 2: WMT News Translation Task
English↔German, reporting cased BLEU on
newstest2017, evaluating the impact of the quality
of the back-translation system on the final system.
Note that the back-translation systems run in the
opposite direction and are not comparable to the
numbers in the same row.

tional neural machine translation systems (Bah-
danau et al., 2015). Our setup is very similar to
Edinburgh’s submission to the WMT 2016 evalu-
ation campaign (Sennrich et al., 2016a),2 but uses
the fast Marian toolkit (Junczys-Dowmunt et al.,
2018) for training. We trained 3 different back-
translation systems, namely:
10k iterations Training a neural translation

model on the parallel corpus, but stopping
after 0.15 epochs;

100k iterations As above, but stopping after 1½
epochs; and

convergence As above, but training until conver-
gence (10 epochs, 3 GPU days).

Given these three different systems, we create
three synthetic parallel corpora of different qual-
ity and train systems on each. Table 2 shows
the quality of the final systems. For both direc-

2With true-casing and 50,000 BPE operations (Sennrich
et al., 2016c) as pre-processing steps.
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back system 2 final system

back system 1

Figure 2: Re-Back-Translation: Taking the idea of back-translation one step further. After training a
system with back-translated data (back system 2 above), it is used to create a synthetic parallel corpus
for the final system.

tions, the quality of the back-translation systems
differs vastly. The 10k iteration systems perform
poorly, and their synthetic parallel corpus provides
no benefit over a baseline that does not use any
back-translated data.

The longer trained systems have much better
translation quality, and their synthetic parallel cor-
pora prove to be beneficial. The back-translation
system trained for 100k iteration already provides
tangible benefits (+1.5 BLEU for both directions),
while the converged system yields even bigger im-
provements (+2.9 for German–English, and +2.2
for English–German). These results indicate that
the quality of the back-translation system is a sig-
nificant factor for the success of the approach.

4 Iterative Back-Translation

We now take the idea of back-translation one step
further. If we can build a better system with the
back-translated data, then we can continue repeat-
ing this process: Use this better system to back-
translate the data, and use this data in order to
build an even better system. See Figure 2 for an
illustration of this re-back-translation process (re-
peated back-translation). See Algorithm 1 for the
details of this iterated back-translation process.
The final system benefits from monolingual data
in both the source and target languages.

We do not have to stop at one iteration of re-
peated back-translation. We can iterate training
the two back-translation systems multiple times.
We refer this process to iterative back-translation.

In our experiments, we validate our approach
under both high-resource and low-resource con-
ditions. Under high-resource conditions, we im-
prove the state of the art with re-back-translation.
Under low-resource conditions, we demonstrate

Algorithm 1 Iterative Back-Translation
Input: parallel data Dp, monolingual source, Ds,

and target Dt text
1: Let T← = Dp

2: repeat
3: Train target-to-source model Θ← on T←
4: Use Θ← to create S = {(ŝ, t)}, for t ∈ Dt

5: Let T→ = Dp ∪ S
6: Train source-to-target model Θ→ on T→
7: Use Θ→ to create S

′
={(s, t̂)}, for s ∈ Ds

8: Let T← = Dp ∪ S′

9: until convergence condition reached
Output: newly-updated models Θ← and Θ→

the effectiveness of iterative back-translation.

4.1 Experiments on High Resource Scenario

In §3 we demonstrated that the quality of the back-
translation system has significant impact on the ef-
fectiveness of the back-translation approach under
high-resource data conditions such as WMT 2017
German–English. Here we ask: how much addi-
tional benefit can be realised for repeating this pro-
cess? Also, do the gains for state-of-the-art sys-
tems that use deeper models, i.e., more layers in
encoder and decoder (Miceli Barone et al., 2017)
still apply in this setting?

We evaluate on German–English and English–
German, under the same data conditions as in Sec-
tion 3. We experiment with both shallow and deep
stacked-layer encoder/decoder architectures.
The base translation system is trained on the

parallel data only. We train a shallow system
using 4-checkpoint ensembling (Chen et al.,
2017). The system is used to translate the
monolingual data using a beam size of 2.

The first back-translation system is trained on
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German–English Back* ShallowDeepEnsemble
back-translation 23.7 32.5 35.0 35.6
re-back-translation 27.9 33.6 36.1 36.5
Best WMT 2017 - - - 35.1

English–German Back* ShallowDeepEnsemble
back-translation 29.1 25.9 28.3 28.8
re-back-translation 34.8 27.0 29.0 29.3
Best WMT 2017 - - - 28.3

Table 3: WMT News Translation Task German–
English, comparing the quality of different back-
translation systems with different final system ar-
chitectures. *Note that the quality for the back-
translation system (Back) is measured in the op-
posite language direction.

the parallel data and the synthetic data gener-
ated by the base translation system. For better
performance, we train a deep model with 8-
checkpoint ensembling; again we use a beam
size of 2.

The final back-translation systems were trained
using several different systems: a shallow ar-
chitecture, a deep architecture, and an ensem-
ble system of 4 independent training runs.

Across the board, the final systems with re-
back-translation outperform the final systems with
simple back-translation, by a margin of 0.5–1.1
BLEU.

Notably, the final deep systems trained by
re-back-translation outperform the state-of-the-art
established at the WMT 2017 evaluation campaign
for these language pairs, by a margin of about 1
BLEU point. These are the best published results
for this dataset, to the best of our knowledge.

Experimental settings For the experiments in
the German–English high-resource scenario, we
used the Marian toolkit (Junczys-Dowmunt et al.,
2018) for training and for back-translation. The
shallow systems (also used for the back-translation
step) match the setup of Edinburgh’s WMT 2016
system (Sennrich et al., 2016a). It is an atten-
tional RNN (default Marian settings) with drop-
out of 0.2 for the RNN parameters, and 0.1 other-
wise. Training is smoothed with moving average.
It takes about 2–4 days.

The deep system uses matches the setup of
Edinburgh’s WMT 2017 system (Sennrich et al.,
2017). It uses 4 encoder and 4 decoder layers
(Marian setting best-deep) with LSTM cells.

Drop-out settings are the same as above. De-
coding during test time is done with a beam size
of 12, while back-translation uses only a beam
size of 2. This difference is reflected in the re-
ported BLEU score for the deep system after back-
translation (35.0 for German–English, 28.3 for
English–German) and the score reported for the
quality of the back-translation system (34.8 (–0.2)
and 27.9 (–0.4), respectively) in Table 3.

For all experiments, the true-casing model and
the list of BPE operations is left constant. Both
were learned from the original parallel training
corpus.

4.2 Experiments on Low Resource Scenario

NMT is a data-hungry approach, requiring a large
amount of parallel data to reach reasonable per-
formance (Koehn and Knowles, 2017). In a low-
resource setting, only small amount of parallel
data exist. Previous work has attempted to in-
corporate prior or external knowledge to compen-
sate for the lack of parallel data, e.g. injecting in-
ductive bias via linguistic constraints (Cohn et al.,
2016) or linguistic factors (Hoang et al., 2016).
However, it is much cheaper and easier to obtain
monolingual data in either the source or target lan-
guage. An interesting question is whether the (iter-
ative) back-translation can compensate for the lack
of parallel data in such low-resource settings.

To explore this question, we conducted experi-
ments on two datasets: A simulated low-resource
setting with English–French, and a more realis-
tic setting with English–Farsi. For the English–
French dataset, we used the original WMT dataset,
sub-sampled to create smaller sets of 100K and
1M parallel sentence pairs. For English–Farsi, we
used the available datasets from LDC and TED
Talks, totaling about 100K sentence pairs. For de-
tailed statistics see Table 1.

Following the same experimental setup as in
high-resource setting,3 we obtain similar patterns
of improvement of translation quality (Table 4).

Back-Translation Generally, it is our expecta-
tion that the back-translation approach still im-
proves the translation accuracy in all language
pairs with a low-resource setting. In the English–
French experiments, large improvements over the
baseline are observed in both directions, with +3.5

3The difference here is on the NMT toolkit used — we
opted to use Amazon’s Sockeye (Hieber et al., 2017). We
used Sockeye’s default configuration with dropout 0.5.
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Setting French–English English–French Farsi–English English-Farsi
100K 1M 100K 1M 100K 100K

NMT baseline 16.7 24.7 18.0 25.6 21.7 16.4
back-translation 22.1 27.8 21.5 27.0 22.1 16.7

back-translation iterative+1 22.5 - 22.7 - 22.7 17.1
back-translation iterative+2 22.6 - 22.6 - 22.6 17.2
back-translation (w/ Moses) 23.7 27.9 23.5 27.3 21.8 16.8

Table 4: Low Resource setting: Impact of the quality of the back-translation systems on the benefit of the
synthetic parallel for the final system in a low-resource setting. Note that, we reported the single NMT
systems in all numbers.

BLEU for English to French and +5.4 for French
to English in 100K setting. In 1M setting, we also
obtained a similar pattern of BLEU gains, albeit
of a smaller magnitude, i.e., +1.4 BLEU for En-
glish to French and +3.1 for French to English.4

Note that the large gains here may be due to the
fact that the monolingual data is a similar domain
to the test data. Inspections of the resulting trans-
lations show that the lexical choice has been im-
proved significantly. In English-Farsi experiments
shown in Table 4, we also observed BLEU gains,
albeit more modest in size: +0.3 BLEU for En-
glish to Farsi and +0.4 for Farsi to English. The
smaller gains may be because Farsi translation is
much more difficult than French; or a result of the
diverse mix of domains in the parallel training data
(news with LDC and technical talks with TED)
where the domain in monolingual data is entirely
news, leading to much lower quality than the other
datasets. Measuring the impact of iteratively back-
translated data in relation to varying domain mis-
match between parallel and monolingual data, is a
very interesting problem which we will explore in
future work; but is out of the scope for this paper.

Balance of real and synthetic parallel data In
all our experiments with back-translation, in order
to create synthetic parallel data, a small amount of
monolingual data is randomly sampled from the
big monolingual data (Table 1). As pointed out
by (Sennrich et al., 2016b), the balance between
the real and synthetic parallel data matters. How-
ever, there is no obvious evidence about the af-
fect of the sample size, hence we further studied
this by choosing a ratio between the real and syn-
thetic parallel data. We opt to use different ratio
(e.g., 1(real):2(synthetic) and 1(real):3(synthetic))

4All the scores are statistically significant with p < 0.01.

English–Farsi 100K
back-translation 1:1 16.7
back-translation 1:2 16.8
back-translation 1:3 16.9

Farsi-English 100K
back-translation 1:1 22.1
back-translation 1:2 22.4
back-translation 1:3 22.4

Table 5: Weighting amounts of real parallel data
(1) with varying amounts of synthetic data (1-3).
Larger amounts of synthetic data help.

in our experiments. Our results in Table 5 show
that more synthetic parallel data seems to be use-
ful (though not obvious), e.g., gains from 16.7 to
16.9 in English to Farsi and gain from 22.1 to 22.4
in Farsi to English.

Iterative back-translation For iterative back-
translation, we obtained consistent results with
the earlier findings from §4.1. In English–French
tasks, we see more than +1 BLEU from a further
iteration of back-translations, with little difference
between 1 or 2 additional iterations. However, in
English–Farsi tasks, gains are much smaller.

Comparison to back-translation with Moses
We now consider the utility of creating synthetic
parallel data from different sources, e.g., from
a phrase-based SMT models produced by Moses
(Koehn et al., 2007), a considerably faster and
more scalable system than modern NMT tech-
niques. As can be seen in Table 4, this has
mixed results, being better for English–French,
and worse in English–Farsi, than using neural
models, although in all cases the results are not
far apart.
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Quality of the sampled monolingual data
Back-translation is dependent much on the qual-
ity of back-translated synthetic data. In our pa-
per, repeating the back translation process in 2-
3 times can lead to improved translation. How-
ever, this can be different in other language pairs
and domains. Also, in our work, we sampled
the monolingual data uniformly at random, so
sentences may be used more than once in sub-
sequent rounds. Its quite likely that other tech-
niques for data sampling and selection, e.g., non-
uniform sampling like transductive selection or
active learning - which potentially diversifies the
quality and quantity of monolingual data - would
lead further improvements in translation perfor-
mance. We leave this for our future work.

Efficacy on iterative back-translation The ef-
ficiency of the NMT toolkits we used (sockeye,
marian-nmt) is excellent. Both support batch de-
coding for fast translation, e.g., with a batch-size
of 200 (beam-size 5) marian-nmt can achieve over
5000 words per second on one GPU (less than 1
day for translating 4M sentences)5; and also this
scales linearly to the number of GPUs we have.
Alternatively, we can split the monolingual data
into smaller parts and distribute these parts over
different GPUs. This can greatly speed up the
back-translation process. This leaves the problem
of training the model in each iteration, which we
do 2-3 times. Overall the computational complex-
ity is not a big deal (even with larger dataset), and
the iterative back translation is quite feasible with
existing modern GPU servers.

5 Conclusion

We presented a simple but effective extension
of the back-translation approach to training neu-
ral machine translation systems. We empirically
showed that the quality of the back-translation
system matters for synthetic corpus creation, and
that neural machine translation performance can
be improved by iterative back-translation in both
high-resource and low-resource scenarios. We
show empirically that this works well for both high
and low resource conditions. The method is sim-
ple but highly applicable in practice.

An important avenue for future work is to
unify the various approaches to learning, including
back-translation (Sennrich et al., 2016b), iterative

5https://marian-nmt.github.io/features/

back-translation (this work), co-training, and dual
learning (He et al., 2016) in a framework which
can be trained in an end-to-end manner.
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Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. arXiv preprint
arXiv:1804.00344.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Christopher J. Dyer, Ondřej Bo-
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Abstract

Machine translation systems require seman-
tic knowledge and grammatical understand-
ing. Neural machine translation (NMT)
systems often assume this information is
captured by an attention mechanism and a
decoder that ensures fluency. Recent work
has shown that incorporating explicit syn-
tax alleviates the burden of modeling both
types of knowledge. However, requiring
parses is expensive and does not explore
the question of what syntax a model needs
during translation. To address both of these
issues we introduce a model that simultane-
ously translates while inducing dependency
trees. In this way, we leverage the bene-
fits of structure while investigating what
syntax NMT must induce to maximize per-
formance. We show that our dependency
trees are 1. language pair dependent and 2.
improve translation quality.

1 Motivation

Language has syntactic structure and translation
models need to understand grammatical dependen-
cies to resolve the semantics of a sentence and pre-
serve agreement (e.g., number, gender, etc). Many
current approaches to MT have been able to avoid
explicitly providing structural information by rely-
ing on advances in sequence to sequence (seq2seq)
models. The most famous advances include at-
tention mechanisms (Bahdanau et al., 2015) and
gating in Long Short-Term Memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997).

In this work we aim to benefit from syntactic
structure, without providing it to the model, and to
disentangle the semantic and syntactic components
of translation, by introducing a gating mechanism
which controls when syntax should be used.

The boy sitting next to the girls ordered a coffee

Figure 1: Our model aims to capture both:
syntactic (verb ordered→ subj/obj boy, coffee)
alignment (noun girls→ determiner the) attention.

Consider the process of translating the sentence
“The boy sitting next to the girls ordered a cof-
fee.” (Figure 1) from English to German. In Ger-
man, translating ordered, requires knowledge of its
subject boy to correctly predict the verb’s number
bestellte instead of bestellten. This is a case where
syntactic agreement requires long-distance infor-
mation. On the other hand, next can be translated
in isolation. The model should uncover these re-
lationships and decide when and which aspects of
syntax are necessary. While in principle decoders
can utilize previously predicted words (e.g., the
translation of boy) to reason about subject-verb
agreement, in practice LSTMs still struggle with
long-distance dependencies. Moreover, Belinkov
et al. (2017) showed that using attention reduces
the decoder’s capacity to learn target side syntax.

In addition to demonstrating improvements in
translation quality, we are also interested in analyz-
ing the predicted dependency trees discovered by
our models. Recent work has begun analyzing task-
specific latent trees (Williams et al., 2018). We
present the first results on learning latent trees with
a joint syntactic-semantic objective. We do this in
the service of machine translation which inherently
requires access to both aspects of a sentence. Fur-
ther, our results indicate that language pairs with
rich morphology require and therefore induce more
complex syntactic structure.

Our use of a structured self attention encoder
(§4) that predicts a non-projective dependency tree
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over the source sentence provides a soft structured
representation of the source sentence that can then
be transferred to the decoder, which alleviates the
burden of capturing target syntax on the target side.

We will show that the quality of the induced trees
depends on the choice of the target language (§7).
Moreover, the gating mechanism will allow us to
examine which contexts require source side syntax.

In summary, in this work:

• We propose a new NMT model that discov-
ers latent structures for encoding and when to
use them, while achieving significant improve-
ments in BLEU scores over a strong baseline.

• We perform an in-depth analysis of the in-
duced structures and investigate where the tar-
get decoder decides syntax is required.

2 Related Work

Recent work has begun investigating what syntax
seq2seq models capture (Linzen et al., 2016), but
this is evaluated via downstream tasks designed to
test the model’s abilities and not its representation.

Simultaneously, recent research in neural ma-
chine translation (NMT) has shown the benefit of
modeling syntax explicitly (Aharoni and Goldberg,
2017; Bastings et al., 2017; Li et al., 2017; Eriguchi
et al., 2017) rather than assuming the model will
automatically discover and encode it.

Bradbury and Socher (2017) presented an
encoder-decoder architecture based on RNNG
(Dyer et al., 2016). However, their preliminary
work was not scaled to a large MT dataset and
omits analysis of the induced trees.

Unlike the previous work on source side latent
graph parsing (Hashimoto and Tsuruoka, 2017),
our structured self attention encoder allows us to
extract a dependency tree in a principled manner.
Therefore, learning the internal representation of
our model is related to work done in unsupervised
grammar induction (Klein and Manning, 2004;
Spitkovsky et al., 2011) except that by focusing
on translation we require both syntactic and seman-
tic knowledge.

In this work, we attempt to contribute to both
modeling syntax and investigating a more inter-
pretable interface for testing the syntactic content
of a new seq2seq models’ internal representation.

3 Neural Machine Translation

Given a training pair of source and target sen-
tences (x,y) of length n andm respectively, neural
machine translation is a conditional probabilistic
model p(y |x) implemented using neural networks

log p(y |x; θ) =
m∑

j=1

log p(yj |yi<j ,x; θ)

where θ is the model’s parameters. We will omit
the parameters θ herein for readability.

The NMT system used in this work is a seq2seq
model that consists of a bidirectional LSTM en-
coder and an LSTM decoder coupled with an at-
tention mechanism (Bahdanau et al., 2015; Luong
et al., 2015). Our system is based on a PyTorch
implementation1 of OpenNMT (Klein et al., 2017).
Let {si ∈ Rd}ni=1 be the output of the encoder

S = BiLSTM(x) (1)

Here we use S = [s1; . . . ; sn] ∈ Rd×n as a concate-
nation of {si}. The decoder is composed of stacked
LSTMs with input-feeding. Specifically, the inputs
of the decoder at time step t are a concatenation
of the embedding of the previous generated word
yt−1 and a vector ut−1:

ut−1 = g(ht−1, ct−1) (2)

where g is a one layer feed-forward network, ht−1
is the output of the LSTM decoder, and ct−1 is a
context vector computed by an attention mecha-
nism

αt−1 = softmax(hT
t−1WaS) (3)

ct−1 = SαT
t−1 (4)

where Wa ∈ Rd×d is a trainable parameter.
Finally a single layer feed-forward network f

takes ut as input and returns a multinomial distri-
bution over all the target words: yt ∼ f(ut)

4 Syntactic Attention Model

We propose a syntactic attention model2 (Figure 2)
that differs from standard NMT in two crucial as-
pects. First, our encoder outputs two sets of an-
notations: content annotations S and syntactic an-
notations M (Figure 2a). The content annotations
are the outputs of a standard BiLSTM while the

1http://opennmt.net/OpenNMT-py/
2https://github.com/ketranm/sa-nmt
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syntactic annotations are produced by a head word
selection layer (§4.1). The syntactic annotations M
capture syntactic dependencies amongst the source
words and enable syntactic transfer from the source
to the target. Second, we incorporate the source
side syntax into our model by modifying the stan-
dard attention (from target to source) in NMT such
that it attends to both S and M through a shared at-
tention layer. The shared attention layer biases our
model toward capturing source side dependency. It
produces a dependency context d (Figure 2c) in ad-
dition to the standard context vector c (Figure 2b)
at each time step. Motivated by the example in
Figure 1 that some words can be translated without
resolving their syntactic roles in the source sen-
tence, we include a gating mechanism that allows
the decoder to decide the amount of syntax needed
when it generates the next word. Next, we describe
the head word selection layer and how source side
syntax is incorporated into our model.

4.1 Head Word Selection

The head word selection layer learns to select a
soft head word for each source word. This layer
transforms S into a matrix M that encodes implicit
dependency structure of x using structured self at-
tention. First we apply three trainable weight matri-
ces Wq,Wk,Wv ∈ Rd×d to map S to query, key,
and value matrices Sq = WqS, Sk = WkS, Sv =
WvS ∈ Rd×n respectively. Then we compute the
structured self attention probabilities β ∈ Rn×n

via a function sattn: β = sattn(ST
qSk/

√
d). Finally

the syntactic context M is computed as M = Svβ.
Here n is the length of the source sentence, so

β captures all pairwise word dependencies. Each
cell βi,j of the attention matrix β is the posterior
probability p(xi = head(xj) |x). The structured
self attention function sattn is inspired by the work
of (Kim et al., 2017) but differs in two important
ways. First we model non-projective dependency
trees. Second, we utilize the Kirchhoff’s Matrix-
Tree Theorem (Tutte, 1984) instead of the sum-
product algorithm presented in (Kim et al., 2017)
for fast evaluation of the attention probabilities. We
note that (Liu and Lapata, 2018) were first to pro-
pose using the Matrix-Tree Theorem for evaluating
the marginals in end to end training of neural net-
works. Their work, however, focuses on the task of
natural language inference (Bowman et al., 2015)
and document classification which arguably require
less syntactic knowledge than machine translation.

Additionally, we will evaluate our structured self
attention on datasets that are up to 20 times larger
than the datasets studied in previous work.

Let z ∈ {0, 1}n×n be an adjacency matrix en-
coding a source’s dependency tree. Let φ =
ST
qSk/

√
d ∈ Rn×n be a scoring matrix such that

cell φi,j scores how likely word xi is to be the
head of word xj . The probability of a dependency
tree z is therefore given by

p(z |x;φ) =
exp

(∑
i,j zi,j φi,j

)

Z(φ)
(5)

where Z(φ) is the partition function.
In the head selection model, we are interested in

the marginal p(zi,j = 1 |x;φ)

βi,j = p(zi,j = 1 |x;φ) =
∑

z : zi,j=1

p(z |x;φ)

We use the framework presented by Koo et al.
(2007) to compute the marginal of non-projective
dependency structures. Koo et al. (2007) use the
Kirchhoff’s Matrix-Tree Theorem (Tutte, 1984) to
compute p(zi,j = 1 |x;φ) by first defining the
Laplacian matrix L ∈ Rn×n as follows:

Li,j(φ) =





n∑
k=1
k 6=j

exp(φk,j) if i = j

− exp(φi,j) otherwise

(6)

Now we construct a matrix L̂ that accounts for root
selection

L̂i,j(φ) =

{
exp(φj,j) if i = 1

Li,j(φ) if i > 1
(7)

The marginals in β are then

βi,j = (1− δ1,j) exp(φi,j)
[
L̂
−1

(φ)
]
j,j

− (1− δi,1) exp(φi,j)
[
L̂
−1

(φ)
]
j,i

(8)

where δi,j is the Kronecker delta. For the root node,
the marginals are given by

βk,k = exp(φk,k)
[
L̂
−1

(φ)
]
k,1

(9)

The computation of the marginals is fully differ-
entiable, thus we can train the model in an end-to-
end fashion by maximizing the conditional likeli-
hood of the translation.
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(a) Structured Self Attention
Encoder: the first layer is
a standard BiLSTM, the top
layer is a syntactic attention
network.

↵ c

(b) Compute the context vec-
tor (blue) as in a standard
NMT model. The attention
weights α are in green.

↵ cd

(c) Use the attention weights
α, as computed in the previ-
ous step, to calculate syntac-
tic vector (purple).

Figure 2: A visual representation of our proposed mechanism for shared attention.

4.2 Incorporating Syntactic Context

Having set the annotations S and M with the en-
coder, the LSTM decoder can utilize this informa-
tion at every generation step by means of attention.
At time step t, we first compute standard attention
weights αt−1 and context vector ct−1 as in Equa-
tions (3) and (4). We then compute a weighted
syntactic vector:

dt−1 = MαT
t−1 (10)

Note that the syntactic vector dt−1 and the context
vector ct−1 share the same attention weights αt−1.
The main idea behind sharing attention weights
(Figure 2c) is that if the model attends to a particu-
lar source word xi when generating the next target
word, we also want the model to attend to the head
word of xi. We share the attention weights αt−1
because we expect that, if the model picks a source
word xi to translate with the highest probability
αt−1[i], the contribution of xi’s head in the syn-
tactic vector dt−1 should also be highest. Figure 3

The boy sitting next to the girls ordered a coffee

Figure 3: A latent tree learned by our model.

shows the latent tree learned by our translation ob-
jective. Unlike the gold tree provided in Figure 1,
the model decided that “the boy” is the head of
“ordered”. This is common in our model because
the BiLSTM context means that a given word’s
representation is actually a summary of its local
context/constituent.

It is not always useful or necessary to access the
syntactic context dt−1 at every time step t. Ideally,

we should let the model decide whether it needs to
use this information or not. For example, the model
might decide to only use syntax when it needs to
resolve long distance dependencies on the source
side. To control the amount of source side syntactic
information, we introduce a gating mechanism:

d̂t−1 = dt−1 � σ(Wght−1) (11)

The vector ut−1 from Eq. (2) now becomes

ut−1 = g(ht−1, ct−1, d̂t−1) (12)

Another approach to incorporating syntactic an-
notations M in the decoder is to use a separate at-
tention layer to compute the syntactic vector dt−1
at time step t:

γt−1 = softmax(hT
t−1WmM) (13)

dt−1 = MγT
t−1 (14)

We will provide a comparison to this approach
in our results.

4.3 Hard Attention over Tree Structures
Finally, to simulate the scenario where the model
has access to a dependency tree given by an ex-
ternal parser we report results with hard attention.
Forcing the model to make hard decisions during
training mirrors the extraction and conditioning on
a dependency tree (§7.1). We expect this technique
will improve the performance on grammar induc-
tion, despite making translation lossy. A similar
observation has been reported in (Hashimoto and
Tsuruoka, 2017) which showed that translation per-
formance degraded below their baseline when they
provided dependency trees to the encoder.

Recall the marginal βi,j gives us the probability
that word xi is the head of word xj . We convert
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these soft weights to hard ones β̄ by

β̄k,j =

{
1 if k = arg maxi βi,j

0 otherwise
(15)

We train this model using the straight-through es-
timator (Bengio et al., 2013). In this setup, each
word has a parent but there is no guarantee that the
structure given by hard attention will result in a
tree (i.e., it may contain cycle). A more principled
way to enforce a tree structure is to decode the best
tree T using the maximum spanning tree algorithm
(Chu and Liu, 1965; Edmonds, 1967) and to set
β̄k,j = 1 if the edge (xk → xj) ∈ T . Maximum
spanning tree decoding can be prohibitively slow
as the Chu-Liu-Edmonds algorithm is not GPU
friendly. We therefore greedily pick a parent word
for each word xj in the sentence using Eq. (15).
This is actually a principled simplification as greed-
ily assigning a parent for each word is the first step
in Chu-Liu-Edmonds algorithm.

5 Experiments

Next we will discuss our experimental setup and
report results for English↔German (En↔De),
English↔Russian (En↔Ru), and Russian→Arabic
(Ru→Ar) translation models.

5.1 Data

We use the WMT17 (Bojar et al., 2017) data in our
experiments. Table 1 shows the statistics of the data.
For En↔De, we use a concatenation of Europarl,
Common Crawl, Rapid corpus of EU press releases,
and News Commentary v12. We use newstest2015
for development and newstest2016, newstest2017
for testing. For En↔Ru, we use Common Crawl,
News Commentary v12, and Yandex Corpus. The
development data comes from newstest2016 and
newstest2017 is reserved for testing. For Ru→Ar,
we use the data from the six-way sentence-aligned
subcorpus of the United Nations Parallel Corpus
v1.0 (Ziemski et al., 2016). The corpus also con-
tains the official development and test data. Our lan-

Train Valid Test Vocabulary

En↔De 5.9M 2,169 2,999 / 3,004 36,251 / 35,913
En↔Ru 2.1M 2,998 3,001 34,872 / 34,989
Ru→Ar 11.1M 4,000 4,000 32,735 / 32,955

Table 1: Statistics of the data.

guage pairs were chosen to compare results across

and between morphologically rich and poor lan-
guages. This will prove particularly interesting
in our grammar induction results where different
pairs must preserve different amounts of syntactic
agreement information.

We use BPE (Sennrich et al., 2016) with 32,000
merge operations. We run BPE for each language
instead of using BPE for the concatenation of both
source and target languages.

5.2 Baselines

Our baseline is an NMT model with input-feeding
(§3). As we will be making several modifications
from the basic architecture in our proposed struc-
tured self attention NMT (SA-NMT), we will ver-
ify each choice in our architecture design empiri-
cally. First we validate the structured self attention
module by comparing it to a self-attention mod-
ule (Lin et al., 2017; Vaswani et al., 2017). Self
attention computes attention weights β simply as
β = softmax(φ). Since self-attention does not as-
sume any hierarchical structure over the source sen-
tence, we refer it as flat-attention NMT (FA-NMT).
Second, we validate the benefit of using two sets of
annotations in the encoder. We combine the hidden
states of the encoder h with syntactic context d to
obtain a single set of annotation using the following
equation:

s̄i = si + σ(Wgsi)� di (16)

Here we first down-weight the syntactic context
di before adding it to si. The sigmoid function
σ(Wgsi) decides the weight of the head word of xi
based on whether translating xi needs additionally
dependency information. We refer to this baseline
as SA-NMT-1set. Note that in this baseline, there
is only one attention layer from the target to the
source S̄ = {s̄i}n1 .

In all the models, we share the weights of target
word embeddings and the output layer as suggested
by Inan et al. (2017) and Press and Wolf (2017).

5.3 Hyper-parameters and Training

For all the models, we set the word embedding
size to 1024, the number of LSTM layers to 2,
and the dropout rate to 0.3. Parameters are initial-
ized uniformly in (−0.04, 0.04). We use the Adam
optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.001. We evaluate our models on
development data every 10,000 updates for De–En
and Ru→Ar, and 5,000 updates for Ru–En. If the
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validation perplexity increases, we decay the learn-
ing rate by 0.5. We stop training after decaying the
learning rate five times as suggested by Denkowski
and Neubig (2017). The mini-batch size is 64 in
Ru→Ar experiments and 32 in the rest. Finally, we
report BLEU scores computed using the standard
multi-bleu.perl script.

In our experiments, the SA-NMT models are
twice slower than the baseline NMT measuring by
the number of target words generated per second.

5.4 Translation Results

Table 2 shows the BLEU scores in our experiments.
We test statistical significance using bootstrap re-
sampling (Riezler and Maxwell, 2005). Statisti-
cal significances are marked as †p < 0.05 and
‡p < 0.01 when compared against the baselines.
Additionally, we also report statistical significances
Mp < 0.05 and Np < 0.01 when comparing against
the FA-NMT models that have two separate atten-
tion layers from the decoder to the encoder. Over-
all, the SA-NMT (shared) model performs the best
gaining more than 0.5 BLEU De→En on wmt16, up
to 0.82 BLEU on En→De wmt17 and 0.64 BLEU
En→Ru direction over a competitive NMT base-
line. The gain of the SA-NMT model on Ru→Ar
is small (0.45 BLEU) but significant. The results
show that structured self attention is useful when
translating from English to languages that have
long-distance dependencies and complex morpho-
logical agreements. We also see that the gain is
marginal compared to self-attention models (FA-
NMT-shared) and not significant. Within FA-NMT
models, sharing attention is helpful. Our results
also confirm the advantage of having two separate
sets of annotations in the encoder when modeling
syntax. The hard structured self attention model
(SA-NMT-hard) performs comparably to the base-
line. While this is a somewhat expected result from
the hard attention model, we will show in Section 7
that the quality of induced trees from hard attention
is often far better than those from soft attention.

6 Gate Activation Visualization

As mentioned earlier, our models allow us to ask
the question: When does the target LSTM need to
access source side syntax? We investigate this by
analyzing the gate activations of our best model,
SA-NMT (shared). At time step t, when the model
is about to predict the target word yt, we compute

the norm of the gate activations

zt = ‖σ(Wght−1)‖2 (17)

The activation norm zt allows us to see how much
syntactic information flows into the decoder. We
observe that zt has its highest value when the de-
coder is about to generate a verb while it has its
lowest value when the end of sentence token </s>
is predicted. Figure 4 shows some examples of Ger-
man target sentences. The darker colors represent
higher activation norms.

Figure 4: Visualization of gate norm. Darker means
the model is using more syntactic information.

It is clear that translating verbs requires struc-
tural information. We also see that after verbs,
the gate activation norms are highest at nouns Zeit
(time), Mut (courage), Dach (roof ) and then tail
off as we move to function words which require
less context to disambiguate. Below are the fre-
quencies with which the highest activation norm
in a sentence is applied to a given part-of-speech
tag on newstest2016. We include the top 7 most
common activations. We see that while nouns are
often the most common tag in a sentence, syntax is
disproportionately used for translating verbs.
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7 Grammar Induction

NLP has long assumed hierarchical structured rep-
resentations are important to understanding lan-
guage. In this work, we borrowed that intuition to
inform the construction of our model. We inves-
tigate whether the internal latent representations
discovered by our models share properties previ-
ously identified within linguistics and if not, what
important differences exist. We investigate the in-
terpretability of our model’s representations by: 1)
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Model Shared De→En Ru→En En→De En→Ru Ru→Ar
wmt16 wmt17 wmt17 wmt16 wmt17 wmt17 un-test

NMT - 33.16 28.94 30.17 29.92 23.44 26.41 37.04

FA-NMT yes 33.55 29.43 30.22 30.09 24.03 26.91 37.41
no 33.24 29.00 30.34 29.98 23.97 26.75 37.20

SA-NMT-1set - 33.51 29.15 30.34 30.29† 24.12 26.96 37.34
SA-NMT-hard yes 33.38 28.96 29.98 29.93 23.84 26.71 37.33

SA-NMT yes 33.73‡M 29.45‡N 30.41 30.22 24.26‡M 27.05‡ 37.49‡M

no 33.18 29.19 30.15 30.17 23.94 27.01 37.22

Table 2: Results for translating En↔De, En↔Ru, and Ru→Ar. Statistical significances are marked as
†p < 0.05 and ‡p < 0.01 when compared against the baselines and M/N when compared against the
FA-NMT (no-shared). The results indicate the strength of our proposed shared-attention for NMT.

FA SA Baseline

no-shared shared no-shared shared hard L R Un

EN (→DE) 17.0/25.2 27.6/41.3 23.6/33.7 27.8/42.6 31.7/45.6 34.0 7.8 40.9EN (→RU) 35.2/48.5 36.5/48.8 12.8/25.5 33.1/48.9 33.7/46.0

DE (→EN) 21.1/33.3 20.1/33.6 12.8/22.5 21.5/38.0 26.3/40.7 34.4 8.6 41.5

RU (→EN) 19.2/33.2 20.4/34.9 19.3/34.4 24.8/41.9 23.2/33.3 32.9 15.2 47.3RU (→AR) 21.1/41.1 22.2/42.1 11.6/21.4 28.9/50.4 30.3/52.0

Table 3: Directed and Undirected (DA/UA) model accuracy (without punctuation) compared to branching
baselines: left (L), right (R) and undirected (Un). Our results show an intriguing effect of the target
language on induction. Note the accuracy discrepancy between translating RU to EN versus AR.

A quantitative attachment accuracy and 2) A quali-
tative look at its output.

Our results corroborate and refute previous work
(Hashimoto and Tsuruoka, 2017; Williams et al.,
2018). We provide stronger evidence that syntactic
information can be discovered via latent structured
self attention, but we also present preliminary re-
sults indicating that conventional definitions of syn-
tax may be at odds with task specific performance.

Unlike in the grammar induction literature our
model is not specifically constructed to recover
traditional dependency grammars nor have we pro-
vided the model with access to part-of-speech tags
or universal rules (Naseem et al., 2010; Bisk and
Hockenmaier, 2013). The model only uncovers
the syntactic information necessary for a given lan-
guage pair, though future work should investigate
if structural linguistic constraints benefit MT.

7.1 Extracting a Tree

For extracting non-projective dependency trees, we
use Chu-Liu-Edmonds algorithm (Chu and Liu,
1965; Edmonds, 1967). First, we must collapse
BPE segments into words. Assume the k-th word
corresponds to BPE tokens from index u to v. We
obtain a new matrix φ̂ by summing over φi,j that

are the corresponding BPE segments.

φ̂i,j =





φi,j if i 6∈ [u, v] ∧ j 6∈ [u, v]∑v
l=uφi,l if j = k ∧ i 6∈ [u, v]∑v
l=uφl,j if i = k ∧ j 6∈ [u, v]∑v
l,h=uφl,h otherwise

7.2 Grammatical Analysis
To analyze performance we compute unlabeled di-
rected and undirected attachment accuracies of our
predicted trees on gold annotations from the Uni-
versal Dependencies (UD version 2) dataset.3 We
chose this representation because of its availability
in many languages, though it is atypical for gram-
mar induction. Our five model settings in addition
to left and right branching baselines are presented
in Table 3. The results indicate that the target lan-
guage effects the source encoder’s induction per-
formance and several settings are competitive with
branching baselines for determining headedness.
Recall that syntax is being modeled on the source
language so adjacent rows are comparable.

We observe a huge boost in DA/UA scores for
EN and RU in FA-NMT and SA-NMT-shared mod-
els when the target languages are morphologically

3http://universaldependencies.org
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I still have surgically induced hair loss

I went to this urgent care center and was blown away with their service

(a) Gold parses.

