
Proceedings of the Workshop on Machine Reading for Question Answering, pages 47–59
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

47

Robust and Scalable Differentiable Neural Computer
for Question Answering

Jörg Franke, Jan Niehues, Alex Waibel
Institute for Anthropomatics and Robotics

Karlsruhe Institute of Technology, Germany
joerg.franke@student.kit.edu

{jan.niehues,alex.waibel}@kit.edu

Abstract

Deep learning models are often not eas-
ily adaptable to new tasks and require
task-specific adjustments. The differen-
tiable neural computer (DNC), a memory-
augmented neural network, is designed as
a general problem solver which can be
used in a wide range of tasks. But in re-
ality, it is hard to apply this model to new
tasks. We analyze the DNC and identify
possible improvements within the appli-
cation of question answering. This mo-
tivates a more robust and scalable DNC
(rsDNC). The objective precondition is to
keep the general character of this model
intact while making its application more
reliable and speeding up its required train-
ing time. The rsDNC is distinguished by a
more robust training, a slim memory unit
and a bidirectional architecture. We not
only achieve new state-of-the-art perfor-
mance on the bAbI task, but also min-
imize the performance variance between
different initializations. Furthermore, we
demonstrate the simplified applicability of
the rsDNC to new tasks with passable re-
sults on the CNN RC task without adap-
tions.

1 Introduction

In contrast to traditional statistical models, which
often require a large amount of human effort on
feature engineering and task-specific adjustments,
a promise of deep learning is that little task-
specific knowledge and minimal adaption is re-
quired to achieve state-of-the-art performance on
different tasks. But in reality, many deep learning
solutions have to be adapted to a specific task to
achieve good performance.

However, there are more universal approaches
for example the differentiable neural computer
(DNC). It is introduced by Graves et al. (2016) as
a general artificial neural network (ANN) model
with an external memory “to solve complex, struc-
tured tasks”. It can be seen as a generic memory-
augmentation framework. Unlike a vanilla ANN,
it separates computation and memorization with
a computational controller and a memory unit,
which are independently modifiable. This allows
a more accurate model design. Due to its fully dif-
ferentiable design, it can be learned in a supervised
fashion.

The original paper shows applications on the
bAbI question answering (QA) task, graph exper-
iments and a reinforcement learning block puzzle
solver (Graves