I still have surgically induced hair loss

I went to this urgent care center and was blown away with their service

(b) SA-NMT (shared)

Figure 6: Samples of induced trees for English by our (En→Ru) model. Notice the red arrows from
subject↔verb which are necessary for translating Russian verbs.

rich (RU and AR respectively). In comparison to
previous work (Belinkov et al., 2017; Shi et al.,
2016) on an encoder’s ability to capture source side
syntax, we show a stronger result that even when
the encoders are designed to capture syntax explic-
itly, the choice of the target language influences the
amount of syntax learned by the encoder.

We also see gains from hard attention and sev-
eral models outperform baselines for undirected
dependency metrics (UA). Whether hard attention
helps in general is unclear. It appears to help when
the target languages are morphologically rich.

Successfully extracting linguistic structure with
hard attention indicates that models can capture in-
teresting structures beyond semantic co-occurrence
via discrete actions. Our approach also outperforms
(Hashimoto and Tsuruoka, 2017) despite lacking
access to additional resources like POS tags.4

7.3 Dependency Accuracies & Discrepancies

While the SA-NMT-hard model gives the best di-
rected attachment scores on EN→DE, DE→EN
and RU→AR, the BLEU scores of this model are
below other SA-NMT models as shown in Table 2.
The lack of correlation between syntactic perfor-
mance and NMT contradicts the intuition of previ-
ous work and suggests that useful structures learned
in service of a task might not necessarily benefit
from or correspond directly to known linguistic
formalisms. We want to raise three important dif-
ferences between these induced structures and UD.

First, we see a blurred boundary between de-
pendency and constituency representations. As
noted earlier, the BiLSTM provides a local sum-
mary. When the model chooses a head word, it is
actually choosing hidden states from a BiLSTM
and therefore gaining access to a constituent or re-
gion. This means there is likely little difference
between attending to the noun vs the determiner in

4The numbers are not directly comparable since they use
WSJ corpus to evaluate the UA score.

a phrase (despite being wrong according to UD).
Future work might force this distinction by replac-
ing the BiLSTM with a bag-of-words but this will
likely lead to substantial losses in MT performance.

Second, because the model appears to use syn-
tax for agreement, often verb dependencies link
to subjects directly to capture predicate argument
structures like those in CCG or semantic role label-
ing. UD instead follows the convention of attaching
all verbs that share a subject to one another or their
conjunctions. We have colored some subject–verb
links in Figure 6: e.g., between I, went and was.

Finally, the model’s notion of headedness is atyp-
ical as it roughly translates to “helpful when trans-
lating”. The head word gets incorporated into the
shared representation which may cause the arrow
to flip from traditional formalisms. Additionally,
because the model can turn on and off syntax as
necessary, it is likely to produce high confidence
treelets rather than complete parses. This means
arcs produced from words with weak gate activa-
tions (Figure 4) are not actually used during trans-
lation and likely not-syntactically meaningful.

We will not speculate if these are desirable prop-
erties or issues to address with constraints, but the
model’s decisions appear well motivated and our
formulation allows us to have the discussion.

8 Conclusion

We have proposed a structured self attention en-
coder for NMT. Our models show significant gains
in performance over a strong baseline on standard
WMT benchmarks. The models presented here do
not access any external information such as parse-
trees or part-of-speech tags yet appear to use and in-
duce structure when given the opportunity. Finally,
we see our induction performance is language pair
dependent, which invites an interesting research
discussion as to the role of syntax in translation
and the importance of working with morphologi-
cally rich languages.
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A Attention Visualization

Figure 7 shows a sample visualization of structured
attention models trained on En→De data. It is
worth noting that the shared SA-NMT model (Fig-
ure 7a) and the hard SA-NMT model (Figure 7b)
capture similar structures of the source sentence.
We hypothesize that when the objective function
requires syntax, the induced trees are more consis-
tent unlike those discovered by a semantic objective
(Williams et al., 2018). Both models correctly iden-
tify that the verb is the head of pronoun (hope→I,
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said→she). While intuitively it is clearly beneficial
to know the subject of the verb when translating
from English into German, the model attention is
still somewhat surprising because long distance de-
pendency phenomena are less common in English,
so we would expect that a simple content based ad-
dressing (i.e., standard attention mechanism) would
be sufficient in this translation
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(a) SA-NMT (shared) attention.
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(b) SA-NMT with hard structured attention.

Figure 7: A visualization of attention distributions
over head words (on y-axis).
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Abstract

Supervised domain adaptation—where a
large generic corpus and a smaller in-
domain corpus are both available for
training—is a challenge for neural ma-
chine translation (NMT). Standard prac-
tice is to train a generic model and use it
to initialize a second model, then continue
training the second model on in-domain
data to produce an in-domain model. We
add an auxiliary term to the training ob-
jective during continued training that min-
imizes the cross entropy between the in-
domain model’s output word distribution
and that of the out-of-domain model to
prevent the model’s output from differ-
ing too much from the original out-of-
domain model. We perform experiments
on EMEA (descriptions of medicines) and
TED (rehearsed presentations), initialized
from a general domain (WMT) model.
Our method shows improvements over
standard continued training by up to 1.5
BLEU.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau
et al., 2015) is currently the state-of-the art
paradigm for machine translation. It dominated
the recent WMT shared task (Bojar et al., 2017),
and is used commercially (Wu et al., 2016; Crego
et al., 2016; Junczys-Dowmunt et al., 2016).

Despite their successes, NMT systems require a
large amount of training data and do not perform
well in low resource and domain adaptation sce-
narios (Koehn and Knowles, 2017). Domain adap-
tation is required when there is sufficient data to
train an NMT system in the desired language pair,
but the domain (the topic, genre, style or level of

formality) of this large corpus differs from that of
the data that the system will need to translate at
test time.

In this paper, we focus on the supervised do-
main adaptation problem, where in addition to
a large out-of-domain corpus, we also have a
smaller in-domain parallel corpus available for
training.

A technique commonly applied in this situation
is continued training (Luong and Manning, 2015),
where a model is first trained on the out-of-domain
corpus, and then that model is used to initialize a
new model that is trained on the in-domain corpus.

This simple method leads to empirical improve-
ments on in-domain test sets. However, we hy-
pothesize that some knowledge available in the
out-of-domain data—which is not observed in the
smaller in-domain data but would be useful at test
time—is being forgotten during continued train-
ing, due to overfitting. (This phenomena can
be viewed as a version of catastrophic forgetting
(Goodfellow et al., 2013)).

For this reason, we add an additional term to the
loss function of the NMT training objective dur-
ing continued training. In addition to minimizing
the cross entropy between the model’s output word
distribution and the reference translation, the addi-
tional term in the loss function minimizes the cross
entropy between the model’s output word distribu-
tion and that of the out-of-domain model.1 This
prevents the distribution of words produced from
differing too much from the original distribution.

We show that this method improves upon stan-
dard continued training by as much as 1.5 BLEU.

1The code is available:
github.com/khayrallah/OpenNMT-py-reg
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2 Method

In this work, we focus on the following scenario:
we assume there is a model that was trained on a
large, general (out-of-domain) corpus in the lan-
guage pair of interest, and there is a new domain,
along with a small in-domain training set, for
which we would like to build a model. We begin
by initializing the weights of the in-domain model
with the weights of the out-of-domain model, and
then continue training the new model on the in-
domain data, using the modified training objective
to prevent the model from differing too much from
the original out-of-domain model.

Before describing our method in detail, we first
review the general framework of neural machine
translation and the standard continued training ap-
proach.

2.1 NMT Objective

Encoder-decoder neural machine translation with
attention (Bahdanau et al., 2015) consists of: an
encoder—a bidirectional recurrent neural network
that encodes the source sentence as vectors; and
a decoder—a recurrent neural network that condi-
tions each output word on the previous output and
a weighted average of the encoder states (atten-
tion).2

The standard training criteria in NMT, for the
ith target word, is:

LNLL(θ) = −
∑

v∈V

(
1{yi = v} (1)

× log p(yi = v |x; θ; yj<i)
)

where V is the vocabulary, 1{·} is the indicator
function, and p is the output distribution of the
model (parameterized by θ).

This objective minimizes the cross-entropy be-
tween the gold-standard distribution 1{yi = v}
(which is simply a one-hot vector that indicates if
the correct word was produced), and the model’s
distribution p(yi = v |x; θ; yj<i).

2.2 Continued Training

Continued training is a simple yet effective tech-
nique for domain adaptation. It consists of three
steps:

2 For a detailed explanation of attention based NMT see
Bahdanau et al. (2015) (the original paper), or for a gentle
introduction see the textbook chapter by Koehn (2017).

1. Train a model until convergence on large out-
of-domain bitext using LNLL as the training
objective.

2. Initialize a new model with the final parame-
ters of Step 1.

3. Train the model from Step 2 until conver-
gence on in-domain bitext, again using LNLL
as objective.

In other words, continued training initializes an
in-domain model training process with parameters
from an out-of-domain model. The hope is that the
out-of-domain model provides a reasonable start-
ing point and is better than random initialization.

In our proposal in the next section, we will re-
place LNLL in Step 3 by a interpolated regularized
objective. All other steps remain the same.

2.3 Regularized NMT Objective
We use the output distribution of the trained out-
of-domain model to regularize the training of our
in-domain model as we perform continued train-
ing to adapt to a new domain.

We add an additional regularization (reg) term
to incorporate information from an auxiliary (aux)
out-of-domain model into the training objective:

Lreg(θ) = −
∑

v∈V

(
paux(yi = v |x; θaux; yj<i)

(2)

× log p(yi = v |x; θ; yj<i)
)

where paux is the output distribution from the
auxiliary out-of-domain model, parameterized by
θaux,3 and p is the output distribution from the in-
domain model being trained, parameterized by θ.

The regularization objective (Eq. 2) min-
imizes the cross-entropy between the out-of-
domain model distribution pout(yi = v |x; θ; yj<i)
and the in-domain model distribution p(yi =
v |x; θ; yj<i). We interpolate this with the stan-
dard training objective (Eq. 1) to obtain the final
training objective:

L(θ) = (1− α) LNLL(θ) + α Lreg(θ) (3)

The added regularization term is formulated in
the spirit of knowledge distillation (Kim and Rush,

3The out-of-domain model is fixed while training the in-
domain model.
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2016), where a student model is trained to match
the output distribution of a parent model. In word-
level knowledge distillation, the student model’s
output distribution is trained on the same data that
the parent model was trained. In contrast, our do-
main specific model (which replaces the student)
is trained with a loss term that encourages it to
match the out-of-domain model (which replaces
the parent) on in-domain training data that the out-
of-domain model was not trained on.

3 Experiments

3.1 Data

For our large, out-of-domain corpus we utilize bi-
text from WMT2017 (Bojar et al., 2017),4 which
contains data from several sources: Europarl par-
liamentary proceedings (Koehn, 2005),5 News
Commentary (political and economic news com-
mentary),6 Common Crawl (web-crawled parallel
corpus), and the EU Press Releases.

We use newstest2015 as the out-of-domain
development set and newstest2016 as the out-
of-domain test set. These consist of profession-
ally translated news articles released by the WMT
shared task.

We perform adaptation into two different do-
mains: EMEA (descriptions of medicines) and
TED Talks (rehearsed presentations). For EMEA,
we use the data split from (Koehn and Knowles,
2017),7 which was extracted from from OPUS
(Tiedemann, 2009, 2012).8 For TED, we use the
data split from the Multitarget TED Talks Task
(MTTT) (Duh, 2018).9 which was extracted from
WIT3 (Cettolo et al., 2012).10 Tables 1–3 give the
number of words and sentences of each of the cor-
pora in the train, dev, and test sets, respectively.

In addition to experiments on the full training
sets, we also conduct experiments adapting to each
given domain using only the first 2,000 sentences
of each in-domain training set to simulate adapta-
tion into a low-resource domain.

For all experiments we translate from English to
German as well as from German to English.

4statmt.org/wmt17
5statmt.org/europarl
6casmacat.eu/corpus/news-commentary.html
7github.com/khayrallah/domain-adaptation-data
8opus.nlpl.eu/EMEA.php
9cs.jhu.edu/ kevinduh/a/multitarget-tedtalks

10 wit3.fbk.eu

corpus de words en words sentences
EMEA 13,572,552 14,774,808 1,104,752
TED 2,966,837 3,161,544 152,609
WMT 139,449,418 146,569,151 5,919,142

Table 1: Tokenized training set sizes.

corpus de words en words sentences
EMEA 26479 28838 2000
TED 37509 38717 1958
newstest15 44869 47569 2169

Table 2: Tokenized development set sizes.

corpus de words en words sentences
EMEA 31737 33884 2000
TED 35516 36857 1982
newstest16 64379 65647 2999

Table 3: Tokenized test set sizes.

3.2 NMT settings

Our neural machine translation systems are trained
using a modified version of OpenNMT-py (Klein
et al., 2017).11 We build RNN-based encoder-
decoder models with attention (Bahdanau et al.,
2015), and use a bidirectional-RRN for the en-
coder. The encoder and decoder both have 2 layers
with LSTM hidden sizes of 1024. Source and tar-
get word vectors are of size 500. We apply dropout
with 30% probability. We use stochastic gradient
descent as the optimizer, with an initial learning
rate at 1 and a decay of 0.5. We use a batch size of
64. We keep the model parameters settings con-
stant for all experiments.

We train byte pair encoding segmentation mod-
els (BPE) (Sennrich et al., 2016) on the out-of-
domain training corpus. We train separate BPE
models for each language, each with a vocab size
of 50, 000 and then apply those models to each
corpus, including the in-domain ones. This setup
allows us to mimic the realistic setting where the
computationally-expensive-to-train generic model
is trained once, and when there is a new domain
that needs translating the existing model is adapted
to that domain without retraining on the out-of-
domain corpus.

We train our out-of-domain models on the
WMT corpora and use the WMT development

11github.com/khayrallah/OpenNMT-py-reg
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De-En En-De
training condition EMEA-test TED-test EMEA-test TED-test

out-of-domain 30.8 29.8 25.1 25.9
in-domain 43.2 31.4 37.0 25.1

continued-train w/o regularization 48.5 36.4 41.0 30.8
continued-train w/ regularization 49.3 (+0.8) 36.9 (+0.5) 42.5 (+1.5) 30.8 (+0.0)

Table 4: BLEU score improvements over continued training. We compare to the out-of-domain baseline
and the in-domain baseline. We also compare to continued training without the additional regularization
term.

De-En En-De
training condition EMEA-test TED-test EMEA-test TED-test

out-of-domain 30.8 29.8 25.1 25.9

continued-train w/o regularization 34.3 33.4 30.0 28.1
continued-train w/ regularization 35.2 (+0.9) 33.6 (+0.2) 30.2 (+0.2) 28.4 (+0.3)

Table 5: BLEU score improvements over continued training using the 2, 000 sentence subsets as the in-
domain corpus. We compare to the out-of-domain baseline and continued training without the additional
regularization term.

set (newstest15) to select the best epoch as
our out-of-domain model. When training our do-
main specific models, we use the in-domain de-
velopment set to select the best epoch. When we
switch to the in-domain training corpus, we reset
the learning rate to 1, with a decay of 0.5, and con-
tinue to apply dropout with 30% probability.

4 Results

Table 4 shows the in-domain and out-of-domain
baselines, the improvement provided by continued
training, and the added improvement of regular-
ization during continued training on the entire in-
domain datasets.12

When translating the De-En EMEA test set, the
out-of-domain model obtains 30.8 BLEU and the
in-domain model (trained on EMEA training data)
obtains 43.2 BLEU. As expected, standard contin-
ued training (without regularization) outperforms
both baselines, achieving 48.5 BLEU. This is an
improvement of 5.3 BLEU over the in-domain
model. Our proposed regularization method fur-
ther improves this by 0.8, to 49.3 BLEU.

The trends are similar in all four test conditions:
Continued training significantly outperforms both
baselines, beating the stronger of the two by be-

12For the regularized results, α is selected to maximize
BLEU on the dev set. See Section 5 for more details.

tween 4.0 and 5.3 BLEU points. Our regulariza-
tion method provides additional improvement over
continued training by up to to 1.5 BLEU. There is
one setting (En-De Ted) where there is no change.

We also repeat the experiment for cases where
the in-domain training data is smaller, which cor-
responds to a more challenging (yet realistic) do-
main adaptation scenario. Table 5 shows the re-
sults of adaptation when only 2, 000 sentences of
in-domain parallel text are available. This amount
of data is insufficient to train an in-domain NMT
model; however, standard continued training is
able to improve upon the out-of-domain baseline
by 2.2 to 4.9 BLEU. Adding our additional regu-
larization term improves performance by an addi-
tional 0.2 to 0.9 BLEU.

In both Table 4 and Table 5, we confirm pre-
vious research findings that continued training is
effective, and demonstrate that our regularized ob-
jective adds further gains. Furthermore, as shown
in Section 5, it is straightforward to choose the in-
terpolation weight, α.

5 Analysis

In this section, we perform more detailed analysis
of our method. Our research questions are as
follows:
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De-En En-De
training condition EMEA-test TED-test EMEA-test TED-test

out-of-domain 30.8 29.9 25.1 25.9

in-domain 43.2 31.4 37.0 25.1
in-domain w/ regularization 45.5 (+2.3) 31.2 (+0.2) 38.8 (+1.8) 26.0 (+0.9)

Table 6: Analysis of BLEU score improvements without continued training. We compare to the out-of-
domain baseline and the in-domain baseline.

Baseline Regularized Continued Training (α)
training domain testset in-domain out-of-domain 0 0.001 0.01 0.1

EMEA EMEA-dev 49.6 31.4 53.2 53.1 53.4 52.9
EMEA-test 43.2 30.8 48.5 48.5 49.3 48.1
newstest2016 5.5 33.8 23.6 23.8 24.1 27.0
TED-test 4.6 29.8 19.2 19.2 19.7 22.3

TED TED-dev 27.1 27.1 31.8 31.9 32.2 32.1
TED-test 27.1 29.8 36.4 36.7 36.9 36.7
newstest2016 17.0 33.8 30.6 30.9 30.9 31.6
EMEA-test 8.7 30.8 23.8 23.3 23.5 25.7

Table 7: Analysis of the sensitivity of BLEU scores on the domain-specific sets and newstest2016
to the interpolation parameter (α) for De-En. Continued training with an α = 0 is standard continued
training, without regularization. Performance on the in-domain test sets is best with an interpolation
weight of .01 in this language pair, while performance on the out-of-domain test sets is better with an
interpolation weight of .1, the highest value we search over.

Is the additional training objective trans-
ferring general knowledge to the in-domain
model? We hypothesize that the regularization
term presents knowledge from the out-of-domain
model to the continued training model while the
later adapts. This allows the domain-adapted
model to retain knowledge from the original (out-
of-domain) model that is useful and would oth-
erwise be lost while training continues on the in-
domain data, due so the sparsity of the smaller in-
domain dataset.

If this is true, using the additional regulariza-
tion term should improve performance of an in-
domain model (that does not use continued train-
ing), since our technique should transfer gen-
eral domain knowledge learned from the out-of-
domain corpus.

To test this idea, we train an in-domain model
from scratch (as opposed to initializing with the
out-of-domain model) using our regularization
term. The results are shown in Table 6. In this set-
ting, the only out-of-domain information is com-
ing from the additional term in the loss function.
Our method provides an improvement of up to
2.8 BLEU over the in-domain model, though in

De-En TED performance degrades by 0.3 BLEU.
While none of these experiments outperform con-
tinued training, the large improvements suggest
the method is effective at transferring general do-
main knowledge into the domain specific model.

Additionally, these experiments suggest our
method could be beneficial in situations where
continued training is not an option. For example,
the out-of-domain model might be much larger or
perhaps a completely different architecture than
the in-domain model; as long as it provides a
distribution over the same vocabulary as the in-
domain model, it can be used as the auxiliary
model in the training objective.

How does this method impact performance
on the original domain? To examine how well
general domain knowledge is retained by the
adapted models, we evaluate the domain spe-
cific models on a more general domain test set
(newstest2016),13 as well as on the other do-
main’s test set (i.e. performance of the TED model

13Note that this analysis is complicated by the fact that the
WMT task is, in fact, a domain adaptation task, since the
WMT test set consists of news articles, while the training data
includes parliamentary text, political and economic commen-
tary and press releases.
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Figure 1: Percentage of out-of-vocabulary words by (a) type and (b) token.

on the EMEA test set and vice-versa). We report
the results for De-En in Table 7. In each case,
as regularization increases, both general-domain
and cross-domain performance increase. Contin-
ued training for a particular domain harms perfor-
mance on the other domains when compared to the
original out-of-domain model.

This suggests that there is some amount of gen-
eral information about translating between the two
languages that is being forgotten by the network
during continued training, and the regularization
term helps remember it.

Why does EMEA show larger improve-
ments? Throughout our experiments, we observe
larger improvements for EMEA than we do for for
TED. For TED, performance is similar for both the
in-domain and out-of-domain baselines (the in-
and out-of-domain baselines are within 1.6 BLEU
of each other for TED, whereas for EMEA the
in-domain model is over 11 BLEU better in both
directions—see Table 4 for full results).

We hypothesize that this is because TED is ac-
tually similar in domain to our ‘out-of-domain’
training set. In particular, we suspect that TED
talks are similar to parliamentary speech, which is
a portion of the WMT training data—both are oral
presentations that cover a variety of topics.

In contrast, EMEA focuses on a single topic
(descriptions of medicines) and contains special-
ized medical terminology throughout.

The out-of-vocabulary rates (OOV) are consis-
tent with this hypothesis (see Figures 1a and 1b for
OOV rates by type and token, respectively). For

EMEA, the OOV rate is lower for the in-domain
training set compared to the out-of-domain train-
ing set while for TED, the opposite is true: the
OOV rate is lower for the out-of-domain training
set compared to the in-domain training set. This
suggests that the EMEA domain has a unique vo-
cabulary that needs to be adapted to, while TED
covers a wide variety of topics, and requires a large
corpus to cover its vocabulary, and the adaptation
problem is more about the style of the corpus.

This contrast between a very homogeneous do-
main and a heterogeneous one is typically not
made: both are typically described as “domain
adaptation.” However, perhaps future work should
approach these problems differently.

What value should α be set to? We perform
a linear search over α, the interpolation parameter
between NLL and our regularization term. We run
experiments with α values of 0.001, 0.01, 0.1, and
select the best model based on in-domain develop-
ment set performance. Table 7 shows the develop-
ment and test scores when translating into English
(the trend is similar going into German, and is thus
not shown here). In general, we see the best in-
domain performance with α set to 0.01 or 0.1. It
is likely possible to make further improvements by
searching over a more fine-grained range of α val-
ues, but we refrain from using this approach due to
the additional compute resources it would require.
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6 Related Work

Prior work has included the use of similar tech-
niques to solve problems different than ours, as
well as different approaches to solve the same
problem.

6.1 Regularization Techniques

We draw inspiration from a number of prior
works including Yu et al. (2013), which introduces
Kullback-Leibler (KL) divergence between the
model being trained and an out-of-domain model
as a regularization scheme for speaker adaptation.
Their work adapts a context dependent deep neural
network hidden Markov model (CD-DNN-HMM)
using the KL-divergence between the softmax out-
puts (modeling tied-triphone states) of a network
trained on a large, speaker independent (SI) cor-
pus the model being adapted to a specific speaker,
initialized with the SI model. Our technique can
also be viewed as an extension of label smooth-
ing (Szegedy et al., 2016; Vaswani et al., 2017;
Pereyra et al., 2017), where instead of a simple
uniform or unigram word distribution, we use the
distribution of an auxiliary NMT model.

6.2 Continued Training

Since Luong and Manning (2015) introduced con-
tinued training14 in NMT, it has become the de
facto standard for domain adaptation. The method
has been surprisingly robust, and in-domain gains
have been shown with as few as tens of in-domain
training sentences (Miceli Barone et al., 2017).

Despite the success of continued training, sev-
eral studies have noted that a model trained via
continued training tends to significantly under-
perform the original model on the original do-
main. (This is an instance of catastrophic forget-
ting where the subsequent task is highly related,
but still different than, the initial task.15) Freitag
and Al-Onaizan (2016) found that that ensembling
an out-of-domain model with a model trained via
continued training can significantly reduce the per-
formance drop on the original domain compared
to the continued training model alone. In contrast,

14This is also often referred to as fine tuning, we use the
term continued training to distinguish from the framework
of Hinton and Salakhutdinov (2006), which uses supervised
learning to fine tune features obtained through unsupervised
learning.

15See Kirkpatrick et al. (2017) for a recent approach in this
space which deals with independent problems.

our work focuses on further improving in-domain
results.

Chu et al. (2017) present mixed fine-tuning.
They begin by training an out-of-domain NMT
model but they continue training on a mix of
in-domain and out-of-domain data (with the in-
domain data oversampled). They also experiment
with tagging each sentence with the domain it
comes from, allowing a single system to adapt to
multiple domains. In contrast, our method does
not require further training on (or even access to)
the very large general domain dataset while adapt-
ing the model to the new domain.

6.3 Regularizing Continued Training

Miceli Barone et al. (2017) share our goal of
improving in-domain results and compare three
methods of regularization to improve leaning dur-
ing continued training: 1) Bayesian dropout 2) L2
regularization, and 3) tuneout, which is similar to
Bayesian dropout but instead of setting weights to
zero, they are set to the value of the out-of-domain
model. They report small gains (≈ 0.3 BLEU)
with Bayesian dropout and L2, but tuneout results
are inconsistent and mostly hurt BLEU. In contrast
to all three methods, which regularize the weights
of the model, our work regularizes only the out-
put distribution and does not directly control the
weights.

The work of Dakwale and Monz (2017) is very
similar to ours but focuses on retaining out-of-
domain performance during continued training,
instead of in-domain gains. They perform multi-
objective learning with most of the weight (90%)
on the auxiliary objective. By contrast, our train-
ing emphasizes the in-domain training objective
(weighting the auxiliary objective 0.1% to 10%)
and we show much larger in-domain gains.

7 Conclusion and Future Work

In this work, we focus on the following sce-
nario: we assume there is a model that has been
trained in the language pair of interest, and we
now have a new domain for which we would like
to build a model using some additional training
data. We add an additional term to the NMT train-
ing objective that minimizes the cross-entropy be-
tween the model output vocabulary distribution
and an auxiliary model’s output vocabulary distri-
bution. We begin by initializing with the out-of-
domain model, and then continue training on the
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in-domain data, using the modified training objec-
tive to prevent the model from differing too much
from the original out-of-domain model. We report
potential improvements of up to 1.5 BLEU over a
strong baseline of continued training when using
the full domain adaptation corpora, and up to 0.9
BLEU over continued training in our extremely
low resource domain adaptation setting.

Our work can be viewed as multi-objective
learning with both regular word-level NLL loss
and word-level auxiliary loss. Kim and Rush
(2016) presented gains using novel sequence-level
Knowledge distillation that may be useful to in-
corporate in future work.

We kept the model hyperparameters fixed for
all experiments, and only tuned the regularization
coefficient. Future work should explore the inter-
action between continued training, regularization,
and other hyperparameters.
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Abstract

Current models for document summarization
disregard user preferences such as the desired
length, style, the entities that the user might
be interested in, or how much of the docu-
ment the user has already read. We present
a neural summarization model with a simple
but effective mechanism to enable users to
specify these high level attributes in order to
control the shape of the final summaries to
better suit their needs. With user input, our
system can produce high quality summaries
that follow user preferences. Without user in-
put, we set the control variables automatically
– on the full text CNN-Dailymail dataset,
we outperform state of the art abstractive
systems (both in terms of F1-ROUGE1 40.38
vs. 39.53 F1-ROUGE and human evaluation).

1 Introduction

Summarization condenses a document into a short
paragraph or a single sentence while retaining core
information. Summarization algorithms are either
extractive or abstractive. Extractive algorithms form
summaries by pasting together relevant portions of the
input, while abstractive algorithms may generate new
text that is not present in the initial document (Das
and Martins, 2007; Nenkova et al., 2011).

This work focuses on abstractive summarization
and, in contrast to previous work, describes mech-
anisms that enable the reader to control important
aspects of the generated summary. The reader can
select the desired length of the summary depending
on how detailed they would like the summary to be.
The reader can require the text to focus on entities they
have a particular interest in. We let the reader choose
the style of the summary based on their favorite
source of information, e.g., a particular news source.
Finally, we allow the reader to specify that they

only want to summarize a portion of the article, for
example the remaining paragraphs they haven’t read.

Our work builds upon sequence-to-sequence
models (Sutskever et al., 2014; Bahdanau et al., 2015),
which have been extensively applied to abstractive
summarization (Rush et al., 2015; Chopra et al.,
2016; Nallapati et al., 2016; See et al., 2017; Paulus
et al., 2017). These conditional language models
use an encoder network to build a representation
of the input document and a decoder network to
generate a summary by attending to the source
representation (Bahdanau et al., 2015).

We introduce a straightforward and extensible
controllable summarization model to enable person-
alized generation and fully leverage that automatic
summaries are generated at the reader’s request. We
show that (1) our generated summaries follow the
specified preferences and (2) these control variables
guide the learning process and improve generation
even when they are set automatically during inference.
Our comparison with state-of-the-art models on
the standard CNN/DailyMail benchmark (Nallapati
et al., 2016), a multi-sentence summarization news
corpus, highlights the advantage of our approach.
On both the entity-anonymized (+0.76 F1-ROUGE1)
and full text versions (+0.85 F1-ROUGE1) of the
dataset, we outperform previous pointer-based models
trained with maximum likelihood despite the relative
simplicity of our model. Further, we demonstrate
in a blind human evaluation study that our model
generates summaries preferred by human readers.

2 User Controllable Summarization

We introduce our summarization model and describe
the control variables users can modify.

2.1 Convolutional Sequence-to-Sequence

Our approach builds upon the convolutional model
of Gehring et al. (2017). The encoder and decoder
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are deep convolutional networks (LeCun et al.,
1990). Both start with a word embedding layer
followed by alternating convolutions with Gated
Linear Units (GLU) (Dauphin et al., 2017). The
decoder is connected to the encoder through attention
modules (Bahdanau et al., 2015) that performs a
weighted sum of the encoder outputs. The weights are
predicted from the current decoder states, allowing the
decoder to emphasize the parts of the input document
which are the most relevant for generating the next
token. We use multi-hop attention, i.e. attention is
applied at each layer of the decoder.

In addition to attending over encoder states (Bah-
danau et al., 2015), we also use intra-attention in the
decoder to enable the model to refer back to previously
generated words. This allows the decoder to keep
track of its progress and reduces the generation of re-
peated information (Vaswani et al., 2017; Paulus et al.,
2017). To combine encoder and decoder attention, we
alternate between each type of attention at every layer.

Much prior work on the CNN-Dailymail bench-
mark employed pointer networks to copy rare
entities from the input (Nallapati et al., 2016), which
introduces additional complexity to the model.
Instead, we rely on sub-word tokenization and weight
sharing. We show this simple approach is very
effective. Specifically, we use byte-pair-encoding
(BPE) for tokenization, a proven strategy that has
been shown to improve the generation of proper
nouns in translation (Sennrich et al., 2016b). We
share the representation of the tokens in the encoder
and decoder embeddings and in the last decoder layer.

2.2 Length-Constrained Summarization

Summarization allows a reader with limited time
to quickly comprehend the essence of a document.
Controlling summary length enables reading with
different time budgets: a document might be
summarized as a five-word headline, a single sentence
or a paragraph, each providing more and more detail.

To enable the user to control length, we first quan-
tize summary length into discrete bins, each represent-
ing a size range. Length bins are chosen so that they
each contain roughly an equal number of training doc-
uments. We then expand the input vocabulary with
special word types to indicate the length bin of the
desired summary, which allows generation to be condi-
tioned upon this discrete length variable. For training,
we prepend the input of our summarizer with a marker
that indicates the length of the ground-truth summary.

At test time, we control the length of generated

text by prepending a particular length marker token.
Our experiments (§5.2) provide quantitative and
qualitative evidence that the model effectively uses
this variable: output length is easily controlled by
changing the length marker and supplying ground
truth markers drastically improves summary quality.
We compare our method to Kikuchi et al. (2016) and
demonstrate that our straightforward length control
strategy is more effective.

2.3 Entity-Centric Summarization

The reader might be interested in a document to learn
about specific entities, such as people or locations.
For example, a sports fan reading about a recent game
might want to focus the summary on the performance
of their favorite player. To enable entity-centric
summaries, we first anonymize entities by replacing
all occurrences of a given entity in a document by
the same token. For training, we also anonymize the
corresponding reference summary. For a (document,
summary) pair, each entity is replaced with a token
from the set (@entity0, . . . , @entityN). This abstracts
away the surface form, allowing our approach to scale
to many entities and generalize to unseen ones.

We then express that an entity should be present
in the generated summary by prepending the entity
token to the input — prepending @entity3 expresses
that the model should generate a summary where
@entity3 is present. In effect, this instructs the model
to focus on sentences that mention the marked entities.

At training time, we prepend each document with
markers referring to an entity from the ground-truth
summary. To ensure the entity request is informative,
we provide an entity that is present in the ground-truth
but not present in the summary generated by the base-
line model. At test time, we may specify any entity
marker that we wish the summary to contain. Our
experiments (§5.2) evaluate the effect of prepending
different markers to the input. We show that higher
accuracy is achieved when we specify entities from
the first few sentences of a document or if we supply
markers taken from the reference summary to illustrate
specific user preferences. We extend this approach to
multiple entity markers and experiment with append-
ing all ground-truth entities for training and provide
all entities from Lead-3 at test time. We show that pro-
viding more entities improves summarization quality.

2.4 Source-Specific Summarization

Text sources such as newspapers and magazines often
have specific style guidelines to provide a consistent
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experience. Readers are accustomed to the styles of
their favorite sources. Therefore, we enable users
to specify a preferred source style for a summary.
Similar to length and entities, we introduce special
marker tokens (@genSource0, . . . , @genSourceN) to
express source desiderata. For training, we preprend
the input with the marker corresponding to the
ground-truth source. At inference, we control the
style of generated summary by prepending different
markers. Our experiments (§4) evaluate whether
providing the true source-style produces summaries
that are closer to the reference summary. We
additionally provide examples of distinct summaries
resulting from changing source-style conditioning.

2.5 Remainder Summarization

Beyond reading summaries of full documents, readers
may want the flexibility of only summarizing certain
portions of a document. For example, a reader who
has read the first few paragraphs would want a sum-
mary of the remaining text to cover what they missed.

Training and evaluating remainder summarization
requires specific data, namely a dataset of full
documents with position markers separating the
already read portion from the remainder part along
with the corresponding summaries. Such a dataset
is not readily available and would be challenging to
collect. To enable remainder summarization without
such data, we align summaries to full documents. Our
procedure matches each reference summary sentence
to its best matching document sentence based on
ROUGE-L. For any position in the document, we
remove sentences aligned before this point from the
full summary and consider this shorter summary as
the summary of the remainder. In our experiment, we
consider as read portions all article positions located
at the middle of two alignment points, except for
alignment points separated by less than 2 sentences.

We consider the following methods:
(1) full summary baseline: the baseline model
predicts a full summary, disregarding the separation
of the read portion from the remainder.
(2) post-inference alignment: a full summary is
generated from the baseline model and the summary
is shortened with our alignment procedure. The de-
coded summary sentences that align to the remainder
portion compose the summary of the remainder.
(3) remainder only: the model is trained to map the
document remainders to the remainder summaries on
pre-aligned training data. This model is not given the
read portion of the article.

(4) read and remainder: the model receives both
read portion of the article and the remainder separated
by a special token. It is trained to predict the
remainder summary. We distinguish the read and
remainder part of the article by using distinct sets of
position embeddings.

We compare these methods in Section 4 and show
the advantage of the model that receives both the
user-read portion and the remainder of the document.

3 Related Work

3.1 Sequence-to-Sequence for Summarization

Automatic summarization has been an active research
field for 60 years (Luhn, 1958). Extractive and abstrac-
tive methods have benefited from advances in natural
language processing, pattern recognition, and machine
learning (Nenkova et al., 2011). Recently, sequence-
to-sequence neural networks (Sutskever et al., 2014)
have been applied to abstractive summarization (Nal-
lapati et al., 2016; See et al., 2017; Paulus et al., 2017)
following their success in translation (Bahdanau
et al., 2015; Luong et al., 2015b), parsing (Luong
et al., 2015a) and image captioning (Vinyals et al.,
2015b). Neural abstractive summarization has built
upon advances from machine translation and related
fields: attention (Bahdanau et al., 2015) enables
generation to focus on parts of the source document
while pointers (Vinyals et al., 2015a) help abstractive
summarization to copy entities from the input (See
et al., 2017; Paulus et al., 2017; Nallapati et al., 2016).

However, summarization also has distinct chal-
lenges. The generation of multi-sentence summaries
differs from single sentence translation: left-to-right
decoders need to be aware of their previous gener-
ation at a larger time scale, otherwise models tend
to produce repeated text. To address this impedi-
ment, (See et al., 2017) introduce coverage modeling,
(Paulus et al., 2017) propose intra-decoder attention,
and (Suzuki and Nagata, 2017) equip the decoder with
an estimator of unigram frequency. Previous work has
also explored learning objectives: (Paulus et al., 2017)
investigates replacing maximum likelihood train-
ing with Reinforcement Learning (RL) to optimize
ROUGE, the most common automatic metric to assess
summarization. Combining both strategies is found
to perform best in human evaluations, as training with
RL alone often produces non-grammatical text.

Our work builds upon prior research: like (Gehring
et al., 2017), we rely on convolutional networks,
which enable faster training. This contrasts with prior
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work using recurrent networks (Nallapati et al., 2016;
See et al., 2017; Paulus et al., 2017). We borrow intra-
attention from (Paulus et al., 2017) and expand it to
multi-hop intra-attention inspired by multi-hop source
attention from (Gehring et al., 2017). To facilitate
copying input entities, we share the word represen-
tations between encoder and decoder (Paulus et al.,
2017), and also rely on BPE tokenization (Sennrich
et al., 2016b). This combination allows us to forgo
an additional pointer mechanism unlike (Paulus et al.,
2017; See et al., 2017; Nallapati et al., 2016). Un-
like (Paulus et al., 2017), we did not explore training
objectives and maximized the likelihood of the train-
ing summaries given the source document. Our model
is amenable to RL, but this aspect is largely orthogonal
to our main goal, i.e. controllable summarization.

3.2 Controllable Text Generation

Text generation is an established research area (McK-
eown, 1992). The field follows recent advances
in generative models, such as the introduction of
variational auto-encoders (Kingma and Welling, 2013)
and adversarial networks (Goodfellow et al., 2014).
This is exemplified by work focusing on natural
language generation such as (Bowman et al., 2016; Yu
et al., 2017; Zhao et al., 2017; Rajeswar et al., 2017).

Building upon unconditioned generation, con-
trollable generation is an emerging research field.
Research in computer vision includes style trans-
fer (Gatys et al., 2015) or controllable image
generation (Lample et al., 2017). Text generation
work focuses on controlling tense or sentiment with
variational auto-encoders (Hu et al., 2017). Shen et al.
(2017) relies on adversarial training for manipulating
sentence sentiment and Sennrich et al. (2016a)
propose using side constraints for polite neural
machine translation models. Takeno et al. (2017)
extend the side constraints to control further aspects
of translation output, such as length. Others have
worked on style, for example Ficler and Goldberg
(2017) propose using a conditional language model
to generate text with stylistic requirements and Kobus
et al. (2017) propose using tokens and additional fea-
tures to translate text in different domains. Filippova
(2017) proposes controlling length for generating
answers in a question answering task. Kikuchi
et al. (2016) explores length control for sentence
compression using decoding-time restrictions and
training-time length token embeddings.

Motivated by simplicity, our work relies on
conditional language modeling and does not require

adversarial training, latent variable models such as
variational auto-encoders, or pointer networks. While
latent variable models are popular for the generation
of continuous outputs such as images, (conditional)
language models are flexible enough to capture
the multimodal nature of the data. We leave the
assessment of how additional latent variables might
improve upon our results to future work.

4 Experimental Setup

Dataset: We use the CNN-Dailymail dataset
(Hermann et al., 2015; Nallapati et al., 2016). It
consists of news articles along with multi-sentence
summaries, with a total of 287k train, 13k valid and
11k test articles. On average, the articles are 758
token long, and the summaries are 55 token long.
Most of our experiments are performed with articles
truncated at 400 tokens, as suggested by (See et al.,
2017). We evaluate on two versions of the data: the
entity anonymized version (Hermann et al., 2015;
Nallapati et al., 2016; Paulus et al., 2017) and the full
text version (See et al., 2017). We use BPE with 30K
types (Sennrich et al., 2016b) for most experiments.
For non-BPE models, input and output vocabularies
have resp. 47k and 21k word types, corresponding
to types with more than 20 train occurrences.

Further, we compare length control with (Kikuchi
et al., 2016) on DUC-2004 single-sentence summa-
rization task. We train on English Gigaword following
the protocol of Rush et al. (2015). The data consist
of 3.6 million pairs (first sentence, headline of news
articles). Following (Kikuchi et al., 2016), we evaluate
on the 500 documents in the DUC2004 task-1. We
use a source and target vocabulary of 30k words.

Architecture, Training, and Generation: We
implement models with the fairseq library1. For
CNN-Dailymail, our model has 8 layers in the
encoder and decoder, each with kernel width 3. We
use 512 hidden units for each layer, embeddings of
size 340, and dropout 0.2. For DUC, we have 6 layers
in the encoder and decoder with 256 hidden units.

Similar to Gehring et al. (2017), we train using
Nesterov accelerated gradient method (Sutskever
et al., 2013) with gradient clipping 0.1 (Pascanu et al.,
2013), momentum 0.99, and learning rate 0.2. We
reduce the learning rate by an order of magnitude
when the validation perplexity ceases to improve,
and end training when the learning rate drops below
10−5. Summaries are generated using beam search

1github.com/facebookresearch/fairseq
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with beam size 5. To avoid repetition, we prevent the
decoder from generating the same trigram more than
once, following Paulus et al. (2017).

Evaluation: On the CNN-Dailymail benchmark,
our automatic evaluation reports F1-ROUGE scores
for ROUGE-1, ROUGE-2, and ROUGE-L (Lin, 2004).
We compare to existing abstractive baselines (Nal-
lapati et al., 2016; See et al., 2017; Paulus et al.,
2017). We also compare with Lead-3 which selects
the first three sentences of the article as the summary.
Note that, although simple, this baseline is not
outperformed by all models.

For human evaluation, we conduct a human
evaluation study using Amazon Mechanical Turk and
the test set generation output of See et al. (2017). 500
articles from the test set were randomly selected and
evaluated by 5 raters. The raters were presented with
the first 400 words of each news article and asked to
select the summarization output they preferred.

For the DUC-2004, we report recall ROUGE for
ROUGE-1, ROUGE-2, and ROUGE-L at 30, 50, and
75 byte lengths following Kikuchi et al. (2016).

5 Results

We evaluate the design choices of our model and the
impact of manipulating the control variables. We ana-
lyze the performance of the remainder summarization
task and demonstrate the advantage of modeling both
the read and remainder portions of the document.

5.1 Convolutional Summarization

Table 1 details the effect of our design choices for
our baseline. Adding a constraint to avoid repeated
trigrams at generation time improves F1-ROUGE1
by +2.86. Adding intra-attention to enable the model
to examine past generations over long distances
improves the accuracy obtained with the trigram
constraint by a further 0.51 F1-ROUGE1. The modest
improvement is likely because the two features
address a similar problem of avoiding repeated genera-
tions. Switching tokenization from word to BPE gives
another +0.79 F1-ROUGE1. BPE improves the ability
to copy proper nouns and rare inflections, both of
which are difficult to model in word-based vocabular-
ies. This agrees with translation results (Sennrich et al.,
2016b). Lastly, we find tuning the min/max length
on the validation set and applying the constraints to
the test set improves F1-ROUGE1 by 0.25.

Model ROUGE

1 2 L
fairseq 33.32 12.64 30.57
+ trigram decoding 36.18 14.10 33.18
+ intra-attention 36.69 14.28 33.47
+ BPE 37.48 15.12 34.16
+ tuning min/max len 37.73 15.03 34.49

Table 1: Baseline without control variables. Each row
add a feature on top of the previous row features.

Model ROUGE

1 2 L
baseline, no control 37.73 15.03 34.49
Length constraint 39.16 15.54 35.94
Entity centric 38.17 15.16 34.92
Source specific 37.68 15.16 34.40
Length+Entity+Source 39.61 15.83 36.48

Table 2: Summarization with oracle control to
simulate user preference.

Model ROUGE

1 2 L
Lead-3
Nallapati et al. (2017) 39.2 15.7 35.5
Maximum Likelihood
Nallapati et al. (2016) 35.46 13.30 32.65
Paulus et al. (2017) 37.86 14.69 34.99
Paulus et al. + intra-attn 38.30 14.81 35.49
fairseq no control (ours) 37.48 15.12 34.16
+ fixed control 38.68 15.40 35.47
+ Lead-3 ent 39.06 15.38 35.77

Reinforcement Learning
Paulus et al. (2017) 39.87 15.82 36.90

Table 3: Fixed control variables on entity-anonymized
text. Even with fixed variables, the controllable model
improves ROUGE compared to ML alternatives.

5.2 Controllable Summarization

Our summarizer lets users control the length of the
generated summary, entities on which it focuses on,
and source style it imitates (see§2). We first evaluate
the effect of providing the oracle reference variables
at decoding time. This simulates a user setting their
preferences to specific values. We then assess the
effect of providing non-reference control variables.

Table 2 reports our results for each variable and
their combined effect. All control variables improve
the summary quality, but length control has the most

49



Model ROUGE

1 2 L
Lead-3 40.34 17.70 36.57
Maximum Likelihood
See et al. (2017) 39.53 17.28 36.38
fairseq no control (ours) 38.23 16.68 34.77
+ fixed control 39.75 17.29 36.54
+ Lead-3 ent 40.38 17.44 37.15

Table 4: Summarization with fixed control variables
on original text. Even with a fixed setting, the
controlled summarization model improves ROUGE.

impact, followed by entity control and source style.
Further, the advantages of each control variable cumu-
latively produce an even stronger summary: we obtain
+2.2 F1-ROUGE1 when combining control variables.

Length control improves accuracy by 1.68 F1-
ROUGE1 (Table 2). This improvement is due to
two effects: length mismatch is heavily penalized
by F1-ROUGE. Moreover, the baseline struggles at
predicting correct lengths. The latter is due to large
uncertainty in summary length, i.e. even humans have
difficulty predicting the correct length.

Figure 1 reports the average summary length when
decoding all examples in the test set using each of
the 10 possible length markers. The model is shown
to respect length markers. Table 8 demonstrates the
effect of the length marker on a specific example.

Entity control has less impact on ROUGE com-
pared to length control at +0.69 vs. +1.68 F1-ROUGE1
(Table 2). This is mainly because our summaries often
already contain most entities from the ground-truth
without the need for additional instruction. Table 6
further analyzes entity control for 100 test documents.
We decode repeatedly requiring each entity from lead-
3. We then repeat the experiment with each entity
from the full article. We report how often the entity-
centric model generates a summary that actually con-
tains the requested entity. For Lead-3 entities, the
model mentions the requested entity 61% of the time,
while for all entities from the input, the model men-
tions required entities 34% of the time. In both set-
tings, these rates are much higher than the baseline.
The model has difficulty generating summaries with
entities which are unlikely to appear in the human
references, e.g. unimportant entities far from the be-
ginning of the article.

Source-style control is the least impactful control
in terms of ROUGE, we report +0.2 F1-ROUGE1 in
Table 2. Changing the source style variable changes

the summary as shown in Table 8. Generally, we
observe that generated summaries in the Dailymail-
style are more repetitive and slightly longer than the
CNN-style summaries. This matches the differences
between the two sources in the reference text. The
impact of style requests might be greater with a richer
set of styles — in future work, we plan to evaluate on
datasets where varied styles are available.

5.3 Summarization with Automatic Control

Our primary objective is to allow readers to control the
attributes of generated summaries. However, we can
also set the control variables automatically in absence
of reader desiderata. For length and source-style, we
set the variable to a constant value that maximizes
ROUGE on the validation set. For entity control, we
randomly sample an entity that appears in lead-3 and
provide it as the entity of interest.

Table 3 reports results on the entity-anonymized ver-
sion of the dataset like (Nallapati et al., 2016; Paulus
et al., 2017) and Table 4 reports results on the full text
data like (See et al., 2017). In both cases, our method
is advantageous over alternatives. Further, providing
all of the entities at training time and only lead-3
entities at test time improves quality. On the original
text, we report 40.38 F1-ROUGE1 as opposed to 39.53
for (See et al., 2017). On the entity-anonymized text,
we report 39.06 F1-ROUGE1 as opposed to 38.30
for the best maximum likelihood setting of (Paulus
et al., 2017). We hypothesize that providing all lead-3
entities encourages copying from lead-3. Our model
does not outperform the reinforcement learning
model of (Paulus et al., 2017) which optimizes
ROUGE. However, training objectives are orthogonal
to our work on control variables and we expect
reinforcement learning to equally benefit our model.

Table 5 compares results on DUC-2004 to the best
method presented by (Kikuchi et al., 2016). We find
that adding length embedding improves the ROUGE-1
and ROUGE-L scores for 30, 50, and 75 byte evalua-
tion. Notably, ROUGE improves more for shorter text
evaluation, likely because requesting a shorter docu-
ment allows the model to plan its generation. Compar-
ing to Kikuchi et al. (2016), our results are stronger
while our method is very simple – (Kikuchi et al.,
2016) explore embedding the remaining length at
each timestep during decoding and creating a separate
memory cell to control length. In contrast, we simply
provide the desired length as a special token and show
this simple approach is effective. Lastly, we note that
length-control has less effect on DUC-2004 compared
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Model 30 byte 50 byte 75 byte
1 2 L 1 2 L 1 2 L

LenInit(0,L) (Kikuchi et al., 2016) 14.31 3.27 13.19 20.87 6.16 19.00 25.87 8.27 23.24
Baseline without control 21.47 7.63 20.71 25.07 8.49 22.97 29.88 10.37 26.29
+ fixed length (ours) 21.81 7.51 21.05 25.39 8.38 23.37 30.00 10.27 26.43

Table 5: ROUGE for fixed length control variable on DUC-2004 Task 1.

Figure 1: Length control vs summary length. Length
control can take 10 discrete values.

Baseline Entity-centric

Lead-3 15.28 61.15
Full input 7.64 33.76

Table 6: Fraction of requested entity actually
occurring in decoded summaries. Entities originate
either from lead-3 or from the full document.

to CNN-Dailymail since truncated recall-ROUGE eval-
uation does not penalize length mismatch strongly.

Overall, the improvements from automatic control
show that a better model can be obtained by providing
additional information during training – we present
the first model trained with maximum likelihood to
match the strong Lead-3 baseline. When the model
is not required to predict the summary length or the
entities of interest, it can assign more capacity to
generating text conditioned on these variables. This
is particularly useful for variables which are hard
to predict from the input due to intrinsic uncertainty
like length. In subsequent work, we plan to explore
architectures to explicitly divide the prediction of
control variables and sequence-to-sequence mapping.

Model ROUGE

1 2 L
Full summary 28.12 9.46 18.81
Post-inference align. 27.13 7.68 27.45
Remainder only 30.30 11.44 27.46
Read + remainder 30.54 11.60 27.67
Read + rem. + length 30.70 11.52 27.78

Table 7: Remainder Summarization.

5.4 Remainder Summarization

Summarizing the remainder of an article helps the
reader to quickly grasp what they have not yet read.
Table 7 presents our results relying on aligned data in-
troduced in§2.5. Generally, this task is more difficult
than summarizing the entire article. First, the length of
both read portions and summaries varies greatly. It is
difficult for the model to distinguish information spe-
cific to the remaining portion of the document from
the general point of the article. Despite this, when
models trained on summarizing the remainder are
tasked with summarizing only full documents, the per-
formance is not much worse (37.02 F1-ROUGE1 com-
pared to 37.73 F1-ROUGE1 of the baseline in Table 1).

Our baseline always presents the full summary, re-
gardless of the portion of the article presented as input.
It achieves an F1-ROUGE1 score of 28.12. Among
our three proposed methods, forming the remainder
summaries post-inference performs poorly as it de-
pends largely on alignment quality. The news articles
are repetitive, so one summary sentence can align to
multiple locations in the source. Training the model
to perform remainder summarization significantly
improves our results. Models that receive only the re-
mainder and produce a summary achieve F1-ROUGE1
of 30.30, while models that receive both the read and
remainder portions are slightly better (F1-ROUGE1
30.54). We hypothesize that presenting the read
portion of the article improves the quality as the model
can focus on the new information in the remainder. An
explicit method for eliminating redundancy between
the read and the remainder is relevant future work.

Remainder summary length is particularly difficult
to predict. We therefore rely on length control: we
split the validation dataset into 10 partitions based
on how far in the article the remainder begins and
determine the best length setting for each partition.
We decode the test data with this setting which pro-
vides an additional improvement, 30.70 F1-ROUGE1.
However, partitioning is not an accurate length model
and we hypothesize that length control could provide
a greater improvement with a better model.
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a. Summary with Length Control
Requesting Length 2: @entity0 [Easter] is over for the wild rabbits of greater @entity2 [Sydney] as councils and parks prepare
another attempt to kill them off with a deadly virus. It comes after over 30 government bodies scattered carrots laced with calicivirus.
Requesting Length 6: @entity0 [Easter] is over for the wild rabbits of greater @entity2 [Sydney] as councils and parks prepare
another attempt to kill them off with a deadly virus. This year, because of really high summer rainfall - which led to great food
availability - there has been a big surge in the rabbit population in @entity2 [Sydney].
Requesting Length 10: @entity0 [Easter] is over for the wild rabbits of greater @entity2 [Sydney] as councils and parks prepare
another attempt to kill them off with strategically placed carrots that have been laced with a deadly virus. This year,because of really
high summer rainfall - which led to great food availability - there has been a big surge in the rabbit population in @entity2 [Sydney].
It comes after over 30 government bodies scattered carrots laced with calicivirus around public areas in March.

b. Summary with Entity Control blue highlights requested entity

Requesting @entity17 [Route 5]: @entity1 [Linda MacDonald], 55 , was arrested for driving under the influence of alcohol
Monday night in @entity4 [Dummerston], @entity5 [Vermont]. Police say the woman from @entity15 [Shelburne], @entity16
[Massachusetts] was driving drunk around 10:30pm when she ran off @entity17 [Route 5] in @entity4 [Dummerston].
Requesting @entity20 [MacDonald]: @entity1 [Linda MacDonald], 55 , was arrested for driving under the influence of alcohol
Monday night in @entity4 [Dummerston], @entity5 [Vermont]. @entity20 [MacDonald] told officers that she crashed while
talking on the phone and trying to take directions down on a legal note pad in her car. But when officers smelled alcohol on
@entity20 [MacDonald], they administered a breathalyzer test and she posted a .10 blood-alcohol content.

c. Summary with Source-Style Control blue highlights different text

Requesting CNN-Style: Officer @entity6 [Jared Forsyth], 33, had been a member of the @entity7 [Ocala Police Department] since
2012. He was wearing bulletproof vest, but round entered in his arm and went through his chest. @entity6 [Jared Forsyth] was
rushed to hospital in critical condition.
Requesting DailyMail-Style: Officer @entity6 [Jared Forsyth], 33, had been a member of the @entity7 [Ocala Police Department]
since 2012. He was rushed to @entity26 [Ocala Regional Medical Center] in critical condition and was taken into surgery. Police
say the incident occurred about 3.30pm at a gun range at the @entity13 [Lowell Correctional Institution].

d. Remainder Summary
Full Article: @entity4 [Harry Potter] star says he has no plans to fritter his cash away on fast cars, drink and celebrity parties.
@entity3 [Daniel Radcliffe]’s earnings from the first five @entity4 [Harry Potter] films have been held in a trust fund which he has
not been able to touch.
After 8 sentences: He’ll be able to gamble in a casino, buy a drink in a pub or see the horror film. @entity3 [Daniel Radcliffe]’s
earnings from first five @entity4 [Harry Potter] films have been held in trust fund .
After 12 sentences: @entity3 [Daniel Radcliffe]’s earnings from first five @entity4 [Harry Potter] films have been held in trust
fund .

Table 8: Summaries with various settings for user control variables and remainder summarization.

ROUGE1 Human Pref.

(See et al., 2017) 39.53 41.04%
fixed ctrl+Lead-3 ent. 40.38 58.99%

Table 9: Human evaluation: 59% of ratings prefer our
summaries (500 CNN-DM test articles, 5 raters each).

5.5 Human Evaluation

Our study compares summarization with fixed value
control variables on full text CNN-Dailymail with
(See et al., 2017). Table 9 shows that human raters
prefer our model about 59% of the time based
2.5k judgments. Our model can therefore improve
summary quality in a discernible way. As an aside,
we find that ROUGE and ratings agree in two-thirds of
the cases, where at least four out of five humans agree.

6 Conclusion

We proposed a controllable summarization model to
allow users to define high-level attributes of generated
summaries, such as length, source-style, entities of
interest, and summarizing only remaining portions of
a document. We simulate user preferences for these
variables by setting them to oracle values and show
large ROUGE gains. The control variables are effective
without user input which we demonstrate by assigning
them fixed values tuned on a held-out set. This out-
performs comparable state of the art summarization
models for both ROUGE and human evaluation.
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Abstract

A large-scale parallel corpus is required
to train encoder-decoder neural machine
translation. The method of using synthetic
parallel texts, in which target monolingual
corpora are automatically translated into
source sentences, is effective in improving
the decoder, but is unreliable for enhanc-
ing the encoder. In this paper, we propose
a method that enhances the encoder and at-
tention using target monolingual corpora
by generating multiple source sentences
via sampling. By using multiple source
sentences, diversity close to that of hu-
mans is achieved. Our experimental re-
sults show that the translation quality is
improved by increasing the number of syn-
thetic source sentences for each given tar-
get sentence, and quality close to that us-
ing a manually created parallel corpus was
achieved.

1 Introduction

In recent years, neural machine translation (NMT)
based on encoder-decoder models (Sutskever
et al., 2014; Bahdanau et al., 2014) has become
the mainstream approach for machine translation.
In this method, the encoder converts an input sen-
tence into numerical vectors called “states,” and
the decoder generates a translation on the basis of
these states. Although the encoder-decoder mod-
els can generate high-quality translations, they re-
quire large amounts of parallel texts for training.

On the other hand, monolingual corpora are
readily available in large quantities. Sennrich et al.
(2016a) proposed a method using synthetic paral-
lel texts, in which target monolingual corpora are
translated back into the source language (Figure
1). The advantage of this method is that the de-

coder is accurately trained because the target side
of the synthetic parallel texts consists of manually
created (correct) sentences. Consequently, this
method provides steady improvements. However,
this approach may not contribute to the improve-
ment of the encoder because the source side of
the synthetic parallel texts are automatically gen-
erated.

In this paper, we extend the method proposed by
Sennrich et al. (2016a) to enhance the encoder and
attention using target monolingual corpora. Our
proposed method generates multiple source sen-
tences by sampling when each target sentence is
translated back. By using multiple source sen-
tences, we aim to achieve the following.

• To average errors in individual synthetic sen-
tences and reduce their harmful effects.

• To ensure diversity as human translations.
This is a countermeasure against machine-
translated sentences that have less variety.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of related
work that uses monolingual corpora in NMT. Sec-
tion 3 describes the proposed method, and Section
4 evaluates the proposed method through experi-
ments. In addition, Section 5 proposes the appli-
cation of our method as a self-training approach.
Finally, Section 6 concludes the paper.

2 Related Work

One approach of using target monolingual cor-
pora is to construct a recurrent neural network lan-
guage model and combine the model with the de-
coder (Gülçehere et al., 2015; Sriram et al., 2017).
Similarly, there is a method of training language
models, jointly with the translator, using multi-
task learning (Domhan and Hieber, 2017). These
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Target Monolingual Corpus Base Parallel CorpusSynthetic Source Sentences Synthetic Parallel Corpus (Forward) TranslatorSource → TargetBack-TranslatorTarget → Source TranslationTest SentenceTraining
TrainingFilter

Figure 1: Flow of Our Approach

methods only enhance the decoder and require a
modification of the NMT.

Another approach of using monolingual corpora
of the target language is to learn models using syn-
thetic parallel sentences. The method of Sennrich
et al. (2016a) generates synthetic parallel corpora
through back-translation and learns models from
such corpora. Our proposed method is an exten-
sion of this method. Currey et al. (2017) gener-
ated synthetic parallel sentences by copying tar-
get sentences to the source. This method utilizes a
feature in which some words, such as named enti-
ties, are often identical across the source and target
languages and do not require translation. How-
ever, this method provides no benefits to language
pairs having different character sets, such as En-
glish and Japanese.

On the other hand, the basis of source mono-
lingual corpora, a pre-training method based on
an autoencoder has been proposed to enhance
the encoder (Zhang and Zong, 2016). How-
ever, the decoder is not enhanced by this method.
Cheng et al. (2016) trained two autoencoders us-
ing source and target monolingual corpora, while
translation models are trained using a parallel cor-
pus. This method enhances both the encoder and
decoder, but it requires two monolingual corpora,
respectively. Our proposed method enhances not
only the decoder but also the encoder and atten-
tion using target monolingual corpora.

3 Proposed Method

3.1 Synthetic Source Sentences

The back-translator used in this study is an NMT
trained on a small parallel corpus (hereinafter re-
ferred to as the base parallel corpus). Each sen-
tence in a target monolingual corpus is translated

LSTM LSTMWord Distribution ���� Word Distribution ��
States

Output Word ���ContextsOutput Word �����Sampling Sampling
�����

Generator &Attention Mech. Generator &Attention Mech.Contexts
Figure 2: Decoding Process of Back-Translator

by the back-translator to generate synthetic source
sentences. The back-translator does not output
only high-likelihood sentences but generates sen-
tences by random sampling.

Figure 2 illustrates the decoding process of the
back-translator. When the decoder generates a
sentence word-by-word, it also generates the pos-
terior probability distribution of an output word
Pr(yt) through the decoding process. We call this
a word distribution. In a usual decoding process,
the output word ŷt is determined by selecting a
word with the highest probability (if the decoder
outputs 1-best translation by greedy search). 1

ŷt = argmax
yt

Pr(yt|y<t,x), (1)

where y<t and x are the history of the output
words and the input word sequence, respectively.

In contrast, the back-translator in this paper de-
termines the output word by sampling based on the

1In translation, an output sentence is generally generated
from multiple hypotheses using beam search. However, it is
the same that the beam search selects high-likelihood words.
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Log-likelihood Synthetic Source Sentence
-2.25 what should i do when i get injured or sick in japan ?
-2.38 what should i do if i get injured or sick in japan ?
-5.20 what should i do if i get injured or illness in japan ?
-5.52 what should we do when we get injured or sick in japan ?
-13.87 if i get injured or a sickness in japan , what shall i do ?

Target Sentence 日本で怪我や病気をしたときはどうすればいいのでしょう
か ?

Manual Back-Translation what should i do when i get injured or sick in japan ?

Table 1: Examples of Synthetic Source Sentences (English-Japanese Translation):
The italicized words indicate differences with the manual back-translation.

word distribution.

ŷt = sampling
yt

(Pr(yt|y<t,x)), (2)

where samplingy(P ) denotes the sampling oper-
ation of y based on the probability distribution P .
The decoding continues until the end-of-sentence
symbol is generated.2 We repeat the above process
to generate multiple synthetic sentences. Note that
this generation method is the same as that of the
minimum risk training (Shen et al., 2016).

In NMT, even if a low-probability word is
selected by the sampling, the subsequent word
would become fluent because it is conditioned
by the history. Table 1 presents examples of
the synthetic source sentences produced by the
back-translator. Most of the synthetic source sen-
tences are identical, or close to, the manual back-
translation (i.e., the reference translation). On the
other hand, the last example is quite different from
the perspective of word order because the clauses
are inverted. Such a synthetic sentence is usually
not produced by the n-best translation because of
the low likelihood. However, it is possible to gen-
erate diverse source sentences by sampling.

The sampling occasionally generates identical
sentences as a result. However, we did not remove
the duplication to reflect the original probability
distribution.

3.2 Training

The synthetic source sentences are paired with the
target sentences to construct the synthetic parallel
corpus. The NMT model is trained on a mixture of
the synthetic corpus and the base parallel corpus.

2The back-translator does not use the beam search be-
cause the sampling is independently performed for each
word.

In the training, we must deal with the two dif-
ferent types of sentence pairs. In addition, if we
use multiple source sentences for a given target
sentence, the model will be biased toward the syn-
thetic corpus. To avoid this problem, we adjust the
learning rate according to the size of the corpora.
Specifically, we first configure two mini-batch sets
each from the base and synthetic corpora. There-
after, the learning rate η/N is applied to the mini-
batches of the synthetic corpus, in contrast to the
learning rate η for those of the base corpus, where
N denotes the number of synthetic source sen-
tences per target sentence. Finally, the two sets
are shuffled and used for training.

The training time increases along with the in-
crease of data. However, the translation speed
does not change because the model structure is not
changed.

It must be noted that if the domains of the base
parallel and the target monolingual corpora are
different, it is better to perform “further training”
using the base parallel corpus for domain adapta-
tion (Freitag and Al-Onaizan, 2016; Servan et al.,
2016). 3

3.3 Filtering of Synthetic Parallel Sentences

The synthetic source sentences contain errors. A
direct approach to reduce such errors involves fil-
tering the sentence pairs according to their qual-
ity. In this paper, we consider the following three
methods.

3.3.1 Likelihood Filtering
The first method is filtering by the likelihood out-
put from the back-translator. We consider the
likelihood as an indicator of translation quality,
and low-likelihood synthetic sentences are filtered

3We did not perform “further training” in this paper.
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out. Note that the likelihood is corrected with
the length of the synthetic source sentence. We
call this the length biased log-likelihood lllen (Oda
et al., 2017).

lllen(y|x) =
∑

t

log Pr(yt|x,y<t)+WP ·T, (3)

where the first term on the right-hand side is
the log-likelihood, WP denotes the word penalty
(WP ≥ 0), and T denotes the number of words in
the synthetic source sentence.

NMTs tend to generate shorter translations than
the expectation (Morishita et al., 2017). The word
penalty works to increase the likelihood of long
hypotheses when it is set to a positive value. With
an appropriate value, we can obtain synthetic sen-
tences that are almost of the same length as the
manual back-translation. We set the word penalty
such that the lengths of the translation and refer-
ence translation on the development set are ap-
proximately equal, using line search.

3.3.2 Confidence Filtering
The second method involves filtering with the con-
fidence of translation used in the translation qual-
ity estimation task. We use the data provided by
Fujita and Sumita (2017), which is a collection of
manual labels indicating whether the translation is
acceptable or not. We train the support vector ma-
chines (SVMs) on the sentence-level data and re-
gard the classifier’s score as the confidence score.

The features of the SVM classifier include
the 17 basic features of QuEst++ (Specia et al.,
2015).4 They are roughly categorized into the fol-
lowing two types.

• Language model features of each of the
source and target sentences.

• Features based on the parallel sentences such
as the average number of translation hypothe-
ses per word.

In addition, we add the source and target word em-
beddings. The sentence features are computed by
averaging all word embeddings (Shah et al., 2016).
The hyperparameters for the training are set using
the grid search on the development set.

In the expriments of Section 4, features are ex-
tracted from the base parallel corpus.

4http://www.quest.dcs.shef.ac.uk/

Type # Sentences
Parallel Base 400,000

Development 2,000
Test 2,000

Monolingual GCP Corpus 1,552,475
(Japanese) BCCWJ 4,791,336

Table 2: Corpus Statistics

3.3.3 Random Filtering

The third method is random filtering. This is iden-
tical to the reduction of the number of synthetic
source sentences to be generated.

4 Experiments

4.1 Experimental Settings

Corpora The corpus sizes used here are shown
in Table 2. We used the global communica-
tion plan corpus (the GCP corpus, (Imamura and
Sumita, 2018)), which is an in-house parallel cor-
pus of daily life conversations and consists of
Japanese (Ja), English (En), and Chinese (Zh).
The experiments were performed on English-
to-Japanese and Chinese-to-Japanese translation
tasks. We randomly selected 400K sentences for
the base parallel corpus, and the remaining (1.55M
sentences) were used as the Japanese monolingual
corpus. The reason for dividing the parallel corpus
into two corpora is to measure the upper-bound
of quality improvement by using existing paral-
lel texts on the same domain as the manual back-
translation.

We also used the Balanced Corpus of Contem-
porary Written Japanese (BCCWJ)5 as a monolin-
gual corpus from a different domain. We used ap-
proximately 4.8M sentences, each of which con-
tains less than 1024 characters. We assume practi-
cal situations in which the domains of parallel and
monolingual corpora are not identical.

All sentences were segmented into words using
an in-house word segmenter. The words were fur-
ther segmented into 16K sub-words based on the
byte-pair encoding rules (Sennrich et al., 2016b)
acquired from the base parallel corpus for each
language independently.

Translation System The translation system
used in this study was OpenNMT (Klein et al.,
2017). We modified it to accept Sections 3.1 and
3.2.

5http://pj.ninjal.ac.jp/corpus center/bccwj/en/
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The encoder was comprised of a two-layer Bi-
LSTM (500 + 500 units), the decoder included a
two-layer LSTM (1,000 units), and the stochastic
gradient descent was used for optimization. The
learning rate for the base parallel corpus was 1.0
for the first 14 epochs, followed by the annealing
of 6 epochs while decreasing the learning rate by
half. The mini-batch size was 64.

At the translation stage, we generated 10-best
translations and selected the best among them on
the basis of the length reranking (Morishita et al.,
2017). Equation 3 was used as the score func-
tion for the reranking. By correcting the trans-
lation length, the translation quality can be com-
pared without the effect of the brevity penalty of
the BLEU score.

The back-translator was comprised of the same
system. We generated 10 synthetic source sen-
tences per target sentence using the method de-
scribed in Section 3.1, and filtered them to create
synthetic parallel sentences.

Competing Methods In this paper, we consider
the case in which only the base parallel corpus
is used as the baseline, and the case in which
the manual back-translation of the GCP corpus is
added as the upper-bound of the translation qual-
ity. Thereafter, we compare the following methods
and settings:

• Various numbers of synthetic source sen-
tences for a given target sentence

• The methods for generating synthetic source
sentences: sampling vs. n-best generation

• The three filtering methods described in Sec-
tion 3.3

Evaluation BLEU (Papineni et al., 2002) was
used for the evaluation. The multeval tool (Clark
et al., 2011)6 was used for statistical testing at a
significance level of 5% (p < 0.05).

4.2 Results with GCP Corpus

Figures 3 and 4 depict the relationship between
the number of synthetic source sentences and the
BLEU score on the GCP corpus of En-Ja and
Zh-Ja translation tasks, respectively. The graphs
and tables in the figures present the same data
for overviews and for analyzing the data in detail.
Note that the method of Sennrich et al. (2016a)
corresponds to the case of one synthetic source

6https://github.com/jhclark/multeval

sentence of the n-best generation (i.e., 1-best gen-
eration).

In both En-Ja and Zh-Ja translation, the score
was improved when multiple synthetic sentences
were given. Even though the method of Sennrich
et al. (2016a) achieved improvements of +2.42
and +2.38 BLEU points from the base corpus only
for En-Ja and Zh-Ja translations, respectively, fur-
ther improvements were observed by using multi-
ple synthetic sentences. Since the target sentences
were the same in all cases except for the base cor-
pus only, we can conclude that providing multiple
source sentences is effective for improving the en-
coder and attention.7

The improvements from the base corpus only
to the manual back-translation reached +4.86 and
+5.29 BLEU points in En-Ja and Zh-Ja transla-
tions, respectively. When we focus on the case in
which the number of synthetic source sentences is
6, for example, the improvements in the proposed
methods (the likelihood, confidence, and random
filtering) were achieved at least +4.08 and +5.01
BLEU points. This means that more than 80%
of improvements with the manual back-translation
were achieved using only monolingual corpora.
Nevertheless, all methods did not reach the BLEU
score of the manual back-translation; thus, we can-
not substitute parallel corpora with monolingual
corpora.

When we compared the three filtering meth-
ods, the BLEU scores were almost equivalent in
most cases. In fact, there were no significant dif-
ferences among filtering methods in all cases of
Zh-Ja translation. In En-Ja translation, there were
some significantly different cases, but the signifi-
cance was not consistently derived.

When the synthetic source generation was
changed to the n-best generation, the BLEU scores
were visibly degraded relative to the proposed
method (i.e., sampling). We speculate that the
likelihood and confidence filtering were ineffec-
tive because of the high-quality back-translator,
and the diversity of the synthetic source sentences
contributed considerably to quality improvement.

4.3 Results with BCCWJ

Table 3 shows the results using BCCWJ as a
monolingual corpus (the results of the GCP cor-

7Unfortunately, it is unknown in this experiment whether
the encoder or attention were enhanced. We plan to investi-
gate which module is enhanced by freezing parameters (Zoph
et al., 2016) of the encoder and attention through the training.
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25.026.027.028.029.030.031.032.0 0 2 4 6 8 10BLEU Number of Synthetic Source SentencesLikelihood FilteringConfidence FilteringRandom FilteringN-best GenerationManual Back-TranslationBase Corpus OnlySennrich et al. (2016)
En-Ja

# of Synthetic Likelihood Confidence Random N-best
Sentences Filtering Filtering Filtering Generation

Base Corpus Only 26.19
Sennrich et al. (2016a) 28.61 (+2.42)

1 29.01 (+2.82) 28.49 (+2.30) 28.85 (+2.66) 28.61 (+2.42)
2 30.16 (+3.97) 29.26 (+3.07) 30.30 (+4.11) 29.61 (+3.42)
4 30.99 (+4.80) 30.26 (+4.07) 30.08 (+3.89) 29.51 (+3.32)
6 30.41 (+4.22) 30.59 (+4.40) 30.27 (+4.08) 29.62 (+3.43)
8 30.39 (+4.20) 30.53 (+4.34) 30.22 (+4.03) 30.39 (+4.20)

10 30.66 (+4.47) 30.66 (+4.47) 30.66 (+4.47) 29.70 (+3.51)
Manual Back-Translation 31.05 (+4.86)

Figure 3: The BLEU scores using the GCP corpus (English-Japanese translation) represented by a graph
and table. The bracketed values of the table indicate differences from those of the base corpus only.36.037.038.039.040.041.042.043.0 0 2 4 6 8 10BLEU Number of Synthetic Source SentencesLikelihood FilteringConfidence FilteringRandom FilteringN-best GenerationBase Corpus OnlyManual Back-TranslationSennrich et al. (2016)

Zh-Ja
# of Synthetic Likelihood Confidence Random N-best

Sentences Filtering Filtering Filtering Generation
Base Corpus Only 37.08

Sennrich et al. (2016a) 39.46 (+2.38)
1 40.63 (+3.55) 40.34 (+3.26) 40.88 (+3.80) 39.46 (+2.38)
2 41.35 (+4.27) 41.73 (+4.65) 41.68 (+4.60) 40.22 (+3.14)
4 41.92 (+4.84) 42.01 (+4.93) 41.63 (+4.55) 41.22 (+4.14)
6 42.14 (+5.06) 42.22 (+5.14) 42.09 (+5.01) 40.77 (+3.69)
8 42.31 (+5.23) 41.89 (+4.81) 42.30 (+5.22) 40.84 (+3.76)

10 41.80 (+4.72) 41.80 (+4.72) 41.80 (+4.72) 40.79 (+3.71)
Manual Back-Translation 42.37 (+5.29)

Figure 4: The BLEU scores using the GCP corpus (Chinese-Japanese translation) represented by a graph
and table. The bracketed values of the table indicate differences from those of the base corpus only.
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# of Synthetic BCCWJ GCP Corpus
Source Sentences BLEU BLEU

0 (Base Corpus Only) 26.19
1 29.84 29.01
2 29.94 30.16
4 30.66 30.99

Manual Back-Translation - 31.05

Table 3: The BLEU scores of the BCCWJ and
GCP corpora according to the number of synthetic
source sentences (En-Ja, the random filtering).

Sampling N-best Gen.
BLEU 15.05 21.55
Edit Distance

A) between SYN and MAN 9.73 8.52
B) among SYNs 9.34 3.90

Table 4: The BLEU scores and the edit distances
of synthetic source sentences based on 10 syn-
thetic sentences and manual back-translation for
the same 1,000 target sentences in the GCP cor-
pus.

pus are also shown for reference). In this study,
we only performed random filtering experiments
on En-Ja translation due to resource limitations.

In the case of BCCWJ, the BLEU scores in-
creased with the number of synthetic source sen-
tences, similar to the GCP corpus. We cannot di-
rectly compare the scores of the two corpora; how-
ever, similar improvement was achieved when we
used a several-fold size of the different domain
monolingual corpus.

4.4 Analysis

The above experiments consider diversity under
the following two assumptions.

• The number of synthetic source sentences in-
dicates the diversity.

• The diversity of the synthetic sentences by
sampling is higher than that of the n-best gen-
eration.

In this section, we quantify the diversity using the
edit distance among the systhetic source sentences
to compare the generation methods.

We sampled 1,000 Japanese sentences from the
GCP corpus in En-Ja translation with their ten cor-
responding back-translations generated by each
method. Table 4 shows the results. The BLEU
scores were computed regarding the 10,000 sen-
tences as a document. The edit distances were

computed for the following two cases, setting the
insertion, deletion, and substitution costs to 1.0.

A) The average distance between a synthetic
sentence (SYN) and the manual back-
translation (MAN; i.e., reference translation).
Note that this value also indicates translation
quality because it is a source for computing
the word error rate (smaller value represents
better quality).

B) The average distance among synthetic source
sentences of a target sentence (10C2 = 45
combinations per target sentence).

As for the BLEU scores in Table 4, the sampling
method achieved a lower score than that of the n-
best generation. Similarly, the edit distance A of
the sampling had a larger value than that of the n-
best generation. These results imply that the sam-
pling generates poor synthetic sentences. How-
ever, these scores are influenced by the diversity
because they naturally become worse along with
the variety of synthetic sentences when they are
computed using a single reference.

On the other hand, as for edit distance B, the
distance of the n-best generation was less than half
of that of the sampling, even though sentences of
the sampling generation can include identical sen-
tences. Intuitively, the n-best generation generates
similar sentences where only few words are differ-
ent. As shown in Table 4, the distances of the syn-
thetic sentences by sampling were almost the same
as those from the manual back-translation, and the
distances by the n-best generation were not. This
result verifies that the generation by sampling in-
creases the diversity of the synthetic source sen-
tences.

5 Application to Self-Training Using
Parallel Corpora

In this paper, we enhanced the encoder and atten-
tion using target monolingual corpora. Our pro-
posed method can be applied to a self-training
method only using parallel corpora. Specifically,
we train a back-translator using a given parallel
corpus, and the target side of the parallel corpus
is translated into the source. Then, the original
and synthetic parallel corpora are mixed. We fi-
nally train the forward translator using this corpus
to enhance the encoder.
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# of Source Sentences BLEU
1 (Manual Bitexts Only) 31.05

2 (Manual Bitexts + 1 Syn. Sentence) 31.29
4 (Manual Bitexts + 3 Syn. Sentences) 31.65
6 (Manual Bitexts + 5 Syn. Sentences) 31.75
8 (Manual Bitexts + 7 Syn. Sentences) 32.25
10 (Manual Bitexts + 9 Syn. Sentences) 32.28

Table 5: The effect of self-training (En-Ja transla-
tion)

5.1 Settings

We confirm whether the quality can be improved
from the upper-bound of the experiments in Sec-
tion 4.

The experimental settings were the same as
those of Section 4 except for the corpora. We
considered the mixture of the base and GCP cor-
pora (including the manual back-translation) in
Table 2 as the original parallel corpus, with 1.95M
sentences. The monolingual corpus was the tar-
get side of the entire parallel corpus. The back-
translator generated nine synthetic source sen-
tences, and they were randomly filtered. The orig-
inal and synthetic parallel corpora were concate-
nated to train the forward translator. Namely, the
number of source sentences per target sentence
was at most ten.

In this experiment, we used the learning rate η
for the original parallel corpus and η/N for the
synthetic parallel corpus, where N denotes the
number of synthetic source sentences per target
sentence. The learning rate was η = 0.5, which
means 1.0 for a target sentence in total.

5.2 Results

Table 5 shows the BLEU scores in the En-Ja trans-
lation according to the number of source sen-
tences. Similar to the results in Section 4, the
BLEU scores increased along with the increase in
the number of source sentences. When we added
nine synthetic source sentences, the BLEU score
was improved by +1.23 points in comparison to
the manual bitext only. Therefore, by increasing
the diversity of the manual translation using syn-
thetic sentences, we can further enhance the en-
coder and attention.

6 Conclusions

In this paper, we enhanced the encoder and atten-
tion by using multiple synthetic source sentences,
in which target monolingual corpora were trans-

lated by sampling. During the training, we used
different learning rates for the base and synthetic
parallel corpora to avoid overfitting to the syn-
thetic corpus. As a result, the translation qual-
ity was improved by increasing the number of
synthetic source sentences for a given target sen-
tence, and the quality approached that of the man-
ual back-translation. In addition, we confirmed the
generation by sampling synthesized diverse source
sentences and consequently improved the transla-
tion quality in comparison with the n-best genera-
tion. We also attempted some filtering methods on
the synthetic source sentences to obtain improved
parallel sentences, but we could not confirm their
effectiveness in our experiments.

Our future work is to clarify the other con-
ditions where the proposed method is effective,
such as the relationship between qualities of the
backward and forward translations, experiments
on public data sets, and comparison with the num-
ber of synthetic sentences and monolingual cor-
pus size at the same training time. In addition, we
plan to consider other applications, such as apply-
ing our methods to smaller parallel corpora and
using source monolingual corpora.
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Abstract

It is common practice to adapt machine
translation systems to novel domains, but
even a well-adapted system may be able
to perform better on a particular document
if it were to learn from a translator’s cor-
rections within the document itself. We
focus on adaptation within a single docu-
ment – appropriate for an interactive trans-
lation scenario where a model adapts to a
human translator’s input over the course
of a document. We propose two meth-
ods: single-sentence adaptation (which
performs online adaptation one sentence at
a time) and dictionary adaptation (which
specifically addresses the issue of trans-
lating novel words). Combining the two
models results in improvements over both
approaches individually, and over base-
line systems, even on short documents.
On WMT news test data, we observe an
improvement of +1.8 BLEU points and
+23.3% novel word translation accuracy
and on EMEA data (descriptions of med-
ications) we observe an improvement of
+2.7 BLEU points and +49.2% novel word
translation accuracy.

1 Introduction

The challenge of adapting to a new domain is a
well-studied problem in machine translation re-
search. But even within a particular domain,
each new document may pose unique challenges
due to novelty of vocabulary, word senses, style,
and more.1 It stands to reason that fine-grained
adaptation using sentences from within a docu-
ment (for example, as it is being translated by

∗These authors contributed equally to this work.
1Carpuat et al. (2012) decompose errors into seen, sense,

score, and search; the first two are most relevant to our work.

a human translator in a computer aided transla-
tion (CAT) environment) could provide the added
benefit of a closer in-domain match than existing
approaches that use data from other documents
within the same domain. We propose two com-
plementary approaches to the treatment of novel
words and fine-grained document-level adaptation
of machine translation systems, and show that
the combination of approaches outperforms each
approach individually, resulting in BLEU point
improvements of +1.8 and +2.7 across two do-
mains, in addition to demonstrating improvements
in novel word translation accuracy.

As Carpuat (2009) observed, there is a tendency
for translators to produce translations such that the
“one translation per discourse” hypothesis holds
within a particular document.2 That is, human
translators tend to prefer consistent translations of
individual terms throughout a document. Other
work on “translationese” has also found that trans-
lations show regularities in syntax and punctua-
tion (Baroni and Bernardini, 2005). Thus, even
expanding beyond words with multiple senses, we
expect that learning from the translator’s lexical,
syntactic, and stylistic choices at the beginning of
a document should result in a well-tailored sys-
tem that is better at translating subsequent sen-
tences. We can think of fine-grained adaptation
over a document as producing a document-specific
machine translation system that encodes or high-
lights document context.

Continued training of neural machine transla-
tion (NMT) systems has been shown to be an ef-
fective and efficient way to tune them for a specific
target domain (Luong and Manning, 2015). One
such technique is incremental updating – compar-
ing the system’s predicted translation of an input
sentence to a reference translation and then updat-

2This work follows from “one sense per discourse” (Gale
et al., 1992), which found that the vast majority of polyse-
mous words share only one sense within a given document.
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Source Reference Baseline MT Output
Ambirix (Ambi/rix) Ambirix (Ambi/rix) Hampshire, Glaurix, Tandemrix, ...
Prepandemic (Prep/an/demic) Präpandemischer (Prä/pandem/ischer) Proteasehemmer
Cataplexy (Cat/ap/lex/y) Kataplexie (Kat/ap/lex/ie) Cataplexy
hormone-dependent (hormon/e-/dependent) hormonabhängig (hormon/abhängig) hormonell

Table 1: Examples of novel words and their mistranslations. The subword segmentation (in parentheses)
is indicated by “/” for the source and reference.

ing the model parameters to improve future pre-
dictions. Though this is typically done in batches
during training, a single sentence pair or even a
word and its translation can be treated as a train-
ing instance.

Computer aided translation provides an ideal
use case for exploring model adaptation at such
a fine granularity. As a human translator works,
each sentence that they translate (or each novel
word for which they provide a translation) can
then be used as a new training example for a neu-
ral machine translation system. In an interactive
translation setting or a post-editing scenario, rapid
incremental updating of the neural model will al-
low the neural system to adapt to an individual
translator, a particular new domain, or novel vo-
cabulary over the course of a document.

In an open-vocabulary NMT system that uses
byte-pair encoding (Sennrich et al., 2016b), to-
kens that were never seen in training data are rep-
resented as sequences of known subword units.
These may sometimes be successfully translated
(or copied, subword by subword, when appropri-
ate) on the first try, but sometimes systems gen-
erate incorrect translations or even nonsensical
words. Table 1 shows example mistranslations of
novel words.

We test our two complementary approaches to
document-level NMT adaptation (dictionary train-
ing and single-sentence adaptation) on two very
different domains: news and formal descriptions
of medications, each of which provide their own
challenges. In our datasets, just under 80% of
news documents and just over 90% of medical
documents contain at least one word that was un-
observed in the training data. In the news docu-
ments, 12.8% of lines contain at least one novel
word, whereas in the medical data, 38.3% of lines
contain at least one novel word. We show that
models can learn to correctly translate novel vo-
cabulary items and can adapt to document-specific
terminology usage and style, even in short docu-
ments.

2 Related Work

This work relates closely to three lines of re-
search on neural machine translation models: rare
word translation, copying mechanisms, and do-
main adaptation. Concerns about rare words and
copying mechanisms are closely linked; words
that need to be copied (or nearly copied) are of-
ten proper names or technical vocabulary, which
may be infrequent or unobserved in training data.

Arthur et al. (2016) propose to improve the
translation of rare (low-frequency) content words
through the use of translation probabilities from
discrete lexicons. Nguyen and Chiang (2018)
propose to train a feed-forward neural network
to generate a target word based directly on a
source word. Both then weight these probabili-
ties using the attention mechanism and combine
them with the standard translation approach. Gu
et al. (2016) propose a (monolingual) sequence-
to-sequence model, COPYNET, that can select in-
put sequences to copy to the output within the
course of generating a single sequence. All of
these approaches require modifications to the neu-
ral network architecture. Additionally, some re-
quire knowledge of the rare words during training,
meaning they are inapplicable to novel words.

By modifying the available training data rather
than the neural architecture, Currey et al. (2017)
find that training a neural machine translation sys-
tem to do both translation and copying of target
language text improves results on low-resource
neural machine translation and learns to pass un-
translated words through to the target. They
do this by mixing monolingual target data (as
source-target pairs) with parallel training data. In
contrast, Khayrallah and Koehn (2018) find that
this dramatically hurts performance (in a higher-
resource setting). Ott et al. (2018) provide addi-
tional analysis of copying behavior. Fadaee et al.
(2017) propose to learn better translations of rare
words by generating new sentences that include
them to add to the training data.

Domain adaptation has long been an area of in-
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terest for researchers in the machine translation
community and is relevant both to the translation
of new words and to more general improvements
in translation quality. Recent work (Freitag and
Al-Onaizan, 2016; Luong and Manning, 2015) has
proposed to do domain adaptation for NMT sys-
tems by training a general system then fine-tuning
by continuing to train using only in-domain data
(typically a smaller dataset). Wang et al. (2017)
present a similar approach where they weight each
source-target sentence pair during training based
on scores from in-domain and out-of-domain lan-
guage models. Kobus et al. (2017) use special
tokens to indicate domain. Chu et al. (2017)
compare the approaches. These approaches typ-
ically use larger amounts of in-domain data to
do adaptation, far greater than the amounts that
might be available in a CAT setting. Cettolo et al.
(2014) proposed adapting statistical phrase-based
machine translation systems to particular projects
(multiple documents) and Peris and Casacuberta
(2018) propose adapting neural machine transla-
tion systems in CAT settings. Neither explore very
small amounts of data at the sub-document level.

Two recent papers have tried a domain adapta-
tion approach using very small data sizes, ranging
from 1 sentence to 128 sentences (Farajian et al.,
2017; Li et al., 2016). They adapt models for
new sentences by training on sentence pairs from
a training corpus (or translation memory) that are
similar to the new sentence, which means they
cannot adapt to novel vocabulary.

3 Approaches

We propose two complementary approaches for
adapting an NMT model over the course of a sin-
gle document’s translation and the combination of
the two. For each approach, adaptation is done at
a document level and the model is reset to baseline
between documents.3

3.1 Single-Sentence Adaptation
In this approach, the model is iteratively adapted
over the previous translated sentence (and its refer-
ence), then the updated model is used to translate
the next sentence. Thus, line n of the document
is translated by a model which has been incremen-
tally adapted to all previous lines (1 through n−1)

3In cases where the domain is fairly homogeneous, it
may be beneficial not to reset the model between documents,
while in heterogeneous domains it may be desirable to do so
always. We leave this issue to future work.

of the document. See Algorithm 1 for details.
Such an approach could be applied in a computer
aided translation tool, which would allow the ma-
chine translation system to adapt to translator cor-
rections as produced by post-editing or through an
interactive translation prediction interface (Wue-
bker et al., 2016; Knowles and Koehn, 2016).
Single-sentence adaptation allows the model to
learn the translator’s preferred translations, which
may be specific to the particular document. For ex-
ample, the system might initially produce a valid
translation for a word in the document, while the
translator prefers an alternate translation; after
single-sentence adaptation, the system can learn to
produce the translator’s preferred translation in fu-
ture sentences.

Algorithm 1 Single-Sentence Adaptation
1: M : Baseline Model
2: D : Set of Documents
3: for d ∈ D do
4: . ref : reference translation of d
5: . mi : model trained through ith sentence
6: . di : ith line in d
7: . refi : ith line in ref
8: result← {}
9: m0 ←M

10: for i← 1, NUMLINES(d) do
11: resulti ← INFER(mi−1, di)
12: mi ← ADAPT(mi−1, (di, refi))
13: end for
14: baseHyp← INFER(M,d)
15: baseScore← BLEU(baseHyp, ref)
16: adaptScore← BLEU(result, ref)
17: end for
18: . We compare baseScore and adaptScore

3.2 Dictionary Training
This approach aims to adapt models with the spe-
cific goal of better translating novel words. Given
a new document to translate, we identify words
that are novel (have not appeared in any training or
adaptation data). Next, we obtain a single transla-
tion for each of these words (in a computer aided
translation setting, this might consist of asking a
human translator to provide translations; along the
lines of terminology curation). In this work, we
simulate the collection of such dictionaries (or ter-
minology banks) using the reference. We then
treat the list of novel words and their respective
translations as bitext and continue model training,
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producing a model specifically adapted to this doc-
ument’s novel vocabulary, which we can then use
to decode the complete document. Note that this
is a very small bitext to train on, and each line of
the bitext contains a single word (segmented into
multiple tokens by byte-pair encoding).

To simulate a translator-produced dictionary,
we build a dictionary of novel word translations
from the source and reference. First we run fast-
align (Dyer et al., 2013) over the byte-pair en-
coded representations of the source and reference
sentences.4 The target-side token whose subword
segments most frequently align to the subword
segments of the source-side token is selected as a
candidate translation, and a single final translation
is selected based on the most common candidate
translation within the document.5

3.3 Single-Sentence Adaptation with
Dictionary Training

Dictionary training and sentence adaptation offer
distinct benefits when adapting over a document.
Dictionary training helps the model learn the right
translations for novel words and single-sentence
adaptation can provide a more general adaptation.
The latter can also learn correct translations of re-
peated novel words, but may require multiple in-
stances to do so. Doing dictionary adaptation be-
forehand could ensure that the novel terminology
is correctly and consistently translated from the
beginning of the document, which could elimi-
nate a pain point for human translators. In this
combined approach, we begin with the document’s
dictionary trained model and use that as the initial
model for single-sentence adaptation.

4 Data and Models

We use two distinct datasets and baseline models
to evaluate our approaches, translating from En-
glish into German. We evaluate on WMT news
data and EMEA medical data using baseline WMT
and EMEA domain adapted models, respectively.
The different domains (news vs. medical) allow us
to evaluate our approaches in different scenarios.

4The fast-align model is trained over the byte-pair en-
coded representations of the full training data: WMT data,
backtranslations released by Sennrich et al. (2016b), and
EMEA data used for adaptation.

5Note that, particularly for words with morphological
variants in the target language, there may have been more
than one correct translation. We account for this in evalua-
tion, but only train on one translation option.

4.1 WMT

WMT Data: We test on the full WMT 2017 news
translation test set, splitting it into 130 unique doc-
uments (derived from the document splits in the
original SGM file). Each document is a short news
story. These stories are drawn from a number of
news sources, covering a wide range of topics.
While all documents are in the “news” domain,
this is a fairly heterogeneous dataset. The docu-
ments range in length from 2 to 64 lines, with an
average length of 22.1 lines (median 20).

We used the first 20 documents from the 2016
WMT news translation test set as a development
set for selecting training parameters for dictionary
training experiments, and a subset of 8 of these
documents for selecting parameters for the single-
sentence training experiments. The development
set documents had a similar range of lengths (3
lines to 62 lines, with an average of 19.0).

The number of novel word types per document
in our test set ranged from 0 (no novel words; no
dictionary adaptation) to 15 novel words. There
are 295 novel types (across all documents com-
bined) and 442 novel tokens. Across the test set,
12.8% of lines contain at least one novel word. In
some cases, up to 75% of the lines within a single
document contain at least one novel word.

WMT Baseline Model: We use a publicly avail-
able English-German model.6 The model is
trained using Nematus (Sennrich et al., 2017) on
the WMT parallel text, supplemented by synthetic
back-translated data as described in Edinburgh’s
WMT 2016 submission (Sennrich et al., 2016a).
They use byte-pair encoding (Sennrich et al.,
2016b) to allow for (near) open-vocabulary NMT.
The model uses 512 length word-embeddings with
an hidden layer size of 1024. As this was trained
for the 2016 WMT evaluation, both the 2016 and
2017 test sets can be safely used for development
and testing, respectively, as they were not included
in training data.

4.2 EMEA

EMEA Data: We use a subset7 of the European
Medicines Agency (EMEA) parallel corpus.8 It
consists of sentence-aligned documents focusing

6data.statmt.org/rsennrich/wmt16 systems
7We select only those documents labeled as “humandocs”

and filter out documents that contain only or primarily highly-
repetitive dosage information.

8http://opus.lingfil.uu.se/EMEA.php
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on medical products (Tiedemann, 2009). The cor-
pus contains high levels of domain-specific termi-
nology and repetition, making it appropriate for
this task. Each document describes a new medica-
tion, meaning that new documents contain novel
vocabulary. The medication name is typically re-
peated frequently within the document. Other
novel vocabulary items include highly-specific
medical terminology; these tend to appear fewer
times within the document.

We divide the documents into training, develop-
ment, and test sets such that all documents about
a particular medication are in the same set. Thus
most novel medication names in the development
and test data will have been unobserved in the
training data. We use four splits of the data: 500
document pairs (375K sentence pairs) for training
a baseline EMEA-adapted model, 22 document
pairs (5K sentence pairs) as validation for that
training, 5 document pairs (285 sentence pairs) for
a small grid search over parameters, and 47 docu-
ments (2,755 sentence pairs) for testing.

Test documents ranged in length from 48 lines
to 95 lines. In general, the EMEA documents
have a greater variation in length than this (with
some having 1000 or more lines). For data with
200 or more lines, considerable BLEU improve-
ments have been documented with online adapta-
tion and continued training. However, we seek to
demonstrate that adaptation can be done with even
shorter documents, and so focus this test set on
documents with fewer than 100 lines.

The number of novel types per document in our
test set ranged from 0 (no novel words; no dic-
tionary adaptation) to 10 novel words. There are
a total of 151 novel types (all documents com-
bined) and 1,129 novel tokens. Across the test set,
38.3% of lines contain at least one novel word.
In some cases, up to 63.5% of the lines within a
single document contain at least one novel word.
Some novel word types occurred more than 30
times within a single document.

EMEA Baseline Model: The WMT model is
trained on data which is significantly different
from the EMEA data’s medical domain. We see
considerable differences including vocabulary and
sentence lengths. If we were to use the unadapted
WMT model as our baseline, we might expect
high gains from very small amounts of data due to
the domain differences. Instead, in order to deter-
mine what marginal gains are possible in a real-life

use scenario where a client already has access to
a domain-specific model, we first adapt the WMT
model on the EMEA train data so that it is familiar
with the general style and vocabulary of the new
dataset. Thus, improvements are attributable to
document-specific adaptation rather than general
domain adaptation.

We use the 375K sentence pair training set,
validating on the 5K sentence pair development
set, to perform continued training (Freitag and Al-
Onaizan, 2016; Luong and Manning, 2015). We
use the same subword vocabulary and preprocess-
ing pipeline as the WMT model. We clip sentence
lengths to 50 tokens and train with a batch size of
80 over 15 epochs. We use a learning rate of 0.001
with the Adam optimizer (Kingma and Ba, 2014).

While training, external validation is done every
1,000 batches and models are saved accordingly.
We choose the model that gives the best validation
score over the development set. Results are con-
sistent with prior work: performance on the new
domain peaks around the first few epochs and then
tails off (Freitag and Al-Onaizan, 2016; Luong and
Manning, 2015).

The performance of the baseline WMT model
on the EMEA development set gives a BLEU
score of 18.2. Our best adapted model gives a
BLEU of 51.5. With over 30 points increase in
BLEU, the adapted model is well-tuned to the
EMEA corpus. We use this adapted model as the
baseline for further document-level adaptation.

5 Experiments

The two domains and their respective baseline
models provide us two distinct scenarios to eval-
uate our methodology. Both simulate a relatively
data-rich realistic setting in which translators have
completed translations of in-domain data and con-
tinue to work on new documents (with novel ter-
minology) within that domain. Each domain pro-
vides its own challenges: the WMT data covers a
wide range of topics and sources of news stories,
while the EMEA data includes highly technical
medical vocabulary, presented in fairly consistent
ways. Due to the way our EMEA data splits were
produced, this in particular means that the new
EMEA documents will likely contain novel vo-
cabulary (such as names of medications and other
specific terminology). Similarly, we expect news
stories to cover new names, locations, and more as
news breaks over time.
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Source Breast-feeding should be stopped while taking Siklos .
Reference Das Stillen sollte während der Behandlung mit Siklos eingestellt werden .
Baseline Während der Einnahme von Xenlos sollte abgestillt werden .
Dict.-Adapt. Während der Einnahme von Siklos sollte abgestillt werden .
Single-Sent.-Adapt. Während der Behandlung mit Ivlos sollte abgestillt werden .
Dict.+Single-Sent.-Adapt. Während der Behandlung mit Siklos sollte abgestillt werden .

Table 2: Complementary nature of two approaches: single-sentence approach learns the preferred trans-
lation of “while taking” (“Während der Behandlung”), but mistranslates Siklos as Ivlos. Dictionary
training produces Siklos correctly, but makes no other changes. Combined, the overall translation is
improved, though it would still require post-editing for correctness.

5.1 Single-Sentence Adaptation Experiments

For hyperparameter optimization, we did a com-
plete grid search over a span of learning rates (0.1,
0.01, 0.001, 0.0001, 0.00001), train epochs (1, 5,
10, 20), and optimizers (Adam, SGD) on WMT
data and a partial search on EMEA data. We use
BLEU (Papineni et al. (2002)) to measure the ef-
fect of adaptation. We found the optimum con-
figurations (optim, lr, epochs) of (SGD, 0.01,
5) for EMEA9 and (SGD, 0.1, 20) for WMT.
The difference in optimum configurations can be
partly attributed to the different domains of the
two datasets. We note that the best EMEA con-
figuration matched the second-best WMT one.

5.2 Dictionary Training Experiments

For the EMEA dictionary experiments, we com-
pleted a grid search over number of epochs (1, 2, 5,
10) and learning rate (0.1, 0.5, 1.0) using SGD as
the optimizer.10 Finding consistent results, we ran
a smaller grid search (epochs: 2 and 5 and learn-
ing rates 0.1, 0.5, and 1.0) over a development
set of the first 20 documents from WMT 2016.
Setting the learning rate and/or number of epochs
too low resulted in minimal changes, while setting
them too high resulted in pathological overfitting
(loops of repeated tokens, etc.). Based on these
initial experiments, we set a learning rate of 0.5
for both data sets, with 5 epochs for EMEA data
and 2 epochs for WMT data. The parameters cho-
sen were those that maximized BLEU score on the
development sets.

5.3 Lexically Constrained Decoding
Experiments

We compare our dictionary training approach
against an approach that uses the same dictionaries

9During hyperparameter selection, document lengths
were clipped to the first 60 lines.

10We also considered lower learning rates (0.01, 0.001,
0.0001), but found that they did not result in much, if any,
change to the model.

Model BLEU Nov. Acc.
EMEA-Adapt. Baseline 51.1 39.9%

Single-Sent. Adapt. 52.8 62.3%
Lex. Const. Decoding 50.4 86.5%
Dictionary Training 53.3 87.9%
Dict. + Single-Sent. 53.8 89.1%

Table 3: Results of baseline and dictionary train-
ing across the full set of EMEA test documents.
Accuracy is computed for novel words only.

and enforces a lexical constraint: if one of the dic-
tionary entries appears in the source, its translation
(acquired as described in Section 3.2) must ap-
pear in the translated output. We do this using the
grid beam search approach described in Hokamp
and Liu (2017). Rather than adapting the underly-
ing machine translation model, this approach con-
strains the search space to translations containing
specified sub-sequences (in this case, the byte-pair
encoded representations of the translation of any
words from the dictionary which appears in the
source sentence). We use the publicly released im-
plementation for Nematus, with a beam size of 12.

5.4 Single Sentence Adaptation with
Dictionary Training Experiments

Here we combine the approaches: for every doc-
ument, we first do dictionary training. Using
that as the starting point, we perform single sen-
tence adaptation. We use the best hyperparame-
ters obtained from the grid search for the individ-
ual methods.

6 Results & Analysis

We evaluate on two metrics. First, we compute
BLEU over the full set of test documents and com-
pare against the baseline translations. Across both
domains, single-sentence adaptation provides con-
sistent improvements in BLEU score (1.6 BLEU
points on WMT data and 1.7 BLEU points on
EMEA data). The dictionary training approach
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Model BLEU Nov. Acc.
WMT Baseline 25.1 48.9%

Single-Sent. Adapt. 26.7 58.4%
Lex. Const. Decoding 25.0 76.9%
Dictionary Training 25.1 71.7%
Dict. + Single-Sent. 26.9 72.2%

Table 4: Results of baseline and dictionary train-
ing across the full set of WMT test documents.
Accuracy is computed for novel words only.

has more varied results. We see no clear improve-
ment on the WMT data, but training on these small
dictionaries does not hurt BLEU score overall.
However, for the EMEA data, dictionary training
produces a 2.2 BLEU point improvement. This
gain can be primarily attributed to producing cor-
rect translations of the novel vocabulary, which
can make a large difference in n-gram matches.11

The lexically constrained decoding approach re-
sults in a decrease in BLEU score on both do-
mains. Combining both dictionary training and
single-sentence adaptation results in modest im-
provements (0.2 on WMT and 0.5 on EMEA) over
the best single approach for each domain. Full re-
sults are shown in Tables 3 and 4. The combined
approach produces improvements over the base-
line for 79.2% of the WMT documents and 83.0%
of the EMEA documents.

Figure 1 shows difference in BLEU produced
by single-sentence adaptation as compared to the
baseline on EMEA data. The overall trend is a net
improvement in BLEU which shows up as early as
10 sentences from the start.

We also observe qualitative results that sug-
gest that single-sentence adaptation is perform-
ing as expected, learning document- or translator-
specific translations. For example, the baseline
WMT system initially translates the English bi-
gram “delicate operation” as “delikater Betrieb”
while the reference translation prefers “heikle
Tätigkeit” as the translation. In the next sentence
in which “delicate operation” is observed, the
sentence-adapted model successfully translates it
as “heikle Tätigkeit” instead. Table 2 shows an-
other example in which the two approaches com-
bine to produce improvements.

We also compute accuracy for the translations
of novel words. To compute accuracy, we first run

11Consider the case of the baseline translation Was ist
AFluntis ? and the (correct) dictionary-adapted version Was
ist Aflunov ? – the former contains no 4-gram matches.

Figure 1: The X-axis shows the number of sen-
tences to which the model has been adapted. The
Y-axis shows the difference in BLEU score be-
tween this adapted model and the baseline on the
document’s remaining lines. Dotted lines repre-
sent individual documents; the average trend is
shown in bold.

a trained fast-align model over the byte-pair en-
coded source and the byte-pair encoded reference.
We use this alignment to map full tokens from the
source to full tokens in the reference (as was done
for producing the dictionaries). We then align the
source sentence and the machine translation out-
put the same way. For each instance of a novel
word, we score its aligned machine translated to-
ken as correct if it matches the aligned reference
token. The dictionary training approach shows,
as expected, a major jump in translation accuracy.
The single-sentence adaptation approach shows
results between the baseline and the dictionary ap-
proach. Lexically constrained decoding underper-
forms dictionary training on EMEA data (in part
because it sometimes produces medication names
that are concatenated with other subwords, or pro-
duces the medication name more times than re-
quired), while it outperforms other methods on the
WMT data (at a cost to the overall BLEU score,
whereas all other methods produce improvements
in BLEU). Table 3 shows that EMEA improves
from a baseline accuracy of 39.9% to an accu-
racy of 87.9% after dictionary training, and Ta-
ble 4 shows a slightly smaller jump from 48.9%
to 71.7% for WMT. Both show slight improve-
ments after combining single-sentence adaptation
and dictionary training.

With this increase in accuracy comes an in-
crease in consistency of translating the novel
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Model WMT EMEA
Copy Trans. Copy Trans.

Baseline 80.8% 11.3% 41.9% 28.4%
S.-Sent. 87.9% 23.6% 67.2% 32.7%
Dict. 92.5% 47.3% 92.5% 60.5%
Dict. + S. 94.6% 45.8% 92.9% 66.7%

Table 5: Novel word accuracy divided into tokens
to be copied (Copy) vs. translated (Trans.).

words. In the baseline EMEA-adapted model,
the average type-token ratio12 for translations of
novel words that occur at least 3 times (in the
source text) is 0.29. With dictionary adaptation,
this drops to 0.14 – lower than the reference type-
token ration of 0.16 – meaning that the new model
produces the exact translation from the dictionary
even when a variant (e.g. different case ending)
may be appropriate. As we use only one transla-
tion per novel source token in the dictionaries used
for training, the model overfits slightly. This issue
could potentially be alleviated by training on mul-
tiple translation options, at the risk of introducing
errors from incorrect alignments.

We perform more detailed analysis across two
kinds of novel words: those which should simply
be copied from source to target (e.g. medication
names) and those which must be translated. Ta-
ble 5 shows results for the baseline and our ap-
proaches. WMT data is almost evenly split be-
tween these: 46.8% of novel types (54.1% of to-
kens) must by copied, while EMEA data is skewed
towards words that should be copied, with 51.7%
of novel types (85.7% of tokens). On WMT data,
baseline accuracy of terms to be copied is already
quite high, but accuracy of terms to be translated
is very low. The EMEA baseline has a much
harder time with tokens that should be copied, but
does better on non-copied terms. We hypothe-
size that this may have to do with differences in
the morphological attributes of the novel tokens in
the different datasets (WMT contains many names
of people or places, while EMEA contains many
drug names, which tend to contain character se-
quences not frequent in either source or target
language) or with the contexts in which they ap-
pear. We observe that for many of the medication
names, it takes 10 or more instances of the name
being observed for the single-sentence adaptation

12The number of different machine translation outputs for
the source type, divided by the number of times that source
type appears.

approach alone to successfully learn to copy the
word (if ever). Though there remains a gap be-
tween novel word accuracy on tokens that should
be copied and those that should be translated, our
approaches demonstrate improvements for both
types of novel words.

A concern with training on a dictionary as bi-
text is that the model may overfit to the sentence
length; we do not find that to be the case here, as
the difference between the full hypothesis lengths
is 48,641 tokens for the EMEA-adapted data com-
pared to 48,627 for the dictionary-trained models.
However, this is dependent on choosing the cor-
rect learning rate and number of epochs. Similarly,
there’s a potential concern that single-sentence
training on the previous sentence may cause some
type of overfitting (memorization of the sentence,
etc.). We do not observe that to be the case either.

7 Conclusions and Future Work

We propose two approaches to document-level
adaptation of NMT systems (single-sentence
adaptation, dictionary training) and their combi-
nation, which can be effectively used to improve
performance, both in terms of BLEU score and in
the translation of novel words. Both approaches
have minimal training data requirements, can be
effective applied with an existing NMT architec-
ture, and show considerable improvements even
for short documents.

One area meriting further study is dynamic
adaptation of hyper-parameters based on docu-
ment length or content. During our develop-
ment and test-runs, we found correlations be-
tween hyper-parameter configurations and docu-
ment lengths with some learning rates and train
epochs working better for shorter documents
while some working better for longer ones. We
could foresee dynamically adapting the hyperpa-
rameters based on the overlap between the current
sentence being translated and the remainder of the
document as a possible area of future study. Addi-
tionally, it would be useful to explore these meth-
ods in a user-study, to better determine the trade-
off between improvement and user input required
(such as for dictionary creation).
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Abstract

We examine how various types of noise
in the parallel training data impact the
quality of neural machine translation sys-
tems. We create five types of artificial
noise and analyze how they degrade per-
formance in neural and statistical machine
translation. We find that neural models are
generally more harmed by noise than sta-
tistical models. For one especially egre-
gious type of noise they learn to just copy
the input sentence.

1 Introduction

While neural machine translation (NMT) has
shown large gains in quality over statistical ma-
chine translation (SMT) (Bojar et al., 2017), there
are significant exceptions to this, such as low
resource and domain mismatch data conditions
(Koehn and Knowles, 2017).

In this work, we consider another challenge to
neural machine translation: noisy parallel data. As
a motivating example, consider the numbers in Ta-
ble 1. Here, we add an equally sized noisy web
crawled corpus to high quality training data pro-
vided by the shared task of the Conference on Ma-
chine Translation (WMT). This addition leads to
a 1.2 BLEU point increase for the statistical ma-
chine translation system, but degrades the neural
machine translation system by 9.9 BLEU.

The maxim more data is better that holds true
for statistical machine translation does seem to
come with some caveats for neural machine trans-
lation. The added data cannot be too noisy. But
what kind of noise harms neural machine transla-
tion models?

In this paper, we explore several types of noise
and assess their impact by adding synthetic noise

NMT SMT
WMT17 27.2 24.0
+ noisy corpus 17.3 (–9.9) 25.2 (+1.2)

Table 1: Adding noisy web crawled data (raw
data from paracrawl.eu) to a WMT 2017 German–
English statistical system obtains small gains
(+1.2 BLEU), a neural system falls apart (–9.9
BLEU).

to an existing parallel corpus. We find that for al-
most all types of noise, neural machine translation
systems are harmed more than statistical machine
translation systems. We discovered that one type
of noise, copied source language segments, has a
catastrophic impact on neural machine translation
quality, leading it to learn a copying behavior that
it then exceedingly applies.

2 Related Work

There is a robust body of work on filtering out
noise in parallel data. For example: Taghipour
et al. (2011) use an outlier detection algorithm
to filter a parallel corpus; Xu and Koehn (2017)
generate synthetic noisy data (inadequate and non-
fluent translations) and use this data to train a clas-
sifier to identify good sentence pairs from a noisy
corpus; and Cui et al. (2013) use a graph-based
random walk algorithm and extract phrase pair
scores to weight the phrase translation probabili-
ties to bias towards more trustworthy ones.

Most of this work was done in the context of sta-
tistical machine translation, but more recent work
(Carpuat et al., 2017) targets neural models. That
work focuses on identifying semantic differences
in translation pairs using cross-lingual textual en-
tailment and additional length-based features, and
demonstrates that removing such sentences im-
proves neural machine translation performance.

74



As Rarrick et al. (2011) point out, one prob-
lem of parallel corpora extracted from the web
is translations that have been created by machine
translation. Venugopal et al. (2011) propose a
method to watermark the output of machine trans-
lation systems to aid this distinction. Antonova
and Misyurev (2011) report that rule-based ma-
chine translation output can be detected due to cer-
tain word choices, and statistical machine transla-
tion output due to lack of reordering.

In 2016, a shared task on sentence pair filtering
was organized1 (Barbu et al., 2016), albeit in the
context of cleaning translation memories which
tend to be cleaner than web crawled data. This
year, a shared task is planned for the type of noise
that we examine in this paper.2

Belinkov and Bisk (2017) investigate noise in
neural machine translation, but they focus on cre-
ating systems that can translate the kinds of or-
thographic errors (typos, misspellings, etc.) that
humans can comprehend. In contrast, we address
noisy training data and focus on types of noise oc-
curring in web-crawled corpora.

There is a rich literature on data selection which
aims at sub-sampling parallel data relevant for a
task-specific machine translation system (Axelrod
et al., 2011). van der Wees et al. (2017) find that
the existing data selection methods developed for
statistical machine translation are less effective for
neural machine translation. This is different from
our goals of handling noise since those methods
tend to discard perfectly fine sentence pairs (say,
about cooking recipes) that are just not relevant
for the targeted domain (say, software manuals).
Our work is focused on noise that is harmful for
all domains.

Since we begin with a clean parallel corpus
and potentially noisy data to it, this work can be
seen as a type of data augmentation. Sennrich
et al. (2016a) incorporate monolingual corpora
into NMT by first translating it using an NMT sys-
tem trained in the opposite direction. While such
a corpus has the potential to be noisy, the method
is very effective. Currey et al. (2017) create ad-
ditional parallel corpora by copying monolingual
corpora in the target language into the source, and
find it improves over back-translation for some
language pairs. Fadaee et al. (2017) improve NMT
performance in low-resource settings by altering

1NLP4TM 2016: rgcl.wlv.ac.uk/nlp4tm2016/shared-task
2statmt.org/wmt18/parallel-corpus-filtering.html

Type of Noise Count
Okay 23%
Misaligned sentences 41%
Third language 3%
Both English 10%
Both German 10%
Untranslated sentences 4%
Short segments (≤2 tokens) 1%
Short segments (3–5 tokens) 5%
Non-linguistic characters 2%

Table 2: Noise in the raw Paracrawl corpus.

existing sentences to create training data that in-
cludes rare words in different contexts.

3 Real-World Noise

What types of noise are prevalent in crawled
web data? We manually examined 200 sentence
pairs of the above-mentioned Paracrawl corpus
and classified them into several error categories.
Obviously, the results of such a study depend very
much on how crawling and extraction is executed,
but the results (see Table 2) give some indication
of what noise to expect.

We classified any pairs of German and English
sentences that are not translations of each other as
misaligned sentences. These may be caused by
any problem in alignment processes (at the doc-
ument level or the sentence level), or by forcing
the alignment of content that is not indeed parallel.
Such misaligned sentences are the biggest source
of error (41%).

There are three types of wrong language con-
tent (totaling 23%): one or both sentences may be
in a language different from German and English
(3%), both sentences may be German (10%), or
both languages may be English (10%).

4% of sentence pairs are untranslated, i.e.,
source and target are identical. 2% sentence pairs
consist of random byte sequences, only HTML
markup, or Javascript. A number of sentence pairs
have very short German or English sentences, con-
taining at most 2 tokens (1%) or 5 tokens (5%).

Since it is a very subjective value judgment
what constitutes disfluent language, we do not
classify these as errors. However, consider the fol-
lowing sentence pairs that we did count as okay,
although they contain mostly untranslated names
and numbers.
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DE: Anonym 2 24.03.2010 um 20:55 314 Kom-
mentare
EN: Anonymous 2 2010-03-24 at 20:55 314
Comments
DE: &lt; &lt; erste &lt; zurück Seite 3 mehr
letzte &gt; &gt;
EN: &lt; &lt; first &lt; prev. page 3 next last
&gt; &gt;

At first sight, some types of noise seem to be
easier to automatically identify than others. How-
ever, consider, for instance, content in a wrong
language. While there are established methods for
language identification (typically based on charac-
ter n-grams), these do not work well on a sentence-
level basis, especially for short sentences. Or,
take the apparently obvious problem of untrans-
lated sentences. If they are completely identical,
that is easy to spot — although even those may
have value, such as the list of country names which
are often spelled identical in different languages.
However, there are many degrees of near-identical
content of unclear utility.

4 Types of Noise

The goal of this paper is not to develop methods to
detect noise but to ascertain the impact of different
types of noise on translation quality when present
in parallel data. We hope that our findings inform
future work on parallel corpus cleaning.

We now formally define five types of naturally
occurring noise and describe how we simulate
them. By creating artificial noisy data, we avoid
the hard problem of detecting specific types of
noise but are still able to study their impact.

MISALIGNED SENTENCES As shown above,
a common source of noise in parallel corpora is
faulty document or sentence alignment. This re-
sults in sentences that are not matched to their
translation. Such noise is rare in corpora such
as Europarl where strong clues about debate top-
ics and speaker turns reduce the scale of the task
of alignment to paragraphs, but more common in
the alignment of less structured web sites. We ar-
tificially create misaligned sentence data by ran-
domly shuffling the order of sentences on one side
of the original clean parallel training corpus.

MISORDERED WORDS Language may be dis-
fluent in many ways. This may be the product
of machine translation, poor human translation,
or heavily specialized language use, such as bul-

let points in product descriptions (recall also the
examples above). We consider one extreme case
of disfluent language: sentences from the original
corpus where the words are reordered randomly.
We do this on the source or target side.

WRONG LANGUAGE A parallel corpus may be
polluted by text in a third language, say French
in a German–English corpus. This may occur on
the source or target side of the parallel corpus. To
simulate this, we add French–English (bad source)
or German–French (bad target) data to a German–
English corpus.

UNTRANSLATED SENTENCES Especially in
parallel corpora crawled from the web, there are
often sentences that are untranslated from the
source in the target. Examples are navigational el-
ements or copyright notices in the footer. Purport-
edly multi-lingual web sites may be only partially
translated, while some original text is copied.
Again, this may show up on the source or the tar-
get side. We take sentences from either the source
or target side of the original parallel corpus and
simply copy them to the other side.

SHORT SEGMENTS Sometimes additional data
comes in the form of bilingual dictionaries. Can
we simply add them as additional sentence pairs,
even if they consist of single words or short
phrases? We simulate this kind of data by sub-
subsampling a parallel corpus to include only sen-
tences of maximum length 2 or 5.

5 Experimental Setup

5.1 Neural Machine Translation

Our neural machine translation systems are trained
using Marian (Junczys-Dowmunt et al., 2018).3

We build shallow RNN-based encoder-decoder
models with attention (Bahdanau et al., 2015).
We train Byte-Pair Encoding segmentation mod-
els (BPE) (Sennrich et al., 2016b) with a vocab
size of 50, 000 on both sides of the parallel cor-
pus for each experiment. We apply drop-out with
20% probability on the RNNs, and with 10% prob-
ability on the source and target words. We stop
training after convergence of cross-entropy on the
development set, and we average the 4 highest per-
forming models (as determined by development
set BLEU performance) to use as an ensemble
for decoding (checkpoint assembling). Training of

3marian-nmt.github.io
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each system takes 2–4 days on a single GPU (GTX
1080ti).

While we focus on RNN-based models with at-
tention as our NMT architecture, we note that dif-
ferent architectures have been proposed, including
based on convolutional neural networks (Kalch-
brenner and Blunsom, 2013; Gehring et al., 2017)
and the self-attention based Transformer model
(Vaswani et al., 2017).

5.2 Statistical Machine Translation

Our statistical machine translation systems are
trained using Moses (Koehn et al., 2007).4 We
build phrase-based systems using standard fea-
tures commonly used in recent system submis-
sions to WMT (Haddow et al., 2015; Ding et al.,
2016, 2017). We trained our systems with the
following settings: a maximum sentence length
of 80, grow-diag-final-and symmetrization of
GIZA++ alignments, an interpolated Kneser-Ney
smoothed 5-gram language model with KenLM
(Heafield, 2011), hierarchical lexicalized reorder-
ing (Galley and Manning, 2008), a lexically-
driven 5-gram operation sequence model (OSM)
(Durrani et al., 2013), sparse domain indicator,
phrase length, and count bin features (Blunsom
and Osborne, 2008; Chiang et al., 2009), a max-
imum phrase-length of 5, compact phrase table
(Junczys-Dowmunt, 2012) minimum Bayes risk
decoding (Kumar and Byrne, 2004), cube prun-
ing (Huang and Chiang, 2007), with a stack-size
of 1000 during tuning. We optimize feature func-
tion weights with k-best MIRA (Cherry and Fos-
ter, 2012).

While we focus on phrase based systems as our
SMT paradigm, we note that there are other statis-
tical machine translation approaches such as hier-
archical phrase-based models (Chiang, 2007) and
syntax-based models (Galley et al., 2004, 2006)
that may have better performance in certain lan-
guage pairs and in low resource conditions.

5.3 Clean Corpus

In our experiments, we translate from German to
English. We use datasets from the shared trans-
lation task organized alongside the Conference
on Machine Translation (WMT)5 as clean train-
ing data. For our baseline we use: Europarl

4statmt.org/moses
5statmt.org/wmt17/

(Koehn, 2005),6 News Commentary,7 and the
Rapid EU Press Release parallel corpus. The cor-
pus size is about 83 million tokens per language.
We use newstest2015 for tuning SMT systems,
newstest2016 as a development set for NMT
systems, and report results on newstest2017.

Note that we do not add monolingual data to
our systems since this would make our study more
complex. So, we always train our language model
on the target side of the parallel corpus for that ex-
periment. While using monolingual data for lan-
guage modelling is standard practice in statistical
machine translation, how to use such data for neu-
ral models is less obvious.

5.4 Noisy Corpora
For MISALIGNED SENTENCE and MISORDERED

WORD noise, we use the clean corpus (above) and
perturb the data. To create UNTRANSLATED SEN-
TENCE noise, we also use the clean corpus and
create pairs of identical sentences.

For WRONG LANGUAGE noise, we do not have
French–English and German–French data of the
same size. Hence, we use the EU Bookstore cor-
pus (Skadiņš et al., 2014).8

The SHORT SEGMENTS are extracted from
OPUS corpora (Tiedemann, 2009, 2012; Lison
and Tiedemann, 2016):9 EMEA (descriptions of
medicines),10 Tanzil (religious text),11 Open Sub-
titles 2016,12 Acquis (legislative text),13 GNOME
(software localization files),14 KDE (localization
files), PHP (technical manual),15 Ubuntu (local-
ization files),16 and Open Office.17 We use only
pairs where both the English and German seg-
ments are at most 2 or 5 words long. Since this re-
sults in small data sets (2 million and 15 tokens per
language, respectively), they are duplicated multi-
ple times.

We also show the results for naturally occurring
noisy web data from the raw 2016 ParaCrawl cor-
pus (deduplicated raw set).18

6statmt.org/europarl
7casmacat.eu/corpus/news-commentary.html
8opus.nlpl.eu/EUbookshop.php
9opus.nlpl.eu

10emea.europa.eu
11tanzil.net/trans
12opensubtitles.org
13ec.europa.eu/jrc/en/language-technologies/jrc-acquis
14l10n.gnome.org
15se.php.net/download-docs
16translations.launchpad.net
17openoffice.org
18paracrawl.eu
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We sample the noisy corpus in an amount equal
to 5%, 10%, 20%, 50%, and 100% of the clean
corpus. This reflects the realistic situation where
there is a clean corpus, and one would like to add
additional data that has the potential to be noisy.
For each experiment, we use the target side of the
parallel corpus to train the SMT language model,
including the noisy text.

6 Impact on Translation Quality

Table 3 shows the effect of adding each type
of noise to the clean corpus.19 For some types
of noise NMT is harmed more than SMT: MIS-
MATCHED SENTENCES (up to -1.9 for NMT, -0.6
for SMT), MISORDERED WORDS (source) (-1.7
vs. -0.3), WRONG LANGUAGE (target) (-2.2 vs.
-0.6).

SHORT SEGMENTS, UNTRANSLATED

SOURCE SENTENCES and WRONG SOURCE

LANGUAGE have little impact on either (at most
a degradation of -0.7). MISORDERED TARGET

WORDS decreases BLEU scores for both SMT
and NMT by just over 1 point (100% noise).

The most dramatic difference is UNTRANS-
LATED TARGET SENTENCE noise. When added at
5% of the original data, it degrades NMT perfor-
mance by 9.6 BLEU, from 27.2 to 17.6. Adding
this noise at 100% of the original data degrades
performance by 24.0 BLEU, dropping the score
from 27.2 to 3.2. In contrast, the SMT system only
drops 2.9 BLEU, from 24.0 to 21.1.

6.1 Copied output

Since the noise type where the target side is a copy
of the source has such a big impact, we examine
the system output in more detail.

We report the percent of sentences in the eval-
uation set that are identical to the source for the
UNTRANSLATED TARGET SENTENCE and RAW

CRAWL data in Figures 1 and 2 (solid bars). The
SMT systems output 0 or 1 sentences that are ex-
act copies. However, with just 20% of the UN-
TRANSLATED TARGET SENTENCE noise, 60% of
the NMT output sentences are identical to the
source.

This suggests that the NMT systems learn to
copy, which may be useful for named entities.
However, with even a small amount of this data
it is doing far more harm than good.

19We report case-sensitive detokenized BLEU (Papineni
et al., 2002) calculated using mteval-v13a.pl.
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Figure 1: Copied sentences in the UNTRANS-
LATED (TARGET) experiments. NMT is the left
green bars, SMT is the right blue bars. Sentences
that are exact matches to the source are the solid
bars, sentences that are more similar to the source
than the target are the shaded bars.
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Figure 2: Copied sentences in the RAW CRAWL ex-
periments. NMT is the left green bars, SMT is the
right blue bars. Sentences that are exact matches
to the source are the solid bars, sentences that are
more similar to the source than the target are the
shaded bars.
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5% 10% 20% 50% 100%
MISALIGNED SENTENCES 26.5 24.0

-0.7 -0.0
26.5 24.0

-0.7 -0.0
26.3 23.9

-0.9 -0.1
26.1 23.9

-1.1 -0.1
25.3 23.4

-1.9 -0.6

MISORDERED WORDS
(SOURCE)

26.9 24.0

-0.3 -0.0
26.6 23.6

-0.6 -0.4

26.4 23.9

-0.8 -0.1
26.6 23.6

-0.6 -0.4

25.5 23.7

-1.7 -0.3

MISORDERED WORDS
(TARGET)

27.0 24.0
-0.2 -0.0

26.8 24.0

-0.4 -0.0
26.4 23.4

-0.8 -0.6

26.7 23.2

-0.5 -0.8

26.1 22.9

-1.1 -1.1

WRONG LANGUAGE
(FRENCH SOURCE)

26.9 24.0

-0.3 -0.0
26.8 23.9

-0.4 -0.1
26.8 23.9

-0.4 -0.1
26.8 23.9

-0.4 -0.1
26.8 23.8

-0.4 -0.2

WRONG LANGUAGE
(FRENCH TARGET)

26.7 24.0

-0.5 -0.0
26.6 23.9

-0.6 -0.1
26.7 23.8

-0.5 -0.2
26.2 23.5

-1.0 -0.5

25.0 23.4

-2.2
-0.6

UNTRANSLATED
(ENGLISH SOURCE)

27.2 23.9
-0.0 -0.1

27.0 23.9
-0.2 -0.1

26.7 23.6

-0.5 -0.4

26.8 23.7

-0.4 -0.3

26.9 23.5

-0.3 -0.5

UNTRANSLATED
(GERMAN TARGET)

17.6 23.8

-9.8

-0.2
11.2 23.9

-16.0

-0.1
5.6 23.8

-21.6

-0.2
3.2 23.4

-24.0

-0.6

3.2 21.1

-24.0

-2.9

SHORT SEGMENTS
(max 2)

27.1 24.1
-0.1 +0.1

26.5 23.9

-0.7 -0.1
26.7 23.8

-0.5 -0.2

SHORT SEGMENTS
(max 5)

27.8 24.2
+0.6 +0.2

27.6 24.5
+0.4 +0.5

28.0 24.5
+0.8 +0.5

26.6 24.2

-0.6 +0.2

RAW CRAWL DATA 27.4 24.2
+0.2 +0.2

26.6 24.2

-0.6 +0.2
24.7 24.4

-2.5
+0.4

20.9 24.8

-6.3

+0.8
17.3 25.2

-9.9

+1.2

Table 3: Results from adding different amounts of noise (ratio of original clean corpus) for various types
of noise in German-English Translation. Generally neural machine translation (left green bars) is harmed
more than statistical machine translation (right blue bars). The worst type of noise are segments in the
source language copied untranslated into the target.
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Figure 3: Learning curves for the NMT UN-
TRANSLATED TARGET SENTENCE experiments.

Figures 1 and 2 show the percent of sentences
that have a worse TER score against the reference
than against the source (shaded bars). This means
that it would take fewer edits to transform the sen-
tence into the source than it would to transform it
into the target. When just 10% UNTRANSLATED

TARGET SENTENCE data is added, 57% of the sen-
tences are more similar to the source than to the
reference, indicating partial copying.

This suggests that the NMT system is overfit-
ting the copied portion of the training corpus. This
is supported by Figure 3, which shows the learning
curve on the development set for the UNTRANS-
LATED TARGET SENTENCE noise setup. The per-
formance for the systems trained on noisy corpora
begin to improve, before over-fitting to the copy
portion of the training set. Note that we plot the
BLEU performance on the development set with
beam search, while the system is optimizing cross-
entropy given a perfect prefix.

Other work has also considered copying in
NMT. Currey et al. (2017) add copied data and
back-translated data to a clean parallel corpus.
They report improvements on EN ↔ RO when
adding as much back-translated and copied data
as they have parallel (1:1:1 ratio). For EN↔TR
and EN↔DE, they add twice as much back trans-
lated and copied data as parallel data (1:2:2 ra-
tio), and report improvements on EN↔TR but
not on EN↔DE. However, their EN↔DE sys-
tems trained with the copied corpus did not per-
form worse than baseline systems. Ott et al.
(2018) found that while copied training sentences
represent less than 2.0% of their training data

(WMT 14 EN↔DE and EN↔FR), copies are
over-represented in the output of beam search. Us-
ing a subset of training data from WMT 17, they
replace a subset of the true translations with a copy
of the input. They analyze varying amounts of
copied noise, and a variety of beam sizes. Larger
beams are more effected by this kind of noise;
however, for all beam sizes performance degrades
completely with 50% copied sentences.20

6.2 Incorrect Language output

Another interesting case is when a German–
French corpus is added to a German–English cor-
pus (WRONG TARGET LANGUAGE). Both neural
and statistical machine translation are surprisingly
robust, even when these corpora are provided in
equal amounts.

We performed a manual analysis of the neu-
ral machine translation experiments. For the each
of the noise levels, we report the percentage of
NMT output sentences in French (out of of 3004:
5%: 0.20%, 10%: 0.60%, 20%: 1.7%, 50%:
3.3%, 100%: 6.7%. Most NMT output sentences
were either entirely French or English, with the
exception of a few mis-translated cognates (e.g.:
‘façade’, ‘accessibilité’).

In the SMT experiment with 100% noisy data
added, there are a couple of French words in
mostly English sentences. These are much less
frequent than unknown German words passed
through. Only 1 sentence is mostly French.

It is surprising that such a small percentage of
the output sentences were French, since up to half
of the target data in training was in French. We at-
tribute this to the domain of the added data differ-
ing from the test data. Source sentences in the test
set are more similar to the domain-relevant clean
parallel training corpus than the domain-divergent
noise corpus.

7 Conclusion

We defined five types of noise in parallel data, mo-
tivated by a study of raw web crawl data. We
found that neural machine translation is less ro-
bust to many types of noise than statistical ma-
chine translation. In the most extreme case, when
the reference is an untranslated copy of the source
data, neural machine translation may learn to ex-
cessively copy the input. These findings should
inform future work on corpus cleaning.

20See Figure 3 in Ott et al. (2018).
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Abstract

Despite impressive progress in high-
resource settings, Neural Machine Trans-
lation (NMT) still struggles in low-
resource and out-of-domain scenarios, of-
ten failing to match the quality of phrase-
based translation. We propose a novel
technique that combines back-translation
and multilingual NMT to improve perfor-
mance in these difficult cases. Our tech-
nique trains a single model for both di-
rections of a language pair, allowing us
to back-translate source or target mono-
lingual data without requiring an auxiliary
model. We then continue training on the
augmented parallel data, enabling a cycle
of improvement for a single model that
can incorporate any source, target, or par-
allel data to improve both translation di-
rections. As a byproduct, these models
can reduce training and deployment costs
significantly compared to uni-directional
models. Extensive experiments show that
our technique outperforms standard back-
translation in low-resource scenarios, im-
proves quality on cross-domain tasks, and
effectively reduces costs across the board.

1 Introduction

Neural Machine Translation (NMT) has been
rapidly adopted in industry as it consistently out-
performs previous methods across domains and
language pairs (Bojar et al., 2017; Cettolo et al.,
2017). However, NMT systems still struggle com-
pared to Phrase-based Statistical Machine Transla-
tion (SMT) in low-resource or out-of-domain sce-
narios (Koehn and Knowles, 2017). This perfor-
mance gap is a significant roadblock to full adop-
tion of NMT.

In many low-resource scenarios, parallel data
is prohibitively expensive or otherwise impractical
to collect, whereas monolingual data may be more
abundant. SMT systems have the advantage of a
dedicated language model that can incorporate all
available target-side monolingual data to signifi-
cantly improve translation quality (Koehn et al.,
2003; Koehn and Schroeder, 2007). By contrast,
NMT systems consist of one large neural network
that performs full sequence-to-sequence transla-
tion (Sutskever et al., 2014; Cho et al., 2014).
Trained end-to-end on parallel data, these mod-
els lack a direct avenue for incorporating monolin-
gual data. Sennrich et al. (2016a) overcome this
challenge by back-translating target monolingual
data to produce synthetic parallel data that can be
added to the training pool. While effective, back-
translation introduces the significant cost of first
building a reverse system.

Another technique for overcoming a lack of
data is multitask learning, in which domain knowl-
edge can be transferred between related tasks
(Caruana, 1997). Johnson et al. (2017) apply the
idea to multilingual NMT by concatenating par-
allel data of various language pairs and marking
the source with the desired output language. The
authors report promising results for translation be-
tween languages that have zero parallel data. This
approach also dramatically reduces the complexity
of deployment by packing multiple language pairs
into a single model.

We propose a novel combination of back-
translation and multilingual NMT that trains both
directions of a language pair jointly in a single
model. Specifically, we initialize a bi-directional
model on parallel data and then use it to translate
select source and target monolingual data. Train-
ing is then continued on the augmented parallel
data, leading to a cycle of improvement. This ap-
proach has several advantages:
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• A single NMT model with standard architec-
ture that performs all forward and backward
translation during training.

• Training costs reduced significantly com-
pared to uni-directional systems.

• Improvements in translating quality for low-
resource languages, even over uni-directional
systems with back-translation.

• Effectiveness in domain adaptation.

Via comprehensive experiments, we also con-
tribute to best practices in selecting most suitable
combinations of synthetic parallel data and choos-
ing appropriate amount of monolingual data.

2 Approach

In this section, we introduce an efficient method
for improving bi-directional neural machine trans-
lation with synthetic parallel data. We also present
a strategy for selecting suitable monolingual data
for back-translation.

2.1 Bi-Directional NMT with Synthetic
Parallel Data

We use the techniques described by Johnson et al.
(2017) to build a multilingual model that combines
forward and backward directions of a single lan-
guage pair. To begin, we construct training data
by swapping the source and target sentences of a
parallel corpus and appending the swapped ver-
sion to the original. We then add an artificial to-
ken to the beginning of each source sentence to
mark the desired target language, such as <2en>
for English. A standard NMT system can then be
trained on the augmented dataset, which is natu-
rally balanced between language directions.1 A
shared Byte-Pair Encoding (BPE) model is built
on source and target data, alleviating the issue of
unknown words and reducing the vocabulary to a
smaller set of items shared across languages (Sen-
nrich et al., 2016b; Johnson et al., 2017). We fur-
ther reduce model complexity by tying source and
target word embeddings. The full training process
significantly saves the total computing resources
compared to training an individual model for each
language direction.

Generating synthetic parallel data is straight-
forward with a bi-directional model: sentences

1Johnson et al. (2017) report the need to oversample when
data is significantly unbalanced between language pairs.

from both source and target monolingual data can
be translated to produce synthetic sentence pairs.
Synthetic parallel data of the form synthetic
→ monolingual can then be used in the for-
ward direction, the backward direction, or both.
Crucially, this approach leverages both source and
target monolingual data while always placing the
real data on the target side, eliminating the need
for work-arounds such as freezing certain model
parameters to avoid degradation from training on
MT output (Zhang and Zong, 2016).

2.2 Monolingual Data Selection

Given the goal of improving a base bi-directional
model, selecting ideal monolingual data for back-
translation presents a significant challenge. Data
too close to the original training data may not
provide sufficient new information for the model.
Conversely, data too far from the original data
may be translated too poorly by the base model
to be useful. We manage these risks by leveraging
a standard pseudo in-domain data selection tech-
nique, cross-entropy difference (Moore and Lewis,
2010; Axelrod et al., 2011), to rank sentences from
a general domain. Smaller cross-entropy differ-
ence indicates a sentence that is simultaneously
more similar to the in-domain corpus (e.g. real
parallel data) and less similar to the average of the
general-domain monolingual corpus. This allows
us to begin with “safe” monolingual data and in-
crementally expand to higher risk but potentially
more informative data.

3 Experiments

In this section, we describe data, settings, and ex-
perimental methodology. We then present the re-
sults of comprehensive experiments designed to
answer the following questions: (1) How can
synthetic data be most effectively used to im-
prove translation quality? (2) Does the reduc-
tion in training time for bi-directional NMT come
at the cost of lower translation quality? (3) Can
we further improve training speed and translation
quality training with incremental training and re-
decoding? (4) How can we effectively choose
monolingual training data? (5) How well does bi-
directional NMT perform on domain adaptation?

3.1 Data

Diverse Language Pairs: We evaluate our ap-
proach on both high and low-resource data sets:
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Type Dataset # Sentences
High-resource: German↔English
Training Common Crawl +

Europarl v7 +
News Comm. v12 4,356,324

Dev Newstest 2015+2016 5,168
Test Newstest 2017 3,004
Mono-DE News Crawl 2016 26,982,051
Mono-EN News Crawl 2016 18,238,848
Low-resource: Tagalog↔English
Training News/Blog 50,705
Dev/Test News/Blog 491/508
Dev/Test* Bible 500/500
Sample* Bible 61,195
Mono-TL Common Crawl 26,788,048
Mono-EN ICWSM 2009 blog 48,219,743
Low-resource: Swahili↔English
Training News/Blog 23,900
Dev/Test News/Blog 491/509
Dev/Test* Bible-NT 500/500
Sample* Bible-NT 14,699
Mono-SW Common Crawl 12,158,524
Mono-EN ICWSM 2009 blog 48,219,743

Table 1: Data sizes of training, development, test,
sample and monolingual sets. Sample data serves
as the in-domain seed for data selection.

German↔English (DE↔EN), Tagalog↔English
TL↔EN, and Swahili↔English (SW↔EN). Paral-
lel and monolingual DE↔EN data are provided by
the WMT17 news translation task (Bojar et al.,
2017). Parallel data for TL↔EN and SW↔EN
contains a mixture of domains such as news and
weblogs, and is provided as part of the IARPA
MATERIAL program.2 We split the original cor-
pora into training, dev, and test sets, therefore they
share a homogeneous n-gram distribution. For
these low-resource pairs, TL and SW monolingual
data are provided by the Common Crawl (Buck
et al., 2014) while EN monolingual data is pro-
vided by the ICWSM 2009 Spinn3r blog dataset
(tier-1) (Burton et al., 2009).

Diverse Domain Settings: For WMT17
DE↔EN, we choose news articles from 2016 (the
closest year to the test set) as in-domain data
for back-translation. For TL↔EN and SW↔EN,
we identify in-domain and out-of-domain mono-

2https://www.iarpa.gov/index.php/
research-programs/material

lingual data and apply data selection to choose
pseudo in-domain data (see Section 2.2). We use
the training data as in-domain and either Common
Crawl or ICWSM as out-of-domain. We also
include a low-resource, long-distance domain
adaptation task for these languages: training on
News/Blog data and testing on Bible data. We
split a parallel Bible corpus (Christodoulopoulos
and Steedman, 2015) into sample, dev, and test
sets, using the sample data as the in-domain seed
for data selection.

Preprocessing: Following Hieber et al. (2017),
we apply four pre-processing steps to paral-
lel data: normalization, tokenization, sentence-
filtering (length 80 cutoff), and joint source-target
BPE with 50,000 operations (Sennrich et al.,
2016b). Low-resource language pairs are also
true-cased to reduce sparsity. BPE and true-
casing models are rebuilt whenever the training
data changes. Monolingual data for low-resource
settings is filtered by retaining sentences longer
than nine tokens. Itemized data statistics after pre-
processing can be found in Table 1.

3.2 NMT Configuration

We use the attentional RNN encoder-decoder ar-
chitecture implemented in the Sockeye toolkit
(Hieber et al., 2017). Our translation model uses
a bi-directional encoder with a single LSTM layer
of size 512, multilayer perceptron attention with
a layer size of 512, and word representations of
size 512 (Bahdanau et al., 2015). We apply layer
normalization (Ba et al., 2016) and tie source
and target embedding parameters. We train us-
ing the Adam optimizer with a batch size of 64
sentences and checkpoint the model every 1000
updates (10,000 for DE↔EN) (Kingma and Ba,
2015). Training stops after 8 checkpoints with-
out improvement of perplexity on the development
set. We decode with a beam size of 5.

For TL↔EN and SW↔EN, we add dropout to
embeddings and RNNs of the encoder and decoder
with probability 0.2. We also tie the output layer’s
weight matrix with the source and target embed-
dings to reduce model size (Press and Wolf, 2017).
The effectiveness of tying input/output target em-
beddings has been verified on several low-resource
language pairs (Nguyen and Chiang, 2018).

For TL↔EN and SW↔EN, we train four ran-
domly seeded models for each experiment and
combine them in a linear ensemble for decod-
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ID Training Data TL→EN EN→TL SW→EN EN→SW DE→EN EN→DE
U-1 L1→L2 31.99 31.28 32.60 39.98 29.51 23.01
U-2 L1→L2 + L1*→L2 24.21 29.68 25.84 38.29 33.20 25.41
U-3 L1→L2 + L1→L2* 22.13 27.14 24.89 36.53 30.89 23.72
U-4 L1→L2 + L1*→L2 + L1→L2* 23.38 29.31 25.33 37.46 33.01 25.05

L1=EN L2=TL L2=SW L2=DE
B-1 L1↔L2 32.72 31.66 33.59 39.12 28.84 22.45
B-2 L1↔L2 + L1*↔L2 32.90 32.33 33.70 39.68 29.17 24.45
B-3 L1↔L2 + L2*↔L1 32.71 31.10 33.70 39.17 31.71 21.71
B-4 L1↔L2 + L1*↔L2 + L2*↔L1 33.25 32.46 34.23 38.97 30.43 22.54
B-5 L1↔L2 + L1*→L2 + L2*→L1 33.41 33.21 34.11 40.24 31.83 24.61
B-5* L1↔L2 + L1*→L2 + L2*→L1 33.79 32.97 34.15 40.61 31.94 24.45
B-6* L1↔L2 + L1*→L2 + L2*→L1 34.50 33.73 34.88 41.53 32.49 25.20

Table 2: BLEU scores for uni-directional models (U-*) and bi-directional NMT models (B-*) trained
on different combinations of real and synthetic parallel data. Models in B-5* are fine-tuned from base
models in B-1. Best models in B-6* are fine-tuned from precedent models in B-5* and underscored
synthetic data is re-decoded using precedent models. Scores with largest improvement within each zone
are highlighted.

ing. For DE↔EN experiments, we train a sin-
gle model and average the parameters of the best
four checkpoints for decoding (Junczys-Dowmunt
et al., 2016). We report case-insensitive BLEU
with standard WMT tokenization.3

3.3 Uni-Directional NMT
We first evaluate the impact of synthetic parallel
data on standard uni-directional NMT. Baseline
systems trained on real parallel data are shown
in row U-1 of Table 2.4 In all tables, we use
L1→L2 to indicate real parallel data where the
source language is L1 and the target language is
L2. Synthetic data is annotated by asterisks, such
as L1*→L2 indicating that L1* is the synthetic
back-translation of real monolingual data L2.

We always select monolingual data as an integer
multiple of the amount of real parallel data n, i.e.
|L1→L2*| = |L1*→L2| = kn. For DE↔ENmod-
els, we simply choose the top-n sentences from
shuffled News Crawl corpus. For all models of
low-resource languages, we select the top-3n sen-
tences ranked by cross-entropy difference as de-
scribed in Section 2.2. The choice of k is dis-
cussed in Section 3.4.2.

Shown in rows U-2 through U-4 of Table 2,
we compare the results of incorporating differ-

3We use the script https://github.com/
EdinburghNLP/nematus/blob/master/data/
multi-bleu-detok.perl

4Baseline BLEU scores are higher than expected on low-
resource language pairs. We hypothesize that the data is ho-
mogeneous and easier to translate.

ent combinations of real and synthetic parallel
data. Models trained on only real data of tar-
get language (i.e. in U-2) achieve better perfor-
mance in BLEU than using other combinations.
This is an expected result since translation qual-
ity is highly correlated with target language mod-
els. By contrast, standard back-translation is not
effective for our low-resource scenarios. A signif-
icant drop (∼7 BLEU comparing U-1 and U-2 for
TL/SW→EN) is observed when back-translating
English. One possible reason is that the quality
of the selected monolingual data, especially En-
glish, is not ideal. We will encounter this issue
again when using bi-directional models with the
same data in Section 3.4.

3.4 Bi-Directional NMT

We map the same synthetic data combinations
to bi-directional NMT, comparing against uni-
directional models with respect to both translation
quality and training time. Training bi-directional
models requires doubling the training data by
adding a second copy of the parallel corpus where
the source and target are swapped. We use the no-
tation L1↔L2 to represent the concatenation of
L1→L2 and its swapped copy L2→L1 in Table 2.

Compared to independent models (i.e. U-1),
the bi-directional DE↔EN model in B-1 is slightly
worse (by ∼0.6 BLEU). These losses match ob-
servations by Johnson et al. (2017) on many-to-
many multilingual NMT models. By contrast, bi-
directional low-resource models slightly outper-
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Model TL→EN EN→TL SW→EN EN→SW DE→EN EN→DE
Baseline 76 78 63 66 41 48

Uni-directional Synthetic 177 176 137 104 88 75
TOTAL 507 371 252
Baseline 125 93 61

Bi-directional Synthetic 285 218 113
TOTAL ↓ 19% 410 ↓ 14% 311 ↓ 31% 174

(fine-tuning) Synthetic ↓ 23% 219 ↓ 44% 122 ↓ 24% 86

Table 3: Number of checkpoints (= |updates|/1000 for TL/SW↔EN or |updates|/10,000 for
DE↔EN) used by various NMT models. Bi-directional models reduce the training time by 15-30% (com-
paring ‘TOTAL’ rows). Fine-tuning bi-directional baseline models on synthetic parallel data reduces the
training time by 20-40% (comparing ‘Synthetic’ rows).

form independent models. We hypothesize that in
low-resource scenarios the neural model’s capac-
ity is far from exhausted due to the redundancy
in neural network parameters (Denil et al., 2013),
and the benefit of training on twice as much data
surpasses the detriment of confusing the model by
mixing two languages.

We generate synthetic parallel data from the
same monolingual data as in the uni-directional
experiments. If we build training data symmet-
rically (i.e. B-2,3,4), back-translated sentences
are distributed equally on the source and target
sides, forcing the model to train on some amount
of synthetic target data (MT output). For DE↔EN
models, the best BLEU scores are achieved when
synthetic training data is only present on the
source side while for low-resource models, the re-
sults are mixed. We see a particularly counter-
intuitive result when using monolingual English
data — no significant improvement (see B-3 for
TL/SW→EN). As bi-directional models are able to
leverage monolingual data of both languages, bet-
ter results are achieved when combining all syn-
thetic parallel data (see B-4 for TL/SW→EN). By
further excluding potentially harmful target-side
synthetic data (i.e. B-4 → B-5), the most unified
and slim models achieve best overall performance.

While the best bi-directional NMT models
thus far (B-5) outperform the best uni-directional
models (U-1,2) for low-resource language pairs,
they struggle to match performance in the high-
resource DE↔EN scenario.

In terms of efficiency, bi-directional models
consistently reduce the training time by 15-30%
as shown in Table 3. Note that checkpoints are
summed over all independent runs when ensemble
decoding is used.

3.4.1 Fine-Tuning and Re-Decoding
Training new NMT models from scratch after
generating synthetic data is incredibly expensive,
working against our goal of reducing the overall
cost of deploying strong translation systems. Fol-
lowing the practice of mixed fine-tuning proposed
by Chu et al. (2017), we continue training baseline
models on augmented data as shown in B-5* of Ta-
ble 2. These models achieve comparable transla-
tion quality to those trained from scratch (B-5) at a
significantly reduced cost, up to 20-40% comput-
ing time in the experiments illustrated in Table 3.

We also explore re-decoding the same monolin-
gual data using improved models (Sennrich et al.,
2016a). Underscored synthetic data in B-6* is re-
decoded by models in B-5*, leading to the best
results for all low-resource scenarios and compet-
itive results for our high-resource scenario.

3.4.2 Size of Selected Monolingual Data
In our experiments, the optimal amount of mono-
lingual data for constructing synthetic parallel data
is task-dependent. Factors such as size and lin-
guistic distribution of data and overlap between
real parallel data, monolingual data, and test data
can influence the effectiveness curve of synthetic
data. We illustrate the impact of varying the size
of selected monolingual data in our low-resource
scenario. Shown in Figure 1, all language pairs
have an increasing momentum and tend to con-
verge with more synthetic parallel data. The op-
timal point is a hyper-parameter that can be em-
pirically determined.

3.4.3 Domain Adaptation
We evaluate the performance of using the same
bi-directional NMT framework on a long-distance
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Figure 1: BLEU scores for four translation directions vs. the size of selected monolingual data. n in
x-axis equals to the size of real parallel data. EN→SW models use BLEU in parentheses in y-axis. All
language pairs have an increasing momentum and tend to converge with more synthetic parallel data.

L2=TL L2=SW
ID Training Data (L1=EN) TL→EN EN→TL SW→EN EN→SW
A-1 L1↔L2 11.03 10.17 6.56 3.80
A-2 L1↔L2 + L1*→L2 + L2*→L1 16.49 22.33 8.70 7.47
A-3 L1↔L2 + L1*→L2 + L2*→L1 18.91 23.41 11.01 8.06

Table 4: BLEU scores for bi-directional NMT models on Bible data. Models in A-2 are fine-tuned from
baseline models in A-1. Highlighted best models in A-3 are fine-tuned from precedent models in A-2
and underscored synthetic data is re-decoded using precedent models. Baseline models are significantly
improved in terms of BLEU.

domain adaptation task: News/Blog to Bible. This
task is particularly challenging because out-of-
vocabulary rates of Bible test sets are as high as
30-45% when training on News/Blog. Significant
linguistic differences also exist between modern
and Biblical language use. The impact of this do-
main mismatch is demonstrated by the incredibly
low BLEU scores of baseline News/Blog systems
(Table 4, A-1). After fine-tuning baseline models
on augmented parallel data (A-2) and re-decoding
(A-3),5 we see BLEU scores increase by 70-130%.
Despite being based on extremely weak baseline
performance, they still show the promise of our
approach for domain adaptation.

4 Related Work

Leveraging monolingual data in NMT is challeng-
ing. For example, integrating language models in
the decoder (Gülçehre et al., 2015) or initializing
the encoder and decoder with pre-trained language
models (Ramachandran et al., 2017) would require

5The concatenation of development sets from both
News/Blog and Bible serves for validation.

significant changes to system architecture.

In this work, we build on the elegant and ef-
fective approach of turning incomplete (monolin-
gual) data into complete (parallel) data by back-
translation. Sennrich et al. (2016a) used an aux-
iliary reverse-directional NMT system to gener-
ate synthetic source data from real monolingual
target data, with promising results (+3 BLEU on
strong baselines). Symmetrically, Zhang and Zong
(2016) used an auxiliary same-directional transla-
tion system to generate synthetic target data from
the real source language. However, parameters of
the decoder have to be frozen while training on
synthetic data, otherwise the decoder would fit to
noisy MT output. By contrast, our approach ef-
fectively leverages synthetic data from both trans-
lation directions, with consistent gains in trans-
lation quality. A similar idea is used by Zhang
et al. (2018) with a focus on re-decoding itera-
tively. However, their NMT models of both di-
rections are still trained independently.

Another technique for using monolingual data
in NMT is round-trip machine translation. Sup-
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pose sentence f from a monolingual dataset
is translated forward to e and then translated
back to f ′, then f ′ and f should be identical
(Brislin, 1970). Cheng et al. (2016) optimize
argmaxθ P (f

′|f ; θ) as an autoencoder; Wang
et al. (2018) minimize the difference between
P (f) and P (f ′|θ) based on the law of total prob-
ability, while He et al. (2016) set the quality of
both e and f ′ as rewards for reinforcement learn-
ing. They all achieve promising improvement but
rely on non-standard training frameworks.

Multitask learning has been used in past work to
combine models trained on different parallel cor-
pora by sharing certain components. These com-
ponents, such as the attention mechanism (Firat
et al., 2016), benefit from being trained on an ef-
fectively larger dataset. In addition, the more pa-
rameters are shared, the faster a joint model can
be trained — this is particularity beneficial in in-
dustry settings. Baidu built one-to-many transla-
tion systems by sharing both encoder and attention
(Dong et al., 2015). Google enabled a standard
NMT framework to support many-to-many trans-
lation directions by simply attaching a language
specifier to each source sentence (Johnson et al.,
2017). We adopted Google’s approach to build bi-
directional systems that successfully combine ac-
tual and synthetic parallel data.

5 Conclusion

We propose a novel technique for bi-directional
neural machine translation. A single model with
a standard NMT architecture performs both for-
ward and backward translation, allowing it to
back-translate and incorporate any source or target
monolingual data. By continuing training on aug-
mented parallel data, bi-directional NMT models
consistently achieve improved translation quality,
particularly in low-resource scenarios and cross-
domain tasks. These models also reduce train-
ing and deployment costs significantly compared
to standard uni-directional models.
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Abstract

Multi-source translation is an approach to
exploit multiple inputs (e.g. in two dif-
ferent languages) to increase translation
accuracy. In this paper, we examine ap-
proaches for multi-source neural machine
translation (NMT) using an incomplete
multilingual corpus in which some transla-
tions are missing. In practice, many mul-
tilingual corpora are not complete due to
the difficulty to provide translations in all
of the relevant languages (for example, in
TED talks, most English talks only have
subtitles for a small portion of the lan-
guages that TED supports). Existing stud-
ies on multi-source translation did not ex-
plicitly handle such situations. This study
focuses on the use of incomplete multilin-
gual corpora in multi-encoder NMT and
mixture of NMT experts and examines a
very simple implementation where miss-
ing source translations are replaced by a
special symbol <NULL>. These methods
allow us to use incomplete corpora both
at training time and test time. In exper-
iments with real incomplete multilingual
corpora of TED Talks, the multi-source
NMT with the <NULL> tokens achieved
higher translation accuracies measured by
BLEU than those by any one-to-one NMT
systems.

1 Introduction

In general, machine translation systems translate
from one source language to a target language. For
example, we may translate a document or speech
that was written in English to a new language such
as French. However, in many real translation sce-
narios, there are cases where there are multiple

Spanish 

Hola 
×

English 

Hello 
Thank you

French 

Bonjour 
Je vous remercie

× (a) A standard bilingual corpus

Spanish 

Hola 
Gracias

English 

Hello 
Thank you

French 

Bonjour 
Je vous remercie×

(b) A complete multi-source corpus

Spanish 

Hola 
×

English 

Hello 
Thank you

French 

Bonjour 
Je vous remercie

×

(c) An incomplete multi-source corpus with missing data

Figure 1: Example of type of corpora.

languages involved in the translation process. For
example, we may have an original document in
English, that we want to translate into several lan-
guages such as French, Spanish, and Portuguese.
Some examples of these scenarios are the cre-
ation of video captions for talks (Cettolo et al.,
2012) or Movies (Tiedemann, 2009), or transla-
tion of official documents into all the languages
of a governing body, such as the European parlia-
ment (Koehn, 2005) or UN (Ziemski et al., 2016).
In these cases, we are very often faced with a sit-
uation where we already have good, manually cu-
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rated translations in a number of languages, and
we’d like to generate translations in the remaining
languages for which we do not yet have transla-
tions.

In this work, we focus on this sort of mul-
tilingual scenario using multi-source translation
(Och and Ney, 2001; Zoph and Knight, 2016; Gar-
mash and Monz, 2016). Multi-source translation
takes in multiple inputs, and references all of them
when deciding which sentence to output. Specifi-
cally, in the context of neural machine translation
(NMT), there are several methods proposed to do
so. For example, Zoph and Knight (2016) propose
a method where multiple sentences are each en-
coded separately, then all referenced during the
decoding process (the “multi-encoder” method).
In addition, Garmash and Monz (2016) propose a
method where NMT systems over multiple inputs
are ensembled together to make a final prediction
(the “mixture-of-NMT-experts” method).

However, this paradigm assumes that we have
data in all of the languages that go into our multi-
source system. For example, if we decide that En-
glish and Spanish are our input languages and that
we would like to translate into French, we are lim-
ited to training and testing only on data that con-
tains all of the source languages. However, it is
unusual that translations in all of these languages
are provided– there will be many sentences where
we have only one of the sources. In this work,
we consider methods for multi-source NMT with
missing data, such situations using an incomplete
multilingual corpus in which some translations are
missing, as shown in Figure 1. This incomplete
multilingual scenario is useful in practice, such as
when creating translations for incomplete multi-
lingual corpora such as subtitles for TED Talks.

In this paper, we examine a simple implemen-
tation of multi-source NMT using such an incom-
plete multilingual corpus that uses a special sym-
bol <NULL> to represent the missing sentences.
This can be used with any existing multi-source
NMT implementations without no special modi-
fications. Experimental results with real incom-
plete multilingual corpora of TED Talks show that
it is effective in allowing for multi-source NMT in
situations where full multilingual corpora are not
available, resulting in BLEU score gains of up to
2 points compared to standard bi-lingual NMT.

Encoder

Encoder Decoder

Encoder

Es

Ar

Fr En

Figure 2: Multi-encoder NMT

2 Multi-Source NMT

At the present, there are two major approaches
to multi-source NMT: multi-encoder NMT (Zoph
and Knight, 2016) and mixture of NMT experts
(Garmash and Monz, 2016). We first review them
in this section.

2.1 Multi-Encoder NMT

Multi-encoder NMT (Zoph and Knight, 2016) is
similar to the standard attentional NMT frame-
work (Bahdanau et al., 2015) but uses multiple en-
coders corresponding to the source languages and
a single decoder, as shown in Figure 2.

Suppose we have two LSTM-based encoders
and their hidden states and cell states at the end of
the inputs are h1, h2 and c1, c2, respectively. The
multi-encoder NMT method initializes its decoder
hidden states h and cell state c as follows:

h = tanh(Wc[h1;h2]) (1)

c = c1 + c2 (2)

Attention is then defined over each encoder at
each time step t and resulting context vectors c1t
and c2t , which are concatenated together with the
corresponding decoder hidden state ht to calculate
the final context vector h̃t.

h̃t = tanh(Wc[ht; c
1
t ; c

2
t ]) (3)

The method we base our work upon is largely
similar to Zoph and Knight (2016), with the ex-
ception of a few details. Most notably, they used
local-p attention, which focuses only on a small
subset of the source positions for each target word
(Luong et al., 2015). In this work, we used global
attention, which attends to all words on the source
side for each target word, as this is the standard
method used in the great majority of recent NMT
work.
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Encoder

Encoder Decoder

Encoder

Es

Ar

Fr En

Decoder

Decoder

Gating Network

pre-train

Figure 3: Mixture of NMT Experts

2.2 Mixture of NMT Experts

Garmash and Monz (2016) proposed another ap-
proach to multi-source NMT called mixture of
NMT experts. This method ensembles together
independently-trained encoder-decoder networks.
Each NMT model is trained using a bilingual cor-
pus with one source language and the target lan-
guage, and the outputs from the one-to-one models
are summed together, weighted according to a gat-
ing network to control contributions of the proba-
bilities from each model, as shown in Figure 3.

The mixture of NMT experts determines an out-
put symbol at each time step t from the final output
vector pεt , which is the weighted sum of the prob-
ability vectors from one-to-one models denoted as
follows:

pεt =
m∑

j=1

gjt p
j
t (4)

where pjt and gjt are the probability vector from
j-th model and the corresponding weight at time
step t, respectively. m is the number of one-to-
one models. gt is calculated by the gating network
as follows:

gt = softmax(Wgate tanh(Whid [f
1
t (x ); ...f mt (x )])) (5)

where f jt (x) is the input vector to the decoder of
the j-th model, typically the embedding vector for
the output symbol at the previous time step t-1.

3 Multi-Source NMT with Missing Data

In this work, we examine methods to use incom-
plete multilingual corpora to improve NMT in a
specific language pair. This allows multi-source
techniques to be applied, reaping the benefits of
other additional languages even if some transla-
tions in these additional languages are missing.

Eso es verdad

C'est vrai That is true

<NULL>

Es

Ar

Fr En

Figure 4: Multi-encoder NMT with a missing in-
put sentence

Specifically, we attempt to extend the methods in
the previous section to use an incomplete multilin-
gual corpus in this work.

3.1 Multi-encoder NMT

In multi-encoder NMT, each encoder must be pro-
vide with an input sentence, so incomplete multi-
lingual corpora cannot be used as-is.

In this work, we employ a very simple mod-
ification that helps resolve this issue: replacing
each missing input sentence with a special symbol
<NULL>. The special symbol <NULL> can be
expected to be basically ignored in multi-encoder
NMT, with the decoder choosing word hypotheses
using other input sentences. Note that this method
can be applied easily to any existing implementa-
tion of the multi-encoder NMT with no modifica-
tion of the codes.

Figure 4 illustrates the modified multi-encoder
NMT method. Here the source languages are
Spanish, French, and Arabic and the target lan-
guage is English, and the Arabic input sentence is
missing. Here, the Spanish and French input sen-
tences are passed into the corresponding encoders
and <NULL> is input to the Arabic encoder.

3.2 Mixture of NMT Experts

In the mixture of NMT experts method, each one-
to-one NMT model can be trained independently
using incomplete multilingual corpora. However,
we still need a complete multilingual corpus to
train the gating network.

We also employ a special symbol <NULL> in
the mixture of NMT experts to deal with miss-
ing input sentences in the same way as the multi-
encoder NMT described above. The gating net-
work can also be expected to learn to ignore the
outputs from the missing inputs.
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4 Experiments

We conducted two experiments with different in-
complete multilingual corpora. One is an experi-
ment with a pseudo-incomplete multilingual cor-
pus, the other is an experiment with an actual in-
complete multilingual corpus.

4.1 NMT settings

We describe the settings of common parts for
all NMT models: multi-encoder NMT, mixture
of NMT experts, and one-to-one NMT. We used
global attention and attention feeding (Luong
et al., 2015) for the NMT models and used a bidi-
rectional encoder (Bahdanau et al., 2015) in their
encoders. The number of units was 512 for the
hidden and embedding layers. Vocabulary size
was the most frequent 30,000 words in the train-
ing data for each source and target languages.
The parameter optimization algorithm was Adam
(Kingma and Ba, 2015) and gradient clipping was
set to 5. The number of hidden state units in the
gating network for the mixture of NMT experts
experiments was 256. We used BLEU (Papineni
et al., 2002) as the evaluation metric. We per-
formed early stopping, saving parameter values
that had the smallest log perplexities on the valida-
tion data and used them when decoding test data.

4.2 Pseudo-incomplete multilingual corpus
(UN6WAY)

First, we conducted experiments using a complete
multilingual corpus and a pseudo-incomplete cor-
pus derived by excluding some sentences from the
complete corpus, to compare the performance in
complete and incomplete situations.

4.2.1 Data
We used UN6WAY (Ziemski et al., 2016) as the
complete multilingual corpus. We chose Spanish
(Es), French (Fr), and Arabic (Ar) as source lan-
guages and English (En) as a target language The
training data in the experiments were the one mil-
lion sentences from the UN6WAY corpus whose
sentence lengths were less than or equal to 40
words. We excluded 200,000 sentences for each
language for the pseudo-incomplete multilingual
corpus as shown in Table 1. “Sentence number” in
Table 1 represents the line number in the corpus,
and the x means the part removed for the incom-
plete multilingual corpus. We also chose 1,000
and 4,000 sentences for validation and test from

Sentence No. Es Fr Ar En
1-200,000 x
200,001-400,000 x
400,001-600,000 x
600,001-800,000

Table 1: Settings of the pseudo-incomplete UN
multilingual corpus (x means that this part was
deleted)

the UN6WAY corpus, apart from the training data.
Note that the validation and test data here had no
missing translations.

4.2.2 Setup
We compared multi-encoder NMT and the mixture
of NMT experts in the complete and incomplete
situations. The three one-to-one NMT systems,
Es-En, Fr-En, and Ar-En, which were used as sub-
models in the mixture of NMT experts, were also
compared for reference.

First, we conducted experiments using all of the
one million sentences in the complete multilingual
corpus, Complete (0.8M). In case of the mixture
of NMT experts, the gating network was trained
using the one million sentences.

Then, we tested in the incomplete data situ-
ation. Here there were just 200,000 complete
multilingual sentences (sentence No. 600,001-
800,000), Complete (0.2M). Here, a standard
multi-encoder NMT and mixture of NMT experts
could be trained using this complete data. On the
other hand, the multi-source NMT with <NULL>
could be trained using 800,000 sentences (sen-
tence No. 1-800,000), Pseudo-incomplete (0.8M).
Each one-to-one NMT could be trained using
these 800,000 sentences, but the missing sentences
replaced with the <NULL> tokens were excluded
so resulting 600,000 sentences were actually used.

4.2.3 Results
Table 2 shows the results in BLEU. The multi-
source approaches achieved consistent improve-
ments over the one-to-one NMTs in the all con-
ditions, as demonstrated in previous multi-source
NMT studies. Our main focus here is Pseudo-
incomplete (0.8M), in which the multi-source re-
sults were slightly worse than those in Complete
(0.8M) but better than those in Complete (0.2M).
This suggests the additional use of incomplete cor-
pora is beneficial in multi-source NMT compared
to the use of only the complete parts of the cor-
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Condition
One-to-one

Multi-encoder Mix. NMT Experts
Es-En Fr-En Ar-En

Complete (0.8M) 31.87 25.78 23.08 37.55 (+5.68)∗ 33.28 (+1.41)
Complete (0.2M) 27.62 22.01 17.88 31.24 (+3.62) 32.16 (+4.54)
Pseudo-incomplete (0.8M) 30.98 25.62 22.02 36.43 (+5.45)∗ 32.44 (+1.47)

Table 2: Results in BLEU for one-to-one and multi-source ({Es, Fr, Ar}-to-En) translation on UN6WAY
data (parentheses are BLEU gains against the best one-to-one results). ∗ indicates the difference from
mixture of NMT experts is statistically significant (p < 0.01).

Source Training Valid. Test
{En, Fr, Pt (br)}-to-Es
English 189,062 4,076 5,451
French 170,607 3,719 4,686
Portuguese (br) 166,205 3,623 4,647
{En, Es, Pt (br)}-to-Fr
English 185,405 4,164 4,753
Spanish 170,607 3,719 4,686
Portuguese (br) 164,630 3,668 4,289
{En, Es, Fr}-to-Pt (br)
English 177,895 3,880 4,742
Spanish 166,205 3,623 4,647
French 164,630 3,668 4,289

Table 3: Data statistics in the tasks on TED data
(in the number of sentences). Note that the number
of target sentences is equal to that of English for
each task.

Target Training Valid. Test
Spanish 83.4 85.0 78.2
French 85.0 83.2 89.7
Portuguese (br) 88.6 89.3 90.0

Table 4: The percentage of data without missing
sentences on TED data.

pus, even if just through the simple modification
of replacing missing sentences with <NULL>.

With respect to the difference between the
multi-encoder NMT and mixture of NMT experts,
the multi-encoder achieved much higher BLEU
in Pseudo-incomplete (0.8M) and Complete (1M),
but this was not the case in Complete (0.2M).
One possible reason here is the model complex-
ity; the multi-encoder NMT uses a large single
model while one-to-one sub-models in the mixture
of NMT experts can be trained independently.

4.3 An actual incomplete multilingual corpus
(TED Talks)

4.3.1 Data
We used a collection of transcriptions of TED
Talks and their multilingual translations. Because
these translations are created by volunteers, and
the number of translations for each language is
dependent on the number of volunteers who cre-
ated them, this collection is an actual incomplete
multilingual corpus. The great majority of the
talks are basically in English, so we chose English
as a source language. We used three translations
in other languages for our multi-source scenario:
Spanish, French, Brazilian Portuguese. We pre-
pared three tasks choosing one of each of these
three languages as the target language and the oth-
ers as the additional source languages. Table 3
shows the number of available sentences in these
tasks, chosen so that their lengths are less than or
equal to 40 words.

4.3.2 Setup
We compared multi-encoder NMT, mixture of
NMT experts and one-to-one NMT with English
as the source language. The validation and test
data for these experiments were also incomplete.
This is in contrast to the experiments on UN6WAY
where the test and validation data were complete,
and thus this setting is arguable of more practical
use.

4.3.3 Results
Table 5 shows the results in BLEU and BLEU
gains with respect to the one-to-one results. All
the differences are statistically significant (p <
0.01) by significance tests with bootstrap resam-
pling (Koehn, 2004). The multi-source NMTs
achieved consistent improvements over the one-
to-one baseline as expected, but the BLEU gains
were smaller than those in the previous experi-
ments using the UN6WAY data. This is possibly
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because the baseline performance was relatively
low compared with the previous experiments and
the size of available resources was also smaller.

In comparison between the multi-source NMT
and the mixture of NMT experts, results were
mixed; the mixture of NMT experts was better in
the task to French.

4.3.4 Discussion
We analyzed the results using the TED data in de-
tail to investigate the mixed results above. Figure 5
(in the last page) shows the breakdown of BLEU
in the test data, separating the results for com-
plete and incomplete multilingual inputs. When
all source sentences are present in the test data,
multi-encoder NMT has better performance than
mixture of NMT experts except for {En, Es, Pt
(br)}-to-Fr. However, when the input is incom-
plete, mixture of NMT experts achieves perfor-
mance better than or equal to multi-encoder NMT.
From this result, we can assume that mixture of
NMT experts, with its explicit gating network, is
better at ignoring the irrelevant missing sentences.
It’s possible that if we designed a better attention
strategy for multi-encoder NMT we may be able to
resolve this problem. These analyses would sup-
port the results using the pseudo incomplete data
shown in Table 2, where the validation and test
data were complete.

4.3.5 Translation examples
Table 6 shows a couple of translation examples
in the {English, French, Brazilian Portuguese}-to-
Spanish experiment. In Example(1), BLEU+1 of
mixture of NMT Experts is larger than one-to-one
(English-to-Spanish) because of the French sen-
tence, although the source sentence of Brazilian
Portuguese is missing. BLEU+1 of multi-encoder
is same as one-to-one, but the generation word is
different. The word of ”minar” is generated from
multi-encoder, and ”estudiar” is generated from
one-to-one. ”minar” means ”look” in English, and
”estudiar” means ”study”, so the meaning of sen-
tence which was generated from multi-encoder is
close to the reference one than that from one-to-
one. Besides the word of ”ver” which is gener-
ated from mixture of NMT experts meas ”see” in
English, so the sentence of multi-encoder is more
appropriate than the reference sentence.

In Example(2), there is only the English sen-
tence in the source sentences. We can see that
sentences which are generated from all models are
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Figure 5: Detailed comparison of BLEU in TED
test data. Complete means the part of test data, in
which there is no missing translation, and incom-
plete means that, in which there are some miss-
ing translation. The number in a parenthesis is the
number of translations.

same as the reference sentences, although French
and Brazilian Portuguese sentences are missing.
Therefore multi-source NMT models work prop-
erly even if there are missing sentences.
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Task
One-to-one

Multi-encoder Mix. NMT Experts
(En-to-target)

{En, Fr, Pt (br)}-to-Es 24.32 26.01 (+1.69) 25.51 (+1.19)
{En, Es, Pt (br)}-to-Fr 24.54 25.62 (+1.08) 26.23 (+1.69)
{En, Es, Fr}-to-Pt (br) 25.14 27.36 (+2.22) 26.39 (+1.25)

Table 5: Results in BLEU (and BLEU gains) by one-to-one and multi-source NMT on TED data. Note
that the target language in each row differs so the results in different rows cannot be compared directly.
All the differences are statistically significant (p < 0.01).

Type Sentence BLEU+1
Example (1)
Source (En) Then I started looking at the business model.
Source (Fr) Puis j’ai regard le modle conomique.
Source (Pt (br)) <NULL>
Reference Despus empec a ver el modelo de negocio.
En-to-Es Luego empec a estudiar el modelo empresarial. 0.266
Multi-encoder Luego empec a mirar el modelo empresarial. 0.266
Mix. NMT experts Luego empec a ver el modelo de negocios. 0.726
Example (2)
Source (En) Sometimes they agree.
Source (Fr) <NULL>
Source (Pt (br)) <NULL>
Reference A veces estn de acuerdo.
En-to-Es A veces estn de acuerdo. 1.000
Multi-encoder A veces estn de acuerdo. 1.000
Mix. NMT experts A veces estn de acuerdo. 1.000

Table 6: Translation examples in {English, French, Brazilian Portuguese}-to-Spanish translation.

5 Related Work

In this paper, we examined strategies for multi-
source NMT. On the other hand, there are there
are other strategies for multilingual NMT that do
not use multiple source sentences as their input.
Dong et al. (2015) proposed a method for multi-
target NMT. Their method is using one sharing en-
coder and decoders corresponding to the number
of target languages. Firat et al. (2016) proposed
a method for multi-source multi-target NMT us-
ing multiple encoders and decoders with a shared
attention mechanism. Johonson et al. (2017) and
Ha et al. (2016) proposed multi-source and multi-
target NMT using one encoder and one decoder,
and sharing all parameters with all languages. No-
tably, these methods use multilingual data to better
train one-to-one NMT systems. However, our mo-
tivation of this study is to improve NMT further
by the help of other translations that are available
on the source side at test time, and thus their ap-
proaches are different from ours.

6 Conclusion

In this paper, we examined approaches for multi-
source NMT using incomplete multilingual corpus
in which each missing input sentences is replaced
by a special symbol <NULL>. The experimen-
tal results with simulated and actual incomplete
multilingual corpora show that this simple mod-
ification allows us to effectively use all available
translations at both training and test time.

The performance of multi-source NMT depends
on source and target languages, and the size of
missing data. As future work, we will investigate
the relation of the languages included in the mul-
tiple sources and the number of missing inputs to
the translation accuracy in multi-source scenarios.
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Abstract

Neural machine translation (NMT) has
significantly improved the quality of au-
tomatic translation models. One of the
main challenges in current systems is the
translation of rare words. We present a
generic approach to address this weak-
ness by having external models annotate
the training data as Experts, and con-
trol the model-expert interaction with a
pointer network and reinforcement learn-
ing. Our experiments using phrase-based
models to simulate Experts to comple-
ment neural machine translation mod-
els show that the model can be trained
to copy the annotations into the output
consistently. We demonstrate the ben-
efit of our proposed framework in out-
of-domain translation scenarios with only
lexical resources, improving more than 1.0
BLEU point in both translation directions
English→Spanish and German→English.

1 Introduction
Sequence to sequence models have recently be-
come the state-of-the-art approach for machine
translation (Luong et al., 2015; Vaswani et al.,
2017). This model architecture can directly ap-
proximate the conditional probability of the tar-
get sequence given a source sequence using neural
networks (Kalchbrenner and Blunsom, 2013). As
a result, not only do they model a smoother prob-
ability distribution (Bengio et al., 2003) than the
sparse phrase tables in statistical machine trans-
lation (Koehn et al., 2003), but they can also
jointly learn translation models, language models
and even alignments in a single model (Bahdanau
et al., 2014).

One of the main weaknesses of neural machine

translation models is poor handling of low fre-
quency events. Neural models tend to priori-
tize output fluency over translation adequacy, and
faced with rare words either silently ignore in-
put (Koehn and Knowles, 2017) or fall into under-
or over-translation (Tu et al., 2016). Examples
of these situations include named entities, dates,
and rare morphological forms. Improper handling
of rare events can be harmful to industrial sys-
tems (Wu et al., 2016), where translation mistakes
can have serious ramifications. Similarly, translat-
ing in specific domains such as information tech-
nology or biology, a slight change in vocabulary
can drastically alter meaning. It is important, then,
to address translation of rare words.

While domain-specific parallel corpora can be
used to adapt translation models efficiently (Luong
and Manning, 2015), parallel corpora for many
domains can be difficult to collect, and this re-
quires continued training. Translation lexicons,
however, are much more commonly available. In
this work, we introduce a strategy to incorporate
external lexical knowledge, dubbed “Expert an-
notation,” into neural machine translation models.
First, we annotate the lexical translations directly
into the source side of the parallel data, so that the
information is exposed during both training and
inference. Second, inspired by CopyNet (Gu et al.,
2016), we utilize a pointer network (Vinyals et al.,
2015) to introduce a copy distribution over the
source sentence, to increase the generation prob-
ability of rare words. Given that the expert anno-
tation can differ from the reference, in order to en-
courage the model to copy the annotation we use
reinforcement learning to guide the search, giving
rewards when the annotation is used. Our work
is motivated to be able to achieve One-Shot learn-
ing, which can help the model to accurately trans-
late the events that are annotated during inference.
Such ability can be transferred from an Expert
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which is capable of learning to translate lexically
with one or few examples, such as dictionaries, or
phrase-tables, or even human annotators.

We realize our proposed framework
with experiments on English→Spanish and
German→English translation tasks. We focus
on translation of rare events using translation
suggestions from an Expert, here simulated by
an additional phrase table. Specifically, we
annotate rare words in our parallel data with best
candidates from a phrase table before training,
so that rare events are provided with suggested
translations. Our model can be explicitly trained
to copy the annotation approximately 90% of
the time, and it outperformed the baselines on
translation accuracy of rare words, reaching up to
97% accuracy. Also importantly, this performance
is maintained when translating data in a different
domain. Further analysis was done to verify the
potential of our proposed framework.

2 Background - Neural Machine
Translation

Neural machine translation (NMT) consists of an
encoder and a decoder (Sutskever et al., 2014;
Vaswani et al., 2017) that directly approximate
the conditional probability of a target sequence
Y = y1, y2, · · · , yT given a source sequence X =
x1, x2, · · · , xM . The model is normally trained to
maximize the log-likelihood of each target token
given the previous words as well as the source se-
quence with respect to model parameters θ as in
Equation 1:

logP (Y |X; θ) =

ΣT
t=1(logP (yt|X, y1, y2, · · · , yt − 1))

(1)

The advantages of NMT compared to phrased-
based machine translation come from the neural
architecture components:

• The embedding layers, which are shared be-
tween samples, allow the model to con-
tinuously represent discrete words and ef-
fectively capture word relationship (Bengio
et al., 2003; Mikolov et al., 2013). Notably
we refer to two different embedding layers
being used in most models, one for the first
input layer of the encoder/decoder, and an-
other one at the decoder output layer that is
used to compute the probability distribution
(Equation 1).

Figure 1: A generic illustration of our framework.
The source sentence is annotated with experts be-
fore learning. The model learns to utilize the an-
notation by using them directly in the translation)

• Complex neural architectures like
LSTMs (Hochreiter and Schmidhuber,
1997) or Transformers (Vaswani et al.,
2017) can represent structural sequences
(sentences, phrases) effectively.

• Attention models (Bahdanau et al., 2014; Lu-
ong et al., 2015) are capable of hierarchi-
cally modeling the translation mapping be-
tween sentence pairs.

The challenges of NMT These models are often
attacked over their inability to learn to translate
rare events, which are often named entities and
rare morphological variants (Arthur et al., 2016;
Koehn and Knowles, 2017; Nguyen and Chiang,
2017). Learning from rare events is difficult due
to the fact that the model parameters are not ade-
quately updated. For example, the embeddings of
the rare words are only updated a few times during
training, and similarly for the patterns learned by
the recurrent structures in the encoders / decoders
and attention models.

3 Expert framework description
Human translators can benefit from external
knowledge such as dictionaries, particularly in
specific domains. Similarly, the idea behind our
framework is to rely on external models to anno-
tate extra input into the source side of the train-
ing data, which we refer as Experts. Such expert
models would not necessarily outperform NMT
models themselves, but rather complement them
and compensate for their weaknesses.

The illustration of the proposed framework is
given in Figure 1. Before the learning process, the
source sentence is annotated by one or several ex-
pert models, which we abstract as any model that
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can show additional data perspectives. For ex-
ample, these experts could be a terminology list
or a statistical phrase-based system to generate
translations for specific phrases, but it can also be
used in various other situations. For example, we
might use it to integrate a model that can do metric
conversion or handling of links to web addresses,
which can be useful for certain applications. Then
NMT model then learns to translate to the target
sentence using the annotated source.

3.1 Annotation

The aforementioned idea of Experts in our work is
inspired by the fact that human translators can ben-
efit from domain experts when translating domain-
specific content. Accordingly, we design the anno-
tation and training process as follows:

• Words are identified as candidates for anno-
tation using a frequency threshold.

• Look up possible translations of the candi-
dates from the Expert and annotate them di-
rectly next to the candidates. We use special
bounding symbols to help guide the model to
copy the annotation during translation.

• Train a neural machine translation model us-
ing these annotated sentences.

• During inference, we annotate the source sen-
tence in the same fashion as in training.

Byte-Pair encoding We consider BPE (Sen-
nrich et al., 2016) one of the crucial factors for an-
notation in order to efficiently represent words that
do not appear in the training data. The rare words
(and their translation suggestions, which can be
rare as well) are split into smaller segments, al-
leviating the problem of dealing with UNK to-
kens (Luong et al., 2014).

Embedding sharing Our annotation method in-
cludes target language tokens directly in the
source sentence. In order to make the model per-
ceive these words the same way in the source
and the target, we create a joint vocabulary of the
source and target language and simply tie the em-
bedding projection matrices of the source encoder,
target encoder and target decoder. This practice
has been explored in various language modeling
works (Press and Wolf, 2016; Inan et al., 2016) to
improve regularisation.

3.2 Copy-Generator

Hypothetically, the model could learn to simply
ignore the annotation during optimization because
it contains strange symbols (the target language) in
source language sentences. If this were the case,
adding annotations would not help translate rare
events.

Therefore, inspired by the CopyNet (Gu et al.,
2016; Gulcehre et al., 2016), which originates
from pointer networks (Vinyals et al., 2015) that
learn to pick the tokens that appeared in the
memory of the models, we incorporate the copy-
mechanism into the neural translation model so
that the annotations can be simply pasted into the
translation. Explicitly, the conditional probability
is now presented as a mixture of two distributions:
copy and generated.

P (Y |X; θ) =

ΣT
t=1[γPG(yt|X, y1, y2, · · · , yt − 1)

+(1− γ)PC(yt|X, y1, y2, · · · , yt − 1)]

(2)

The distribution over the whole vocabulary PG

is estimated from the softmax layer using equa-
tion 1, and the copy distribution PC is used
from the attention layer from the decoder state
over the context (dubbed ‘alignment’ in previ-
ous works (Bahdanau et al., 2014)). The mixture
coefficient γ controls the bias between the mix-
tures and is estimated using a feed-forward neu-
ral network layer with a sigmoid function, which
is placed on top of the decoder hidden state (be-
fore the final output softmax layer 1). Ideally, the
model learns to adjust between copying the input
annotation or generating a translation.

It is important to note that, in previous works the
authors had to build dynamic vocabulary for each
sample due to the vocabulary mismatch between
the source and target (Gu et al., 2016). Since
we tied the embeddings of source and target lan-
guages, it becomes trivial to combine the two dis-
tributions. The use of byte-pair encodings also
helps to eliminate unknown words on both sides,
alleviating the task of excluding copying unknown
tokens.

3.3 Reinforcement Learning

Why reinforcement learning While our anno-
tation provides target language tokens that can be

1Using an additional attention layer yields similar result.
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directly copied to the generated output, and the
copy generator allows a direct gradient path from
the output to the annotation, the annotation is not
guaranteed to be in the reference. When this is the
case, the model does not receive the learning sig-
nal to copy the annotation.

In order to remedy this, we propose to cast the
problem as a reinforcement learning task (Ranzato
et al., 2015) in which we have the model sam-
ple and provide a learning signal by rewarding the
model if it copies the annotation into the target, as
seen in the loss function in Equation 3:

L(θ) = −EW∼pθ(r(W,REF )) (3)

.

Reward function For this purpose, we designed
a reward function that can encourage the model
to prioritize copying the annotation into the target,
but still maintain a reasonable translation quality.
For suggestion utilization, we denote HIT as the
score function that gives rewards for every overlap
of the output and the suggestion. If all annotated
words are used then HIT (W,REF ) = 1.0, oth-
erwise the percentage of the copied words. For the
translation score, we use the GLEU function (Wu
et al., 2016) - the minimum of recall and precision
of the n-grams up to 4-gram between the sample
and the reference, which has been reported to cor-
respond well with corpus-level translation metrics
such as BLEU (Papineni et al., 2002). The reward
function is defined as in Equation 4:

r(W,REF ) = αHIT (W,REF )+

(1− α)GLEU(W,REF )
(4)

Variance reduction The use of reinforcement
learning with translation models has been ex-
plored in various works (Ranzato et al., 2015; Bah-
danau et al., 2016; Rennie et al., 2016; Nguyen
et al., 2017), in which the models are difficult
to train due to the high variance of the gradi-
ents (Schulman et al., 2017). To tackle this prob-
lem, we follow the Self-Critical model proposed
by (Rennie et al., 2016) for variance reduction:

• Pre-training the model using cross-entropy
loss (Eq. 1) to obtain a solid initialization pre-
search, which allows the model to achieve
reasonable rewards to learn faster.

• During the reinforcement phase, for each
sample/mini-batch, the decoder explores the

search space with Markov chain Monte Carlo
sampling, and at the same time performs a
greedy search for a ‘baseline’ performance.
We encourage the model to perform better
than baseline, which is used to decide the sign
of the gradients (Williams, 1992).

Notably, there is no gradient flowing in the
baseline subgraph since the argmax operators used
in the greedy search are not differentiable.

4 Experiment setup
In the experiments, we realise the generic
framework described in Section 3 with the
tasks of translating from English→Spanish and
German→English.

For both language pairs, we used data
from Europarl (version 7) (Koehn, 2005) and
IWSLT17 (Cettolo et al., 2012) to train our neu-
ral networks. For validation, we use the IWSLT
validation set (dev2010) to select the best mod-
els based on perplexity (for cross-entropy loss)
and BLEU score (for reinforcement learning). For
evaluation, we use IWSLT tst2010 as the in-
domain test set. We also evaluate our models on
out-of-domain corpora. For English→Spanish an
additional Business dataset is used. The corpus
statistics can be seen on Table 1. The out-of-
domain experiments for the German→English are
carried out on the medical domain, in which we
use the UFAL Medical Corpus v1.0 corpus (2.2
million sentences) to train the Expert and the Or-
acle system. The test data for this task is the
HIML2017 dataset with 1517 sentences. We pre-
process all the data using standard tokenization,
true-casing and BPE splitting with 40K joined op-
erations.

4.1 Implementation details

Our base neural machine translation follows the
neural machine translation with global attention
model described in (Luong et al., 2015) 2. The
encoder is a bidirectional LSTM network, while
the decoder is an LSTM with attention, which
is a 2-layer feed-forward neural network (Bah-
danau et al., 2014). We also use the input-feeding
method (Luong et al., 2015) and context-gate (Tu
et al., 2016) to improve model coverage. All net-
works in our experiments have layer size (em-
bedding and hidden) of 512 (English→Spanish)

2The framework is implemented in PyTorch, which will
be made public with the final version of the paper
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and 1024 (German→English) with 2 LSTM lay-
ers. Dropout is put vertically between LSTM lay-
ers to improve regularization (Pham et al., 2014).
We create mini-batches with maximum 128 sen-
tence pairs of the same source size. For cross-
entropy training, the parameters are optimized us-
ing Adam (Kingma and Ba, 2014) with a learning
rate annealing schedule suggested in (Denkowski
and Neubig, 2017), starting from 0.001 until
0.00025. After reaching convergence on the train-
ing data, we fine-tune the models on the IWSLT
training set with learning rate of 0.0002. Finally,
we use our best models on the validation data as
the initialization for reinforcement learning using
a learning rate of 0.0001, which is done on the
IWSLT set for 50 epochs. Beam search is used
for decoding.

4.2 Phrase-based Experts

We selected phrase tables for the Experts in our
experiments. While other resources like terminol-
ogy lists can also be used for the translation an-
notations, our motivation here is that the phrase-
tables can additionally capture multi-word phrase
pairs, and additionally can better capture the dis-
tribution tail of rare phrases as compared to neural
models (Koehn and Knowles, 2017). We selected
the translation with the highest average probabili-
ties in the 4 phrase table scores for annotation.

On the English→Spanish task, the phrase tables
are trained on the same data as the NMT model,
while on the German→English direction, we sim-
ulate the situation when the expert is not in the
same domain as the test data to observe the po-
tentials. Therefore, we train an additional table on
the UFAL Medical Corpus v.1.0 corpus (which is
not observed by the NMT model) to for the out-
of-domain annotation.

5 Evaluation

5.1 Research questions

We aim to find the answers to the following re-
search questions:

• Given the annotation quality being imperfect,
how much does it affect the overall transla-
tion quality?

• How much does annotation participate in
translating rare words, and how consistently
can the model learn to copy the annotation?

• How will the model perform in a new do-
main? The copy mechanism does not depend
on the domain of the training or adaptation
data, which is optimal.

5.2 Evaluation Metrics

To serve the research questions above, we use the
following evaluation metrics:

• BLEU: score for general translation quality.

• SUGGESTION (SUG): The overlap between
the hypothesis and the phrase-table (on word
level), showing how much the expert content
is used by the model.

• SUGGESTION ACCURACY (SAC): The
intersection between the hypothesis, the
phrase-table suggestions and the reference.
This metrics shows us the accuracy of the
system on the rare-words which are sug-
gested by the phrase-table.

Discussion The SUG metric shows the consis-
tency of the model on the copy mechanism. Mod-
els with lower SUG are not necessarily worse, and
models with high SUG can potentially have very
low recall on rare-word translation by systemati-
cally copying bad suggestions and failing to trans-
late rare-words where the annotator is incorrect.
However, we argue that a high SUG system can be
used reliably with a high quality expert. For ex-
ample, in censorship management or name trans-
lation which is strictly sensitive, this quality can
help reducing output inconsistency. On the other
hand, the SAC metrics show improvement on rare-
word translation, but only on the intersection of
the phrase table and the reference. This subset
is our main focus. General rare-word translation
quality requires additional effort to find the refer-
ence aligned to the rare words in the source sen-
tences, which we consider for future work.

5.3 Experimental results

English→Spanish Results for this task are pre-
sented on table 2. First, the main difference be-
tween the settings is the SUG and SAC figures
for all test sets. Both of them increase dramat-
ically from baseline to annotation, and also in-
crease according to the level of supervision in our
model proposals. While the copy mechanism can
help us to copy more from the annotation, the
REINFORCE models are successfully trained to
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English→Spanish German→English
Portion N. Sentences Rare words coverage N. Sentences Rare words coverage
All 2.2M 82% (68K) 1.9M 82% (68K)
IWSLT Dev2010 1435 48% (135) 505 51% (196)
IWSLT Test2010 1701 46% (124) 1460 50% (136)
Out-of-domain 749 80% (384) 1511 66.64% (1334)

Table 1: Phrase-table coverage statistics. The out-of-domain section in English-Spanish is Business
and Biomedical in German-English. We show the total number of rare words detected by frequency (in
parentheses) and the percentage covered by the Experts (intersecting with the reference).

System—Data dev2010 tst2010 BusinessTest
BLEU SAC SUG BLEU SAC SUG BLEU SAC SUG

1. Baseline 37.0 78.8 48.1 31.1 73.7 46.0 32.1 69.6 58.1
2. + AN 37.0 97.0 71.9 31.1 93.0 74.2 32.0 91.5 79.1
3. + AN-RF 37.97 92.42 82.2 31.3 94.73 89.5 33.82 96.1 93.0
4. + AN-CP 37.3 90.9 77.8 30.7 96.5 85.5 33.2 89.8 84.9
5. + AN-CP-RF 38.1 100 99.2 31.13 100 99.2 33.34 98.3 97.6

Table 2: The results of English - Spanish on various domains: TEDTalks and Business. We use AN for
using annotations from the phrase table, RF for using REINFORCE (α= 0.5) and CP for using the Copy
mechanism.

System—Data dev2010 tst2010 HIML
BLEU SAC SUG BLEU SAC SUG BLEU SAC SUG

1. Baseline 37.5 66 45 36.14 66.9 45.1 32.4 46.3 37.2
2. + AN 37.1 93 84.1 35.6 91.9 84.4 33.99 87.1 85.1
3. + AN-CP 37.2 96 88.2 35.89 94.1 90.7 34.1 96.5 95.0
4. + AN-CP-RF 36.6 97 92.9 35.89 98.5 95.5 33.1 98.0 97.6
Biomedical-Oracle - - - - - - 37.82 81.77 65.44

Table 3: The results of German→English on various domains: TEDTalks and Biomedical. We use AN
for using annotations from the phrase table, RF for using REINFORCE (α= 0.5) and CP for using the
Copy mechanism.

make the model copy more consistently. Their
combination helps us achieve the desired behav-
ior, in which almost all of the annotations given
are copied, and we achieve 100% accuracy on the
rare-words section that the phrase table covers. As
mentioned in the discussion above, the SAC and
SUG figures, while being not enough to quanti-
tatively prove that the total number of rare words
translated, show that the phrase table is comple-
mentary to the neural machine translation, and the
more coverage the expert has, the more benefit this
method can bring.

We notice an improvement of 1 BLEU point
on dev2010 but only slight changes compared to
the baseline on tst2010. On the out-of-domain
set, however, the improved rare-word performance

leads to an increase of 1.7 BLEU points over the
baseline without annotation. Our models, despite
training on a noisier dataset, are able to improve
translation quality.

German→English Results are shown in Ta-
ble 3. On the dev2010 and tst2010 in-domain
datasets, we observe similar phenomena to the En-
Es direction. Rare-word performance increases
with the number of words copied, and the combi-
nation of the copy mechanism and REINFORCE
help us copy consistently. Surprisingly, however,
the BLEU score drops with annotations. This
may be because of the relative morphologically
complexity of the German words compared to the
English, making it harder to generate the correct
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word form.
In the experiments with an out-of-domain test

set (HIML), we use annotations from that do-
main to simulate a domain-expert. For compari-
son, we also trained an NMT model adapted to the
UFAL corpus, which we call the Oracle model.
In this domain, our models show the same be-
havior, in which almost every word annotated is
copied to the output. The annotation efficiently
improves translation quality by 1.7 BLEU points
over the baseline without annotation. The adapted
model has a higher BLEU score, but here per-
forms worse than our annotated model in terms
of phrase-table overlap and rare-word translation
accuracy for words in this set. Our model shows
significantly better rare word handling than the
baseline. Though the best obtainable system is
adapted to the in-domain data, this requires par-
allel text: this experiment shows the high poten-
tial to improve NMT on out-of-domain scenarios
using only lexical-level materials. We notice a
surprising drop of 1.0 BLEU points for the RE-
INFORCE model. Possible reasons include inef-
ficient beam search on REINFORCE models, or
the GLEU signal was out-weighted by the HIT
one during training, which is known for the dif-
ficulty (Zaremba and Sutskever, 2015).

5.4 Further Analysis

Name translation Names can often be trans-
lated by BPE, but it is noticeable about examples
of the inconsistency, which can be alleviated using
annotations, as illustrated in Figure 2-Top.

Copying long phrases We find that with very
high supervision, the model can learn to copy even
phrases completely into the output, as in Figure 2-
Bottom. Though this is potentially dangerous,
as the output may the lose the additional fluency
which comes from NMT, it is controllable by com-
bining RL and cross entropy loss (Paulus et al.,
2017).

Attention Plotting the attention map for the de-
coded sequences we notice that, while we marked
the beginning and end of annotated sections and
the separation between the source and the sugges-
tion with # and ## tokens, those positions received
very little weight from the decoder. One possible
explanation is that these tokens do not contribute
to the translation when decoding, and the annota-
tions may useful without bounding tags. For the
annotations used in the translation, we identified

two prominent cases; for the rare words whose
annotation need only be identically copied to the
target, the attention map focuses evenly on both
source and annotation, while the heat map typi-
cally heavily emphasizes only the annotation oth-
erwise. An example is illustrated in figure 3.

Effect of α The full results with respect to dif-
ferent α values which are used in Equation 3 for
reward weighting can be seen in Table 4. Higher α
values emphasize the signal to copy the source an-
notation, as can be seen from the increase in terms
of Accuracy and Suggestion utilization across the
values. As expected, as α goes toward 1.0, the
model gradually loses the signal needed to main-
tain translation quality and finally diverges.

α tst2010 BusinessTest
BL AC SUG BL AC SUG

0.0 31.3 91.2 78.2 33.7 76.5 71.9
0.2 31.0 94.7 88.2 33.9 78.1 76.8
0.5 31.3 94.7 89.5 33.8 96.1 93.0
1.0 did not converge

Table 4: Performances w.r.t to different alpha val-
ues. Metrics shown are BLEU (BL), ACCURACY
(AC) and SUGGESTION (SUG)

6 Related Work
Translating rare words in neural machine
translation is a rich and active topic, particularly
when translating morphologically rich languages
or translating named entities. Sub-word unit de-
composition or BPE (Sennrich et al., 2016) has
become the de-facto standard in most neural trans-
lation systems (Wu et al., 2016). Using phrase ta-
bles to handle rare words was previously explored
in (Luong et al., 2014), but was not compatible
with BPE. (Gulcehre et al., 2016) explored us-
ing pointer networks to copy source words to the
translation output, which could benefit from our
design but would require significant changes to the
architecture and likely be limited to copying only.
Additionally, models that can learn to remember
rare events were explored in (Kaiser et al., 2017).

Our work builds on the idea of using a phrase-
based neural machine translation to augment
source data, (Niehues et al., 2016; Denkowski and
Neubig, 2017), but can be extended to any an-
notation type without complicated hybrid phrase-
based neural machine translation systems. We
were additionally inspired by the use of feature
functions with lexical-based features from dictio-
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Figure 2: Top: Examples of name annotations with our framework from tst2010. The name Kean is
originally split by BPE into ‘K’ and ‘ean’. This is incorrectly translated without annotation (in blue) and
corrected with the annotation (in red). Bottom: An example of phrase copying, in which the German
word is translated into a long English phrase.

Figure 3: An attention heat map of an English-Spanish sentence pair (source on X-axis, target on Y-axis)
with annotated sections in red rectangles. Annotations and their source are bounded by # characters.

naries and phrase-tables in (Zhang et al., 2017).
They also rely on sample-based techniques, (Shen
et al., 2015), to train their networks, but their com-
putation is more expensive than the self-critical
network in our work. We focus here on rare events,
with the possibility to construct interactive models
for fast updating without retraining. We also use
the ideas of using REINFORCE to train sequence
generators for arbitrary rewards (Ranzato et al.,
2015; Nguyen et al., 2017; Bahdanau et al., 2016).
While this method remains difficult to train, it is
promising to use to achieve non-probabilistic fea-
tures for neural models: for example enforcing
formality in outputs in German, or censoring un-
desired outputs.

7 Conclusion
In this work, we presented a framework to alle-
viate the weaknesses of neural machine transla-

tion models by incorporating external knowledge
as Experts and training the models to use their
annotations using reinforcement learning and a
pointer network. We show improvements over
the unannotated model on both in- and out-of-
domain datasets. When only lexical resources
are available and in-domain fine-tuning cannot be
performed, our framework can improve perfor-
mance. The annotator might potentially be trained
together with the main model to balance transla-
tion quality with copying annotations, which our
current framework seems to be biased to.
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Abstract

This paper describes the NICT neural ma-
chine translation system submitted at the
NMT-2018 shared task. A characteristic
of our approach is the introduction of self-
training. Since our self-training does not
change the model structure, it does not in-
fluence the efficiency of translation, such
as the translation speed.

The experimental results showed that
the translation quality improved not only
in the sequence-to-sequence (seq-to-seq)
models but also in the transformer models.

1 Introduction

In this study, we introduce the NICT neural trans-
lation system at the Second Workshop on Neural
Machine Translation and Generation (NMT-2018)
(Birch et al., 2018). A characteristic of the sys-
tem is that translation qualities are improved by
introducing self-training, using open-source neu-
ral translation systems and defined training data.

The self-training method discussed herein is
based on the methods proposed by Sennrich et al.
(2016a) and Imamura et al. (2018), and they are
applied to a self training strategy. It extends only
the source side of the training data to increase
variety. The merit of the proposed self-training
strategy is that it does not influence the efficiency
of the translation, such as the translation speed,
because it does not change the model structure.
(However, the training time increases due to an in-
crease in the training data size.)

The proposed approach can be applied to any
translation method. However, we want to con-
firm on which model our approach is practically
effective. This paper verifies the effect of our self-
training method in the following two translation
models:

• Sequence-to-sequence (seq-to-seq) models
(Sutskever et al., 2014; Bahdanau et al.,
2014) based on recurrent neural networks
(RNNs). Herein, we use OpenNMT (Klein
et al., 2017) as an implementation of the seq-
to-seq model.

• The transformer model proposed by Vaswani
et al. (2017). We used Marian NMT
(Junczys-Dowmunt et al., 2018) as an imple-
mentation of the transformer model.

The remainder of this paper is organized as fol-
lows. Section 2 describes the proposed approach.
Section 3 describes the details of our system. Sec-
tion 4 explains the results of experiments, and Sec-
tion 5 concludes the paper.

2 Self-training Approach

2.1 Basic Flow

The self-training approach in this study is based
on a method proposed by Imamura et al. (2018).
Their method extends the method proposed by
Sennrich et al. (2016a) that a target monolingual
corpus is translated back into source sentences and
generates a synthetic parallel corpus. Then, the
forward translation model is trained using the orig-
inal and synthetic parallel corpora. The synthetic
parallel corpus contains multiple source sentences
of a target sentence to enhance the encoder and at-
tention. The diversity of the synthetic source sen-
tences is important in this study. Imamura et al.
(2018) confirmed that the translation quality im-
proved when synthetic source sentences were gen-
erated by sampling, rather than when they were
generated by n-best translation.

Although Imamura et al. (2018) assumed the us-
age of monolingual corpora, it can be modified to
a self-training form by assuming the target side of
parallel corpora as monolingual corpora. In fact,
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Original Parallel CorpusSynthetic Source Sentences Synthetic Parallel Corpus (Forward) TranslatorSource → TargetBack-TranslatorTarget → Source TranslationTest SentenceTraining
Training

Target Sentences
Figure 1: Flow of Self-training

they proposed such self-training strategy and con-
firmed the effect on their own corpus.

Figure 1 shows the flow of self-training. The
procedure is summarized as follows.

1. First, train the back-translator that translates
the target language into the source using orig-
inal parallel corpus.

2. Extract the target side of the original paral-
lel corpus, and translate it into the source
language (synthetic source sentences) using
the above back-translator. During back-
translation, it not only generates one sentence
but also generates multiple source sentences
per target sentence using a sampling method.

3. Construct the synthetic parallel corpus mak-
ing pairs of the synthetic source sentences
and their original target sentences. If we de-
fine the number of synthetic source sentences
per target sentence as N , the size of the
synthetic parallel corpus becomes N -times
larger than the original parallel corpus.

4. Train the forward translator, which translates
the source to the target, using a mixture of the
original and synthetic parallel corpora.

In this study, we modify the method proposed
by Imamura et al. (2018) to improve the efficiency
of the training while maintaining the diversity of
the source sentences.

2.2 Diversity Control
Imamura et al. (2018) generates synthetic source
sentences by sampling. The sampling is based on
the posterior probability of an output word as fol-
lows.

yt ∼ Pr(y|y<t,x), (1)

where yt, y<t, and x denote the output word se-
quence at time t, history of the output words, and
input word sequence, respectively.

To control the diversity of generated sentences,
the synthetic source generation in this paper intro-
duces an inverse temperature parameter 1/τ into
the softmax function.

yt ∼
Pr(y|y<t,x)

1/τ

∑
y′ Pr(y

′|y<t,x)1/τ
(2)

If we set the inverse temperature parameter 1/τ
greater than 1.0, high probability words become
preferable, and if we set it to infinity, the sampling
becomes identical to the argmax operation. On the
contrary, if we set it less than 1.0, diverse words
will be selected, and the distribution becomes uni-
form if we set it zero.

2.3 Dynamic Generation
A problem in the research proposed by Imamura
et al. (2018) is that the training time increases
(N+1)-times with an increase in the training data
size. To alleviate this problem, we introduce dy-
namic generation that uses different synthetic par-
allel sets for each epoch (Kudo, 2018). Specifi-
cally, a synthetic parallel sentence set, which con-
tains one synthetic source sentence per target sen-
tence, is used for an epoch of the training. By
changing the synthetic parallel sentence set for
each epoch, we expect a similar effect to using
multiple source sentences in the training.

For implementation, we do not embed the dy-
namic generation in the training program but per-
form it offline. Multiple synthetic source sen-
tences were generated in advance, whose number
N is 20 this time, and N synthetic parallel sets are
constructed. During training, a synthetic set is se-
lected for each epoch using round-robin schedul-
ing, and learns the model using the synthetic set
and the original corpus. We can use the same
learning rates because the sizes of the original and
synthetic sets are the same. Using the dynamic
generation, the size of the training data is restricted
to double of the original parallel corpus. 1

The training procedure is summarized as fol-
lows.

1. First, train the back-translator using the orig-
inal parallel corpus.

2. Translate the target side of the original cor-
pus into N synthetic source sentences per tar-
get sentence using the above back-translator.

1Although the size is restricted double, the training time
takes more than double because of late convergence.
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Note that the sampling method described in
Section 2.2 is used for the generation.

3. Make N sets of the synthetic parallel sen-
tences by pairing the synthetic source sen-
tences generated in Step 2 and the target side
of the original parallel corpus.

4. Train the forward translator. In each epoch,
select one synthetic parallel set, and train the
model using the mixture of the synthetic and
original parallel sets.

3 Applied Systems

In this paper, we apply the proposed self-training
approach to two translator types; the seq-to-seq
model (Sutskever et al., 2014; Bahdanau et al.,
2014) implemented by OpenNMT (LUA version)
(Klein et al., 2017) and the transformer model
(Vaswani et al., 2017) implemented by Marian
NMT (Junczys-Dowmunt et al., 2018). Table 1
summerizes the system description.

3.1 Back-Translator

The back-translator used herein is OpenNMT,
which employs an RNN-based seq-to-seq model.

The training corpus for the back-translation is
preprocessed using the byte-pair encoding (BPE)
(Sennrich et al., 2016b). For each language, 16K
subword types were independently computed. The
model was optimized using the stochastic gradient
descent (SGD) whose learning rate was 1.0.

For the back-translation, we modified Open-
NMT to generate synthetic source sentences by
sampling. This time, we generated three types
of synthetic source sentences changing the inverse
temperature parameter 1/τ to 1.0, 1.2, and 1.5.

3.2 Forward Translator 1: Transformer
Model

The first forward translator is Marian NMT, which
is based on the transformer model. We used this
system for the submission. The settings were al-
most identical to the base model of Vaswani et al.
(2017). 2 The vocabulary sets were equal to those
of the back-translator for the original parallel cor-
pus. For the synthetic source sentences, we di-
rectly used subword sequences output from the
back-translator.

2We referred the settings described
at https://github.com/marian-nmt/marian-
examples/tree/master/transformer.

Marian NMT performs the length normalization
using the following equation.

llnorm(y|x) =
∑

t log Pr(yt|y<t,x)

TWP
, (3)

where llnorm(y|x), WP , and T denote the log-
likelihood normalized by the output length, word
penalty, and number of output words, respectively.
If we set the word penalty greater than 0.0, long
hypotheses are preferred. The setting of the word
penalty will be further discussed in Section 4.1.

3.3 Forward Translator 2: Seq-to-Seq Model

The other forward translator used herein is Open-
NMT based on the seq-to-seq model. The settings
were almost the same as the back-translator. SGD
was used for the optimization, but the learning rate
was set to 0.5 because all target sentences appear
twice in an epoch.

At the translation, we translated the source sen-
tence into 10-best, and the best hypothesis was se-
lected using the length reranking based on the fol-
lowing equation (Oda et al., 2017).

llbias(y|x) =
∑

t

log Pr(yt|y<t,x) +WP · T,

(4)
where llbias(y|x) denotes the log-likelihood bi-
ased by output length. Although this formula dif-
fers from Equation 3, there is an equivalent ef-
fect that long hypotheses are preferred if the word
penalty WP is set to a positive value.

4 Experiments

In this section, we describe our results for the
NMT-2018 shared task in English-German trans-
lation. Note that the shared task uses the WMT-
2014 data set preprocessed by Stanford NLP
Group.

In our experiments, we add two baselines. One
is the model trained from the original parallel cor-
pus only. Another is the model trained using the
synthetic corpus, which contains 1-best generation
and did not use the dynamic generation, with the
original corpus. For the inverse temperature pa-
rameter 1/τ , we tested 1.0, 1.2, and 1.5. This is
because the translation quality was better when the
diversity was slightly inhibited in our preliminary
experiments. Note that the submitted system was
Marian NMT (the transformer model) trained us-
ing 1/τ = 1.0 synthetic corpus.
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Marian NMT OpenNMT
Preprocessing BPE 16K (independent) BPE 16K (independent)
Model Transformer Seq-to-Seq

Word Embedding 512 units 500 units
Encoder 6-layer (dmodel = 512, dff = 2048) 2-layer Bi-LSTM (500 + 500 units)
Decoder 6-layer (dmodel = 512, dff = 2048) 2-layer LSTM (1,000 units)

Training Adam (early stopping by cross-entropy) SGD (14 + 6 epochs)
Learning Rate 0.0003 Back-translator: 1.0

Forward Translator: 0.5
Dropout ddrop = 0.1 ddrop = 0.3
Maximum Length 100 80
Mini-batch Size 64 64

Translation Beam Width: 6 Beam Width: 10
Program Arguments
(for Training)

--type transformer
--max-length 100
--mini-batch-fit --maxi-batch 1000
--early-stopping 10
--valid-freq 5000
--valid-metrics cross-entropy

perplexity translation
--beam-size 6
--enc-depth 6 --dec-depth 6
--transformer-heads 8
--transformer-postprocess-emb d
--transformer-postprocess dan
--transformer-dropout 0.1
--label-smoothing 0.1
--learn-rate 0.0003 --lr-warmup 16000
--lr-decay-inv-sqrt 16000 --lr-report
--optimizer-params 0.9 0.98 1e-09
--clip-norm 5
--sync-sgd --seed 1111
--exponential-smoothing

-brnn -brnn_merge concat
-rnn_size 1000
-end_epoch 20
-start_decay_at 14
-param_init 0.06
-learning_rate 0.5

Table 1: Summary of our Systems

4.1 Word Penalty / Length Ratio

The BLEU score significantly changes due to the
translation length (Morishita et al., 2017). For
instance, Figure 2 shows BLEU scores of our
submitted system (a) when the word penalty was
changed from 0.0 to 2.0 and (b) on various length
ratios (LRs), which indicate the ratios of the num-
ber of words of the system outputs to the reference
translations (sys/ref).

As shown in Figure 2 (a), the BLEU scores
change over 0.5 when we change the word
penalty. The penalties of the peaks are differ-
ent among the development/test sets. The BLEU
score peaks were at WP = 1.2, 0.2, and 0.5
in the newstest2013, newstest2014, and
newstest2015 sets, respectively. Therefore,
the BLEU scores significantly depend on the word
penalty. However, as shown in Figure 2 (b), we
can see that the peaks of the BLEU scores were at
LR = 1.0 in all development/test sets. This set-
ting supports no brevity penalty and high n-gram

precision. 3

These results reveal that the length ratio should
be constant for fair comparison when we compare
different systems because they generate transla-
tions of different lengths. Therefore, we compare
different models and settings by tuning the word
penalty to maintain the stable length ratio on the
development set (newstest2013). In this ex-
periment, we show results of the two length ratios
based on the “original parallel corpus only” of the
transformer model. Note that the submitted sys-
tem employs the first setting.

1. LR ≃ 0.988, which is the length ratio when
WP = 1.0.

2. LR ≃ 0.973, which is the length ratio when
WP = 0.5.

4.2 Results
Tables 2 and 3 show the results of Marian NMT
(the transformer model) and OpenNMT (the seq-

3If we tune the word penalty to make the BLEU score
maximum on the newstest2013, the length ratios of
newstest2014 and 2015 become greater than 1.0.
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262728293031 0.0 0.5 1.0 1.5 2.0BLEU Word Penalty newstest2013newstest2014newstest2015
(a) Word Penalty vs. BLEU

262728293031 0.97 0.98 0.99 1.00 1.01 1.02 1.03BLEU Length Rationewstest2013newstest2014newstest2015
(b) Length Ratio vs. BLEU

Figure 2: Word Penalty, Length Ratio and BLEU Scores (Marian NMT; 1/τ = 1.0)

to-seq model), respectively. These tables consist
of three information groups. The first group shows
training results; the number of training epochs and
perplexity of the development set. The second
and third groups show the BLEU scores when the
length ratio in the development set become 0.988
and 0.973, respectively. The results of Marian
NMT were better than those of OpenNMT in all
cases. The following discussion mainly focuses
on the results of Marian NMT (Table 2), but there
was similarity in Table 3.

First, in comparison with the “original parallel
corpus only” and the “one-best without dynamic
generation,” the perplexity of the one-best case in-
creased from 4.37 to 4.43. Along with increas-
ing the perplexity, the BLEU scores of the test
sets (newstest2014 and newstest2015)
degraded to 26.19 and 28.49 when LR ≃ 0.988.
This result indicates that the self-training, which
simply uses one-best translation result, is not ef-
fective.

On the contrary, using our self-training method,
the perplexities were decreased and the BLEU
scores improved significantly regardless of the in-
verse temperature parameters in most cases. 4 For
example, when 1/τ = 1.0, the perplexity were
decreased to 4.20, and the BLEU scores improved
to 27.59 and 30.19 on the newstest2014 and
2015, respectively, when LR ≃ 0.988. When
LR ≃ 0.973, the BLEU scores further improved,
but the improvements come from the length ratio.
The same tendency was observed in OpenNMT.
We can conclude that the proposed self-training
method is effective for the transformer and seq-

4The significance test was performed using the multeval
tool (Clark et al., 2011) at a significance level of 5% (p <
0.05). https://github.com/jhclark/multeval

to-seq models.
The effectiveness of the inverse temperature pa-

rameter is still unclear because the BLEU scores
were depend on the parameters.

5 Conclusions

The self-training method in this paper improves
the accuracy without changing the model struc-
ture. The experimental results show that the pro-
posed method is effective for both the transformer
and seq-to-seq models. Although our self-training
method increases training time by more than dou-
ble, we believe that it is effective for the tasks that
emphasize on translation speed because it does not
change the translation efficiency.

In this paper, only restricted settings were
tested. We require further experiments such as
another back-translation methodology and settings
of the inverse temperature parameters.
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Abstract

This paper describes the submissions to
the efficiency track for GPUs at the Work-
shop for Neural Machine Translation and
Generation by members of the University
of Edinburgh, Adam Mickiewicz Univer-
sity, Tilde and University of Alicante. We
focus on efficient implementation of the
recurrent deep-learning model as imple-
mented in Amun, the fast inference en-
gine for neural machine translation. We
improve the performance with an efficient
mini-batching algorithm, and by fusing the
softmax operation with the k-best extrac-
tion algorithm. Submissions using Amun
were first, second and third fastest in the
GPU efficiency track.

1 Introduction

As neural machine translation (NMT) models have
become the new state-of-the-art, the challenge is to
make their deployment efficient and economical.
This is the challenge that this shared task (Birch
et al., 2018) is shining a spotlight on.

One approach is to use an off-the-shelf deep-
learning toolkit to complete the shared task where
the novelty comes from selecting the appropriate
models and tuning parameters within the toolkit
for optimal performance.

We take an opposing approach by eschewing
model selection and parameter tuning in favour of
efficient implementation. We use and enhanced
a custom inference engine, Amun (Junczys-
Dowmunt et al., 2016), which we developed on the
premise that fast deep-learning inference is an is-
sue that deserves dedicated tools that are not com-
promised by competing objectives such as training
or support for multiple models. As well as deliv-
ering on the practical goal of fast inference, it can

serve as a test-bed for novel ideas on neural net-
work inference, and it is useful as a means to ex-
plore the upper bound of the possible speed for
a particular model and hardware. That is, Amun
is an inference-only engine that supports a limited
number of NMT models that put fast inference on
modern GPU above all other considerations.

We submitted two systems to this year’s shared
task for the efficient translation on GPU. Our first
submission was tailored to be as fast as possible
while being above the baseline BLEU score. Our
second submission trades some of the speed of
the first submission to return better quality trans-
lations.

2 Improvements

We describe the main enhancements to Amun
since the original 2016 publication that has im-
proved translation speed.

2.1 Batching

The use of mini-batching is critical for fast model
inference. The size of the batch is determined by
the number of inputs sentences to the encoder in
an encoder-decoder model. However, the num-
ber of batches during decoding can vary as some
sentences have completed translating or the beam
search add more hypotheses to the batch.

It is tempting to ignore these considerations,
for example, by always decoding with a con-
stant batch and beam size and ignoring hypothe-
ses which are not needed. Figure 1 illustrates a
naı̈ve mini-batching with a constant size batch.
The downside to this algorithm is lower transla-
tion speed due to wasteful processing.

Amun implements an efficient batching algo-
rithm that takes into account the actual number of
hypotheses that need to be decoded at each decod-
ing step, Figure 2.
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Algorithm 1 Naı̈ve mini-batching
procedure BATCHING(encoded sentences i)

Create batch b from i
while hypo h 6= EOS, ∀h ∈ b do

Decode(b)
end while

end procedure

Algorithm 2 Mini-batching
procedure BATCHING(encoded sentences i)

Create batch b from i
while b 6= ∅ do

Decode(b)
for all hypo h ∈ b do

if h = EOS then
Remove h from b

end if
end for

end while
end procedure

We will compare the effect of the two imple-
mentations in the Section 4.

2.2 Softmax and K-Best Fusion

Most NMT models predict a large number of
classes in their output layer, corresponding to the
number of words or subword units in their target
language. For example, Sennrich et al. (2016) ex-
perimented with target vocabulary sizes of 60,000
and 90,000 sub-word units.

The output layer of most deep learning models
consist of the following steps

1. multiplication of the weight matrix with the
input vector p = wx

2. addition of a bias term to the resulting scores
p = p + b

3. applying the activation function, most com-
monly softmax pi = exp(pi)/

∑
exp(pi)

4. a search for the best (or k-best) output classes
argmaxi pi

Figure 1 shows the amount of time spent in each
step during translation. Clearly, the output layer of
NMT models are very computationally expensive,
accounting for over 60% of the translation time.

We focus on the last three steps; their outline is
shown in Algorithm 3. For brevity, we show the
algorithm for 1-best, a k-best search is a simple
extension of this.

Figure 1: Proportion of time spent during transla-
tion

Algorithm 3 Original softmax and k-best algo-
rithm

procedure ADDBIAS(vector p, bias vector b)
for all pi in p do

pi ← pi + bi
end for

end procedure

procedure SOFTMAX(vector p)
. calculate max for softmax stability

max← −∞
for all pi in p do

if pi > max then
max← pi

end if
end for

. calculate denominator
sum← 0
for all pi in p do

sum← sum + exp(pi −max)
end for

. calculate softmax
for all pi in p do

pi ← exp(pi−max)
sum

end for
end procedure

procedure FIND-BEST(vector p)
max← −∞
for all pi in p do

if pi > max then
max← pi
best← i

end if
end for
return max, best

end procedure
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As can be seen, the vector p is iterated over
five times - once to add the bias, three times to
calculate the softmax, and once to search for the
best classes. We propose fusing the three func-
tions into one kernel, a popular optimization tech-
nique (Guevara et al., 2009), making use of the
following observations.

Firstly, softmax and exp are monotonic func-
tions, therefore, we can move the search for the
best class from FIND-BEST to SOFTMAX, at the
start of the kernel.

Secondly, we are only interested in the proba-
bilities of the best classes during inference, not of
all classes. Since they are now known at the start
of the softmax kernel, we compute softmax only
for those classes.

Algorithm 4 Fused softmax and k-best
procedure FUSED-KERNEL(vector p, bias vec-
tor b)

max← −∞
sum← 0
for all pi in p do

p′i ← pi + bi
if p′i > max then

∆← max− p′i
sum← ∆× sum + 1
max← p′i
best← i

else
sum← sum + exp(p′i −max)

end if
end for
return 1

sum , best
end procedure

Thirdly, the calculation of max and sum can be
accomplished in one loop by adjusting sum when-
ever a higher max is found during the looping:

sum = ext−maxb +
∑

i=0...t−1

exi−maxb

= ext−maxb +
∑

i=0...t−1

exi−maxa+∆

= ext−maxb + e∆ ×
∑

i=0...t−1

exi−maxa

where maxa is the previous maximum value,
maxb is the now higher maximum value, i.e.,
maxb > maxa, and ∆ = maxa − maxb. The
outline of our function is shown in Algorithm 4.

In fact, a well known optimization is to skip
softmax altogether and calculate the argmax over
the input vector, Algorithm 5. This is only possi-
ble for beam size 1 and when we are not interested
in returning the softmax probabilities.

Algorithm 5 Find 1-best only
procedure FUSED-KERNEL-1-BEST(vector p,
bias vector b)

max← −∞
for all pi in p do

if pi + bi > max then
max← pi + bi
best← i

end if
end for
return best

end procedure

Since we are working on GPU optimization, it
is essential to make full use of the many GPU
cores available. This is accomplished by well-
known parallelization methods which multi-thread
the algorithms. For example, Algorithm 5 is par-
allelized by sharding the vector p and calculating
best and max on each shard in parallel. The ulti-
mate best is found in the following reduction step,
Algorithm 6.

2.3 Half-Precision

Reducing the number of bits needed to store float-
ing point values from 32-bits to 16-bits promises
to increase translation speed through faster calcu-
lations and reduced bandwidth usage. 16-bit float-
ing point operations are supported by the GPU
hardware and software available in the shared task.

In practise, however, efficiently using half-
precision value requires a comprehensive redevel-
opment of the GPU code. We therefore make do
with using the GPU’s Tensor Core1 fast matrix
multiplication routines which transparently con-
verts 32-bit float point input matrices to 16-bit val-
ues and output a 32-bit float point product of the
inputs.

3 Experimental Setup

Both of our submitted systems use a sequence-
to-sequence model similar to that described in
Bahdanau et al. (2014), containing a bidirectional

1https://devblogs.nvidia.com/programming-tensor-cores-
cuda-9/
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Algorithm 6 Parallel find 1-best only
procedure FUSED-KERNEL-1-BEST(vector p,
bias vector b)

. parallelize
Create shards p1...pn from p
parfor pj ∈ p1...pn do

maxj ← −∞
for all pji in pj do

if pji + bi > max then
maxj ← pji + bi
bestj ← i

end if
end for

end parfor
. reduce

max← −∞
for all maxj ∈ max1...maxn do

if maxj > max then
max← maxj

best← bestj

end if
end for
return best

end procedure

RNN in the encoder and a two-layer RNN in the
decoder. We use byte pair encoding (Sennrich
et al., 2016) to adjust the vocabulary size.

We used a variety of GPUs to train the models
but all testing was done on an Nvidia V100. Trans-
lation quality was measured using BLEU, specif-
ically multi-bleu as found in the Moses toolkit2.
The validation and test sets provided by the shared
task organisers were used to measure translation
quality, but a 50,000 sentence subset of the train-
ing data was used to measure translation speed to
obtain longer, more accurate measurements.

3.1 GRU-based system

Our first submitted system uses gated recurred
units (GRU) throughout. It was trained using Mar-
ian (Junczys-Dowmunt et al., 2018), but Amun
was chosen as inference engine.

We experimented with varying the vocabulary
size and the RNN state size before settling for a
vocabulary size of 30,000 (for both source and tar-
get language) and 256 for the state size, Table 1.

After further experimentation, we decided to
use sentence length normalization and NVidia’s

2https://github.com/moses-smt/mosesdecoder

State dim
Vocab size 256 512 1024
1.000 12.23 12.77
5,000 16.79 17.16
10,000 18.00 18.19
20,000 - 19.52
30,000 18.51 19.17 19.64

Table 1: Validation set BLEU (newstest2014) for
GRU-based model

Vocab size
Beam size 40,000 50,000
1 23.45 23.32
2 24.15 24.04
3 24.48
4 24.42
5 24.48

Table 2: Validation set BLEU for mLSTM-based
model

Tensor Core matrix multiplication which in-
creased translation quality as well as translation
speed. The beam was kept at 1 throughout for the
fastest possible inference.

3.2 mLSTM-based system

Our second system uses multiplicative-
LSTM (Krause et al., 2017) in the encoder
and the first layer of a decder, and a GRU in the
second layer, trained with an extension of the
Nematus (Sennrich et al., 2017) toolkit which
supports such models; multiplicative-LSTM’s
suitability for use in NMT models has been
previously demonstrated by Pinnis et al. (2017).
As with our first submission, Amun is used as
inference engine. We trained 2 systems with
differing vocabulary sizes and varied the beam
sizes, and chose the configuration that produced
the best results for translation quality on the
validation set, Table 2.

4 Result

4.1 Batching

The efficiency of Amun’s batching algorithm can
be seen by observing the time taken for each de-
coding step in a batch of sentences, Figure 2.
Amun’s decoding becomes faster as sentences
are completely translated. This contrasts with
the Marian inference engine, which uses a naı̈ve
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Figure 2: Time taken for each decoding step for a
batch of 1280 sentences

Figure 3: Speed v. batch size

batching algorithm, where the speed stays rel-
atively constant throughout the decoding of the
batch.

Using batching can increase the translation
speed by over 20 times in Amun, Figure 3. Just
as important, it doesn’t suffer degradation with
large batch sizes, unlike the naı̈ve algorithm which
slows down when batch sizes over 1000 is used.
This scalability issue is likely to become more rel-
evant as newer GPUs with ever increasing core
counts are released.

4.2 Softmax and K-Best Fusion
Fusing the bias and softmax operations in the out-
put layer with the beam search results in a speed
improvement by 25%, Figure 4. Its relative im-
provement decreases marginally as the beam size
increases.

Further insight can be gained by examining the
time taken for each step in the output layer and
beam search, Table 3. The fused operation only
has to loop through the large cost matrix once,
therefore, for low beam sizes its is comparable in
speed to the simple kernel to add the bias. For
higher beam sizes, the cost of maintaining the n-

Figure 4: Using fused operation

best list is begins to impact on speed.

Baseline Fused
Beam size 1

Multiplication 5.39 5.38 (+0%)
Add bias 1.26
Softmax 1.69 2.07 (-86.6%)
K-best extr. 12.53

Beam size 3
Multiplication 14.18 14.16 (+0%)
Add bias 3.76
Softmax 4.75 3.43 (-87.1%)
K-best extr. 18.23

Beam size 9
Multiplication 38.35 38.42 (+0%)
Add bias 11.64
Softmax 14.4 17.5 (-72.1%)
K-best extr. 36.7

Table 3: Time taken (sec) breakdown

4.3 Tensor Cores

By taking advantage of the GPU’s hardware ac-
celerated matrix multiplication, we can gain up to
20% in speed, Table 4.

Beam size Baseline Tensor Cores
1 39.97 34.54 (-13.6%)
9 145.8 116.8 (-20.0%)

Table 4: Time taken (sec) using Tensor Cores

5 Conclusion and Future Work

We have presented some of the improvement to
Amun which are focused on improving NMT in-
ference.
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We are also working to make deep-learning
faster using more specialised hardware such as FP-
GAs. It would be interesting as future work to
bring our focused approach to fast deep-learning
inference to a more general toolkit.
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Abstract

We present a system description of the
OpenNMT Neural Machine Translation
entry for the WNMT 2018 evaluation. In
this work, we developed a heavily opti-
mized NMT inference model targeting a
high-performance CPU system. The final
system uses a combination of four tech-
niques, all of them leading to significant
speed-ups in combination: (a) sequence
distillation, (b) architecture modifications,
(c) pre-computation, particularly of vo-
cabulary, and (d) CPU targeted quantiza-
tion. This work achieves the fastest perfor-
mance of the shared task, and led to the de-
velopment of new features that have been
integrated to OpenNMT and made avail-
able to the community.

1 Introduction

As neural machine translation becomes more
widely deployed in production environments, it
becomes also increasingly important to serve
translations models in a way as fast and as
memory-efficient as possible, both on dedicated
GPU and on standard CPU hardwares. The WN-
MT 2018 shared task1 focused on comparing dif-
ferent systems on both accuracy and computation-
al efficiency (Birch et al., 2018).

This paper describes the entry for the OpenN-
MT system to this competition. Our specific in-
terest was to explore the different techniques for
training and optimizing CPU models for very high
throughput while preserving highest possible ac-
curacy compared to state-of-the-art. While we did
not put real focus on memory and docker size foot-

1https://sites.google.com/site/wnmt18/
shared-task
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Figure 1: Pareto on accuracy and throughput. The different
models on the plot are described in the paper, the correspond-
ing BLEU score calculated on newstest2014, and throughput
in word per second measured on non dedicated M5 instances.

print, we applied basic optimization techniques to
reduce the final size of our models.

Our strategy for the shared task was to
take advantage of four main optimization tech-
niques: (a) sequence-level distillation, in particu-
lar cross-class distillation from a transformer mod-
el (Vaswani et al., 2017) to an RNN, (b) architec-
ture search, changing the structure of the network
by increasing the size of the most efficient mod-
ules, reducing the size of the most costly mod-
ules and replacing default gated units, (c) special-
ized precomputation such as reducing dynamical-
ly the runtime target vocabulary (Shi and Knight,
2017), and (d) quantization and faster matrix op-
erations, based on the work of Devlin (2017) and
gemmlowp2. All of these methods are employed
in a special-purpose C++-based decoder CTrans-
late3. The complete training workflow including
data preparation and distillation is described in
Section 2. Inference techniques and quantization
are described in Section 3.

Our experiments compare the different ap-
proaches in terms of speed and accuracy. A meta

2https://github.com/google/gemmlowp
3https://github.com/OpenNMT/CTranslate
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question of this work is to decide which models
represent interesting and useful points on the Pare-
to curve. The main results are described in Fig-
ure 1. From these results we highlight two models
which were submitted to the shared task: Our first
system distill-small-opt is a 2-layer LST-
M network that is only -2.19 BLEU points behind
the reference transformer model, but with a speed-
up of x18. Our second system achieves 23.11
on WNMT 2018 English-German newstest2014 (-
4.85 behind the reference model) but with an ad-
ditional decoding speed-up of x8. The final model
reaches 800 words/sec on the dedicated evaluation
CPU hardware and is the fastest CPU model sub-
mitted4.

We additionally report several new results about
recent work in NMT and model efficiency: (a)
we show that distillation of transformer model to
a simple RNN outperforms direct training of a
strong RNN model - extending findings of Crego
and Senellart (2016) who reported that student
models could outperform their teacher for refer-
ence RNN-based model. (b) We compare quan-
titatively different quantizations, and (c) we give
an improved algorithm to dynamically select tar-
get vocabulary for a given batch. Finally, we also
report several complementary experiments that re-
sulted in systems inside of the pareto convex bor-
der. For instance, we compare using 8-bit quanti-
zation to 16-bit quantization.

2 Training and Distillation

Following the shared task setup, we use the da-
ta set provided by WNMT 2018, which is a pre-
processed and tokenized version of WMT 2014
on English-German translation5. The training data
contains about 4.5M sentence pairs. We use news-
test2013 as the validation set and newstest2014
and newstest2015 as the testing sets. Before train-
ing, we trained a 32K joint byte-pair encoding
(BPE) to preprocess the data (Sennrich et al.,
2015) (actual vocabulary size of 34K). We lim-
it the sentence length to 100 based on BPE pre-
processing in both source and target side (exclud-
ing only 0.31% of the training corpus). After de-
coding, we remove the BPE joiners and evaluate
the tokenized output with multi-bleu.perl (Koehn
et al., 2007).

4On non dedicated hardware, our best benchmark shows
621 words/sec, see section 4.3 for analysis of the difference.

5https://nlp.stanford.edu/projects/
nmt/

2.1 Teacher Model: Transformer

Transformer networks (Vaswani et al., 2017) are
the current state-of-the art in many machine trans-
lation tasks (Shaw et al., 2018). The network
directly models the representations of each sen-
tence with a self-attention mechanism. Hence
much longer term dependencies than with stan-
dard sequence-to-sequence models can be learned,
which is especially important for language pairs
like English-German. In addition, transformer al-
lows to easily parallelise the MLE training process
across multiple GPUs. However, a large number
of parameters are needed by the network to obtain
its best performance. In order to reduce the mod-
el size, we applied knowledge distillation, a tech-
nique that has proven successful for reducing the
size of neural models. We considered the trans-
former network as our teacher network.

We used OpenNMT-tf 6 to train two transformer
based systems: base and large described in Table
2 with their evaluation in Table 3. For both, the
learning rate is set to 2.0 and warmup steps 8000,
we average the last 8 checkpoints to get the final
model. Our baseline system outperforms the pro-
vided baseline Sockeye model by +0.37 BLEU on
newstest2014.

2.2 Distillation to RNN

To train our smaller student system, we follow the
sequence-level knowledge distillation approach
described by Kim and Rush (2016). First, we build
the full transformer as above. Next, we use the
teacher system to retranslate all the training source
sentences to generate a set of simplified target sen-
tences. Then, we use this simplified corpus (o-
riginal source and newly generated target) to train
a student system. The student system can be as-
signed with smaller network size, in our case a
RNN-based sequence-to-sequence model similar
to Bahdanau et al. (2014)

Results from Crego and Senellart (2016) show
that the distillation process not only improves the
throughput of the student models and reduce their
size, but can also improve the translation quali-
ty. Also, these distilled systems have the interest-
ing feature that they performed almost identically
when reducing beam search size K from K = 5 to
K = 2. Seemingly the smaller model learns from
more consistent translations and can produce ef-
fective results with simpler syntactic structure and

6https://github.com/OpenNMT/OpenNMT-tf
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Figure 2: Profiling of the throughput during inference
on newstest2014. Each line is a different system.
The small-1,2,5 are distilled systems with respec-
tive beam size of 1, 2, 5. distill-tiny-opt and
distill-small-opt are the final systems. The decoding
time for each of these systems range from 90 to 1800 second-
s. The top table shows the distribution of time per component
of the network, while the bottom table shows the distribution
of time for network operators.

even word choices. One major question here was
to find out whether cross-class distillation work-
s as well, here from a transformer model to stu-
dent RNN model. Remarkably, Figure 3 shows
that a distilled simple RNN system outperform-
s the direct strong RNN model7 by a significant
+1.4 BLEU score.

2.3 Model Analysis

Profiling of the throughput of our student system,
before and after further optimizations, is presented
in Figure 2. Here we compare along two splits,
the components of the system: encoder, decoder,
attention, word generation, and beam search; and
model components: linear, MM (matrix multiply,
primarily in attention), softmax, activations, and
others. From this analysis we gather the following
facts:

• The most costly part of the inference is the
7Both NMT systems follow the standard architecture of

Luong et al. (2015). It is implemented as an encoder-decoder
network with multiple layers of a RNN with Long Short-
Term Memory (Hochreiter and Schmidhuber, 1997) hidden
units and attentional architecture. Full details of the OpenN-
MT system are given in Klein et al. (2017).

generator, that is the final Linear layer feed-
ing Softmax with weights corresponding to
each single vocab of the target language. This
is by far the largest matrix multiplication of
the system: (B,W ) ∗ (W,V ) (with B being
the batch*beam size, W the width of the net-
work, and V the size of the vocabulary).

• Although the cost of the encoder for beam
size 1 is higher than the decoder, the decoder
cost - including generator and attention mod-
el - grows linearly with the beam size.

• The most costly operations are the multi-
plication of the Linear matrix-vector in the
RNNs and generator, contributing for more
than 95% of the complete processing time.

From these facts, it is obvious that we need to
optimize the efficiency of linear matrix-vector op-
eration, to reduce the amount of such required op-
erations, and have a special focus on the genera-
tion layer.

These observations led us to several further
model experiments. First we tried different mod-
el combination based on a “fat encoder, thin de-
coder” spirit: ie. increasing if necessary the num-
ber of operations in the encoder part if we can in
parallel reduce the number of operations in the de-
coder. Second, we experimented with replacing
LSTM cells with GRU cells (Cho et al., 2014). In-
deed LSTM cells have 4 gates while GRU cells
only 3, so a potential 25% improvement in speed
with similar performance can be reached. Note
though, that we found that GRU requires more
care in optimization while a naive SGD optimiza-
tion is generally sufficient for LSTM-RNN train-
ing.

3 Inference Optimizations

3.1 Implementation: CTranslate
CTranslate is the open-source inference engine
for OpenNMT models (initially designed for Lua
Torch). The code is implemented in raw C++ with
minimal dependencies using the popular Eigen
linear algebra library. CTranslate’s goal is to offer
a lightweight and embeddable solution for execut-
ing models. It benefits from Eigen efficiency and
is about 20% faster than a Torch application using
Intel MKL. Additionally, the use of C++ over a
garbage-collected language ensures a predictable
and reduced memory usage. All additional opti-
mizations are built on top of this library.
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3.2 Generator Vocabulary Reduction

As seen in the last section, the word generation
matrix operations and softmax require significant
time. This time is scaling linearly with the ef-
fective target language vocabulary, which starts at
34K.

There has been significant work in reducing this
cost. We start with the word alignment method,
presented in Shi and Knight (2017), which uses
alignments computed on the training corpus and
for each sentence, selects target words aligned to
each source word, that way building a reduced vo-
cabulary of target words to be used when translat-
ing a source sentence.

To increase the coverage of the selected mean-
ings without increasing the size of the mapping
model, we first extract words in the target lan-
guage that are unaligned - e.g. determiners when
translating from English to French. We kept the
100 most frequent such words and call them 0-
gram meanings. Then we go through 1-gram,
2-gram, . . ., n-gram sequences of words in the
source sentence. For each source sequence, we
consider its N -best translation hypotheses. All tar-
get words present in such N -best hypotheses are
kept in the target vocabulary. To account for trans-
lation hypotheses we use a phrase table extracted
from word alignments.

The method extends single word vocabulary
mappings to multi-word expressions8. We have
multiple criterion to extract a vocabulary map: the
maximal sequence size n, the maximum number
N of translation hypotheses, the minimum fre-
quency of a phrase pair. The efficiency of a vo-
cabulary map can be evaluated through the cover-
age of the predicted meanings for a reference test
set, the final translation quality, the average num-
ber of meaning per vocab and the actual time spent
in generator layer (Linear and Softmax).

Table 1 compares several vocabulary maps with
these different metrics. Compared to Shi and
Knight (2017), our approach with multiple n-gram
length phrase enables better match-rate than the 1-
gram approach (saturating the Test Coverage (TC)
at 80%).

8For instance speed test translated by test de
vitesse in French is covered by 0-grams ∅ →de, and 1-
grams speed→vitesse, test→test. However, once
more translated by à nouveau will need the 2 additional
meanings à and nouveau that are only covered when using
2-gram meanings.

3.3 Quantization

Another important area of optimization is the cost
of linear matrix-operations. To speed these up, we
use 16-bit signed integer quantization method pro-
posed in Devlin (2017). To further optimize on
the AWS M5 instance used in the competition and
powered with INTEL Skylake processors, we ex-
tend the approach to AVX2 and AVX512 SIMD
instruction sets. Switching from SSE4 to AVX2,
then from AVX2 to AVX512 instructions set gave
additional speed boost of respectively +12% and
+6%.

3.4 Other Experiments

We explored several other methods which largely
resulted in negative results but could be interesting
for other contexts.

Decrease the sentence length: For BPE pre-
processing, we try using 64K merges which can
generate shorter sentences. The average sentence
length for 32K BPE is about 29.1 and for 64K
BPE, it is about 27.7 tokens. Assuming the same
efficiency in the vocabulary mapping, increasing
the size of the vocabulary could therefore have a
gain of about 5% additional speed-up just by the
reduction of the sentence length. However, the
tradeoff here was not clearly a win.

8-bit quantization: To reduce further the sys-
tem size, we also considered use of gemmlowp9.
gemmlowp is a library allowing quantization
to unsigned 8 bits integer through dynamic off-
set/multiplier/shift parameters. Like our imple-
mentation of 16-bit quantization, the low precision
is only for storing the parameters, the dot product
is using larger register for accumulating interme-
diate result of the operation. gemmlowp usage
is for embedded application where speed but also
power usage is critical. The idea was tempting, but
it was not clear if such quantization schema could
actually outperform quantization using SIMD ex-
tended instruction set on modern processors. We
ran comparative tests using AVX2 instructions set
and found out that for multiplications of large ma-
trixes (20, 1024) ∗ (1024, 512) - optimized IN-
T16 implementation was about 3 times faster than
gemmlowp UINT8 implementation10. Main rea-
son being that AVX2 (and AVX512 twice faster)

9https://github.com/google/gemmlowp
10On Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz

125



Max
Sequence

Min
Freq

#
Meaning

vocab
per token

Test
Coverage

Linear
Time [s]

SoftMax
Time [s] File Size BLEU

143.86 4.97 239M 23.24
1 1 50 2 30% 3.78 0.11 295M 21.98
2 1 100 24 86% 5.97 0.16 902M 23.13
2 1 150 25 86% 6.63 0.18 918M 23.16
2 1 50 22 85% 5.34 0.14 846M 23.09
2 2 100 22 85% 4.08 0.11 324M 23.02
2 2 150 22 85% 3.95 0.11 324M 23.02
2 2 50 20 84% 3.95 0.11 322M 23.03
3 1 50 30 90% 5.23 0.15 1127M 23.16

Table 1: Evaluations of n-gram vocabulary mappings on newstest2014.

Figure 3: Evaluations on different beam size and batch size

have very powerful multiply and add instruction-
s11 allowing to perform in one single cycle the dot
product of vectors 32*INT16 and at the same time,
the pair accumulation in a vector 16*INT32.

4 Results

After tuning, we settled on two optimal NMT sys-
tems based on the distilled training data. Table 2
lists the different configurations for these two sys-
tems:

• distill-small, uses a bidirectional RN-
N with 2 LSTM layers with each hidden layer
having 1024 nodes. We use a word embed-
ding size of 512 and set the dropout to 0.3.
The batch size is set to 64 and the default
learning rate is 1.0 with sgd optimization.

• distill-tiny, uses a smaller network,
with GRU layers, 512 hidden size. On the
encoder side, we have 2 layers, while on the
decoder side, only 1 layer is set. We use
Adam optimization with the starting learning
rate 0.0002.

Both systems are trained up to 10 epochs.

11 mm256 madd epi16 and mm512 madd epi16

Table 3 shows our internal evaluations. For sys-
tem distill-small-opt, the CPU time dur-
ing decoding improves from 1694.16 seconds to
621.17 seconds (saving 63.3%), with a loss of on-
ly 0.19 BLEU score, on newstest2014. For sys-
tem distill-tiny-opt, the trends are sim-
ilar. 80.3% cpu time is saved, while only 0.13
BLEU score is lost.

We also compare the influence of quantization
hyperparameters, e.g. vmap and quantize model,
on tiny distilled RNN (distill-tiny). Quan-
tize runtime and vmap both can save about 50%
of the decoding time. The quantized model also
halves the model size.

4.1 Beam size and Batch size

We further test the impact on the decoding
performance (BLEU) and CPU time of dif-
ferent beam size and batch size on system
distill-tiny-opt. Figure 3 shows that for
a fixed batch size, when we increase the beam size
from 1 to 3, the accuracy increases as well. While
for beam size 3, 4 and 5, there is no significant d-
ifference in accuracy which is consistent with pre-
vious findings on distilled system. Interestingly,
for a fixed beam size, we notice also a slight im-
provement of accuracy when increasing the batch
size. This is a side-effect of the dynamic vocabu-
lary mapping per batch.

These experiments also show that the decoding
cost increases with larger beam and batch size. For
beam size K = 1 (in blue), we process more sen-
tences inside each batch and the CPU cost reduces
along the increasing of batch size. While for the
others, larger beam size and larger batch size both
cost more computational effort.

As a result, we choose beam K = 2 and batch 2,
balancing the performance and computation cost.
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Transformer Large N=6, d=512, dff=4096, h=8
Base N=6, d=512, dff=2048, h=8

direct RNN Large b-LSTM, 4 layers*1024, embed=512, optim=sgd
Small b-LSTM, 2 layers*1024, embed=512, optim=sgd

distilled RNN Small b-LSTM, 2 layers*1024, embed=512, optim=sgd
Tiny GRU, enc:2, dec:1 *512, embed=256, optim=adam

Table 2: Configurations for the different systems presented in the paper

quantize
runtime vmap quantize

model
newstest2014 newstest2015 model sizecpu time [s] BLEU cpu time [s] BLEU

Transformer Large - - - 11279.97 27.96 8339.10 29.95 1.4G
Base - - - 10795.16 27.30 7511.08 29.36 1.2G

direct RNN Large - - - 2859.57 24.56 2073.90 27.24 618M
Small - - - 1713.54 23.78 1313.39 26.37 416M

distilled RNN

Small - - - 1694.16 25.96 1300.24 28.62 416M
Small-opt Y Y Y 621.17 25.77 478.08 28.60 207M
Tiny - - - 506.67 23.24 384.76 26.09 141M
Tiny Y - - 286.89 23.24 219.85 26.03 141M
Tiny Y Y - 105.80 23.18 77.10 25.95 141M
Tiny-opt Y Y Y 99.81 23.11 77.76 25.75 72M

Table 3: Evaluations on NMT systems (the suffix ”-opt” means it is the final submission)

4.2 Docker Image Size

We did not invest effort into reduce image size
during the preparation of the submission. Our
fastest system has a docker image of 200M for an
effective 72Mb size for the model and less than
15Mb for additional code and resources. Post-
submission, we looked at reducing this 110Mb
overhead coming from operating system and misc
tools. Without huge effort - we managed to re-
duced this overhead to 70Mb, and docker engi-
neering could probably reduce it even further.

4.3 Other Engineering Considerations

We note that at this level of optimization, especial-
ly the use of quantization, the speed measurement
is very dependent on low level memory manage-
ment mechanisms12, and therefore on other pro-
cesses running on the same instance, especially
due to the critical importance of the L3 cache
shared between the different cores. In particular,
we observed that 4 parallel processes using fastest
model were only reaching a x3 speed boost. To
go further on parallel decoding, one would need to
implement different ad-hoc mechanisms such as:

• synchronization points between the parallel
decoders to avoid waste of memory cache
transfer

12This effect was actually observed during the preparation
of the system: a same test could benchmark with a fluctuation
of up to 25% depending on the time of the day, and probable
load of the shared server hosting the virtual instance.

• grouping of the sentences by sentence-length
to optimize CPU usage on the different cores

All the optimizations performed for that sub-
mission were focussed on the Linear layers - on
the final fastest submitted system, and the profiling
in Figure 2 shows emerging opportunities for op-
timization: even though the Linear share remains
preponderant, some potential additional gain (be-
tween 5 and 10%) could be achieved by focusing
on other operators (MM and non-linear).

5 Conclusion

This work presents the OpenNMT submission to
the 2018 Shared Task of WNMT. We show that
training with distillation using an optimized RNN
sequence-to-sequence system we can produce a
very competitive model for CPU demonstrating
again the powerful effect of the distillation process
and for the first time its application cross-class
(Transformer→RNN). This positive result implies
that text simplification through distillation could
be applied to more contexts.

Even though our submission was dedicated to
a specific RNN-based network, most of the pre-
sented optimizations, aiming by different means to
reduce and optimize the matrix multiplication op-
erations can apply for other types of architectures.

Our final system does show an impressive in-
crease in speed of 110x compared to the baseline
system and achieves a throughput of 800 word/sec
on a single core which is the fastest reported so far.
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Abstract

This paper describes the submissions of the
“Marian” team to the WNMT 2018 shared
task. We investigate combinations of
teacher-student training, low-precision ma-
trix products, auto-tuning and other meth-
ods to optimize the Transformer model on
GPU and CPU. By further integrating these
methods with the new averaging atten-
tion networks, a recently introduced faster
Transformer variant, we create a number of
high-quality, high-performance models on
the GPU and CPU, dominating the Pareto
frontier for this shared task.

1 Introduction

This paper describes the submissions of the “Mar-
ian” team to the Workshop on Neural Machine
Translation and Generation (WNMT 2018) shared
task (Birch et al., 2018). The goal of the task is to
build NMT systems on GPUs and CPUs placed on
the Pareto Frontier of efficiency in accuracy.1

Marian (Junczys-Dowmunt et al., 2018) is an
efficient neural machine translation (NMT) toolkit
written in pure C++ based on dynamic computa-
tion graphs.2 One of the goals of the toolkit is to
provide a research tool which can be used to de-
fine state-of-the-art systems that at the same time
can produce truly deployment-ready models across
different devices. Ideally this should be accom-
plished within a single execution engine that does
not require specialized, inference-only decoders.

The CPU back-end in Marian is a very recent
addition and we use the shared-task as a testing
ground for various improvements. The GPU-bound

1See the shared task description: https://sites.
google.com/site/wnmt18/shared-task

2https://marian-nmt.github.io

computations in Marian are already highly opti-
mized and we mostly concentrate on modeling as-
pects and beam-search hyper-parameters.

The weak baselines (at 16.9 BLEU on new-
stest2014 at least 12 BLEU points below the state-
of-the-art) could promote approaches that happily
sacrifice quality for speed. We choose a quality
cut-off of around 26 BLEU for the first test set
(newstest2014) and do not spend much time on
systems below that threshold.3 This threshold was
chosen based on the semi-official Sockeye (Hieber
et al., 2017) baseline (27.6 BLEU on newstest2014)
referenced on the shared task page.4

We believe our CPU implementation of the
Transformer model (Vaswani et al., 2017) and at-
tention averaging networks (Zhang et al., 2018)
to be the fastest reported so far. This is achieved
by integer matrix multiplication with auto-tuning.
We also show that these models respond very well
to sequence-level knowledge-distillation methods
(Kim and Rush, 2016).

2 Teacher-student training

2.1 State-of-the-art teacher

Based on Kim and Rush (2016), we first build four
strong teacher models following the procedure for
the Transformer-big model (model size 1024, fil-
ter size 4096, file size 813 MiB) from Vaswani
et al. (2017) for ensembling. We use 36,000 BPE
joint subwords (Sennrich et al., 2016) and a joint
vocabulary with tied source, target, and output em-
beddings. One model is trained until convergence
for eight days on four P40 GPUs. See tables 3 and
4 for BLEU scores of an overview of BLEU scores
for models trained in this work.

3We added smaller post-submission systems to demon-
strate that our approach outperforms systems by other partici-
pants when we take part in the race to the quality bottom.

4https://github.com/awslabs/sockeye/
tree/wnmt18/wnmt18
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Model Emb. FFN MiB

Transformer-big 1024 4096 813
Transformer-base 512 2048 238
Transformer-small 256 2048 101
Transformer-tiny-256* 256 1536 84
Transformer-tiny-192* 192 1536 60

Table 1: Transformer students dimensions. Post-
submission models marked with *.

2.2 Interpolated sequence-level
knowledge-distillation

As described by Kim and Rush (2016), we re-
translate the full training corpus source data with
the teacher ensemble as an 8-best list. Among the
eight hypotheses per sentence we choose the trans-
lation with the highest sentence-level BLEU score
with regard to the original target corpus. Kim and
Rush (2016) refer to this method as interpolated
sequence-level knowledge-distillation. Next, we
train our student models exclusively on the newly
generated and selected output.

2.3 Decoding with small beams

Whenever we use beam size 1, we skip softmax
evaluation and simply select the output word with
highest activation. The input sentences are sorted
by source length, then decoded in batches of ap-
proximately equal length. We batch based on num-
ber of words. For CPU decoding we use a batch
size of at least 384 words (ca. 15 sentences), for
the GPU at least 8192 words (ca. 300 sentences).

3 Student architectures

3.1 Transformer students

For our Transformer student models we follow
the Transformer-big and Transformer-base con-
figurations from Vaswani et al. (2017). Addi-
tionally we investigate a Transformer-small and
post-submission two Transformer-tiny variants on
the CPU. We also use six blocks of self-attention,
source-attention, and FFN layers with varying em-
bedding (model) and FNN sizes, see Table 1.

Transformer-big is initialized with one of the
original teachers and fine-tuned on the teacher-
generated data until development set BLEU stops
improving for beam-size 1. The remaining stu-
dent models are trained from scratch on teacher-
generated data until development set BLEU stalls
for 20 validation steps when using beam-size 1.

3.2 Averaging attention networks

Very recently, Zhang et al. (2018) suggested aver-
aging attention networks (AAN), a modification
of the original Transformer model that addresses a
decode-time inefficiency, apparently without loss
of quality. During translation, the self-attention lay-
ers in the Transformer decoder look back at their
entire history, introducing quadratic complexity
with respect to output length. Zhang et al. (2018)
replace the decoder self-attention layer with a cu-
mulative uniform averaging operation across the
previous layer. During decoding, this operation
can be computed based on the single last step. De-
coding is then linear with respect to output length.
Zhang et al. (2018) also add a feed-forward net-
work and a gate to the block. We choose a smaller
FFN size than Zhang et al. (2018) (corresponding
to embeddings size instead of FFN size in table 1)
and experiment with removing the FFN and gate.

3.3 RNN-based students

Our focus lies on efficient CPU-bound Transformer
implementations. However, Marian and its prede-
cessor Amun (Junczys-Dowmunt et al., 2016) were
first implemented as fast GPU-bound implemen-
tations of Nematus-style (Sennrich et al., 2017b)
RNN-based translation models. We use these mod-
els to cover the lower end of the quality spectrum in
the task. We train a standard shallow GRU model
(RNN-Nematus, embedding size 512, state size
1024), a small version (RNN-small, embedding
size 256, state size 512) and a deep version with 4
stacked GRU blocks in the encoder and 8 stacked
GRU blocks in the decoder (RNN-deep, embedding
size 512, states size 1024). This model corresponds
to the University of Edinburgh submission to WMT
2017 (Sennrich et al., 2017a).

4 Optimizing for the CPU

Most of our effort was concentrated on improving
CPU computation in Marian. Apart from improve-
ments from code profiling and bottleneck identifica-
tion, we worked towards integrating integer-based
matrix products into Marian’s computation graphs.

4.1 Shortlist

A simple way to improve CPU-bound NMT effi-
ciency is to restrict the final output matrix multipli-
cation to a small subset of translation candidates.
We use a shortlist created with fastalign (Dyer et al.,
2013). For every mini-batch we restrict the output
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vocabulary to the union of the 100 most frequent
target words and the 100 most probable translations
for every source word in a batch. All CPU results
are computed with a shortlist.

4.2 Quantization and integer products
Previously, Marian tensors would only work with
32-bit floating point numbers. We now support
tensors with underlying types corresponding to the
standard numerical types in C++. We focus on
integer tensors.

Some of our submissions replaced 32-bit
floating-point matrix multiplication with 16-bit or
8-bit signed integers. For 16-bit integers, we fol-
low Devlin (2017) in simply multiplying parame-
ters and inputs by 210 before rounding to signed
integers. This does not use the full range of values
of a 16-bit integer so as to prevent overflow when
accumulating 32-bit sums; there is no AVX512F
instruction for 32-bit add with saturation.

For 8-bit integers, we swept quantization multi-
pliers and found that 29 was optimal, but quality
was still poor. Instead, we retrained the model with
matrix product inputs (activations and parameters
but not outputs) clipped to a range. We tried [−3, 3],
[−2, 2], and [−1, 1] then settled on [−2, 2] because
it had slightly better BLEU.5 Values were then
scaled linearly to [−127, 127] and rounded to inte-
gers. We accumulated in 16-bit integers with satu-
ration because this was faster, observing a 0.05%
BLEU drop relative to 32-bit accumulation.

The test CPU is a Xeon Platinum 8175M with
support for AVX512. We used these instructions
to implement matrix multiplication over 32 16-bit
integers or 64 8-bit integers at a time.6

4.3 Memoization
To ensure contiguous memory access, the in-
teger matrix product dot′int(A,B) calculates
ABT instead of AB. It also expects its in-
puts A and B to be correctly quantized in-
teger tensors. Therefore, we have to com-
pute dot′int(quantint(A), quantint(B

T)) to use
the quantized integer product as a replacement for
the floating point matrix product.

In most cases, B is a parameter, while A contains
activations. Repeating the quantization and trans-

5This might however have been an artifact of the posterior
clipping process rather than an effect of quantization.

6The only packed 8-bit multiplication instruction is
vpmaddubsw, which requires AVX512BW. Interestingly,
Amazon’s hypervisor hides support for AVX512BW from
CPUID but the instruction works as expected so we used it.

Model 1s 384w BLEU

Transf.-base-AAN 1018.8 397.5 27.5
+shortlist 758.1 293.7 27.5
+int16 2703.2 491.4 27.5
+memoization 572.9 294.3 27.5
+auto-tuning 574.8 273.2 27.5

Transformer-big 4797.0 1537.8 28.1
+clip=2 (+mem.) 5006.9 1737.1 27.7
+int8 (+mem.) 1772.6 1169.9 27.5

Table 2: Time to translate newstest2014 with batch-
size equal to 1 sentence (1s) and around 384 words
(384w) using integer multiplication variants vs 32-
bit float matrix multiplication.

position operations for every decoder parameter at
every step would incur a significant performance
penalty. To counter this, we introduce memoization
into Marian’s computation graphs. Memoization
caches the values of constant nodes that will not
change during the lifetime of the graph.

During inference, parameter nodes are constant.
Apart from that any node with only constant chil-
dren is constant and can be memoized. In our exam-
ple, B is constant as a parameter, BT is constant be-
cause its only child is constant, so is quantint(BT).
dot′int(quantint(A), quantint(B

T)) itself is not
constant, as the activations A can change. Val-
ues for constant nodes are calculated only once
during the first forward step in which they appear;
subsequent calls will use cached versions.

4.4 Auto-tuning

At this point, the float32 (Intel’s MKL) product
and our int16 matrix product can be used inter-
changeably for small and mid-sized models (we see
overflow for the large Transformer model). While
trying to choose one implementation, we noticed
that both algorithms will outperform the respective
other in different contexts. In the face of many dif-
ferent matrix sizes and access patterns it is difficult
to determine reliable performance profiles. Instead,
we implemented an auto-tuner.

We hash tensor shapes and algorithm IDs and
annotate each node in an alternative subgraph with
a timer. We collect the total execution time across
100 traversals of each alternate subgraph. Once this
limit has been reached, usually within a few sen-
tences, the auto-tuner stops measurements and se-
lects the fastest alternative for all subsequent calls.
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4.5 Optimization results
Table 2 illustrates the effects of the optimizations
introduced in this section for sentence-by-sentence
and batched translation. Adding a shortlist im-
proves translation speed significantly. Enabling
int16 multiplication without memoization hurts
performance; with memoization we see improve-
ments for single-sentence translation and similar
performance to MKL for batched translation. With
auto-tuning, single-sentence translation achieves
the same performance as before and batched trans-
lation improves. In both cases the auto-tuning al-
gorithm was able to choose a good solution. In
the single-sentence case we would always use the
int16 product. In the batched case a mix performs
better than a hard choice.

We also see respectable improvements for the
Transformer-big model with int8 multiplication.
Most of the loss in BLEU is due to the fine-tuning
process with clipping during training.

5 Results and cost-effective decoding

In tables 3 and 4, we summarize our experiments
with GPU and CPU models. Bold rows contain
results for our task submissions. We report model
sizes in MiB, translation time without initialization
and BLEU scores for newstest2014. Time has been
measured on AWS p3.x2large instances (NVidia
V100) and AWS m5.large instances, the official
evaluation platforms of the shared task.

All our student models outperform the baselines
in terms of translation speed and quality, but as
stated before, we are mostly interested in models
above a 26 BLEU threshold. It seems that the new
AAN architecture is a promising modification of
the Transformer with minimal or no quality loss in
comparison to its standard equivalent. We also see
that teacher-student methods can be successfully
used to create high-performance and high-quality
Transformer systems with greedy decoding.

We compare our systems on a common cost-
effectiveness scale expressed as the number of
source tokens translated per US Dollar

[
w

USD

]
.

Given the hourly price for a dedicated AWS GPU
(p3.x2large, 3.259 USD/h) or CPU (m5.large,
0.102 USD/h) instance7 and the time to translate
newstest2014 consisting of 62,954 source tokens
with a chosen model and instance, we calculate:

62, 954 [w]

Translation time [s]
· 3, 600 [s/h]

Instance price [$/h]
.

7The same instance types were used for the shared task.

This representation has multiple advantages:

• Systems deployed on different hardware can
be compared directly;
• The linear mappings into the common space

are scale-preserving and correctly represent
relative speed differences between systems on
the same hardware;
• We can relate three important categories —

speed, quality, and cost — to each other in a
single visualization.

Figures 1 and 2 illustrate cost-effectiveness of
our models, the baselines and submissions by
other participants versus translation quality on new-
stest2014. Figure 1 contains all models with a cost-
effectiveness log-scale. This reflects a trend that
speed gains are exponential in quality loss. Based
on Figure 1, it seems that our models dominate the
Pareto-frontier for high-quality models for CPU
and GPU models compared to the baselines and
other participants.

We added post-submission systems (23i) and
(24i) on the CPU to demonstrate that we can out-
perform the results of other participants for speed
and quality when lowering our quality threshold.

In Figure 2 with a linear cost-effectiveness scale,
we emphasize models around and above the qual-
ity threshold of 26 BLEU which were our main
focus in this work. It is interesting to see that
similar Marian models have surprisingly similar
cost-effectiveness across different hardware types.

6 Conclusions

We demonstrated that Marian can serve as an in-
tegrated research and deployment platform with
highly efficient decoding algorithms on the GPU
and CPU. Transformer architectures can be ef-
ficiently trained in teacher-student settings and
then used with small beams or with greedy de-
coding. To our knowledge, this is also the first
work to integrate Transformer architectures with
low-precision matrix multiplication. By combining
these methods with the new averaging attention
networks, we created a number of high-quality,
high-performance models on the GPU and CPU,
dominating the Pareto frontier for this shared task.
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No Model MiB Time BLEU

(1) Baseline GPU – 51.6 16.8
(2) Sockeye GPU (Transformer-base b=5) – 231.9 27.6

(3) Teacher - Transformer-big b=8 813 109.7 28.1
(4) Teacher - Transformer-big×4 b=8 3252 410.8 29.0

(5) Transformer-big b=4 813 52.0 28.4
(6) Transformer-big b=2 813 31.9 28.4
(7) Transformer-big 813 19.9 28.2

(8) Transformer-base b=4 238 40.5 27.8
(9) Transformer-base b=2 238 22.9 27.8
(10) Transformer-base 238 12.8 27.6

(11) Transformer-base-AAN b=4 220 15.9 27.7
(12) Transformer-base-AAN b=2 220 8.9 27.7
(13) Transformer-base-AAN 220 7.2 27.6

(14) Transformer-small 101 10.8 26.4

(15) Transformer-small-AAN 100 5.9 25.8
(16) Transformer-small-AAN -ffn 98 5.7 26.2
(17) Transformer-small-AAN -ffn -gate 95 5.6 25.8

(18) RNN-small-Amun 88 1.6 24.1
(19) RNN-Nematus-Amun 199 2.2 24.8

(20) RNN-small 88 1.8 24.1
(21) RNN-Nematus 199 2.5 24.8
(22) RNN-Deep 323 2.9 25.7

Table 3: Results on newstest2014 - GPU systems. Submitted systems in bold. All student systems have
been used with beam-size 1 unless stated differently (b=n).

No Model MiB Time BLEU

(1) Baseline CPU – 4492.2 16.8
(2) Sockeye CPU (Transformer-base b=5) – 1168.6 27.4

(7) Transformer-big 813 1537.8 28.1
(7i) Transformer-big-int8 813 1169.9 27.5

(10) Transformer-base 238 393.1 27.4
(10i) Transformer-base-int16 238 400.2 27.4

(13) Transformer-base-AAN 220 288.7 27.5
(13i) Transformer-base-AAN-int16 220 273.2 27.5

(14) Transformer-small 101 134.1 26.5
(14i) Transformer-small-int16 101 133.2 26.5

(15i) Transformer-small-AAN-int16 100 108.8 25.8
(16i) Transformer-small-AAN-int16 -ffn 98 108.3 26.2
(17) Transformer-small-AAN -ffn -gate 95 100.6 26.0
(17i) Transformer-small-AAN-int16 -ffn -gate 95 94.1 26.0

(23i) Transformer-tiny-256-AAN-int16 -ffn -gate* 84 79.7 25.3
(24i) Transformer-tiny-192-AAN-int16 -ffn -gate* 60 61.1 24.4

Table 4: Results on newstest2014 - CPU systems. Submitted systems in bold. Post-submission systems
marked with *. All student systems have been used with beam-size 1 unless stated differently (b=n).
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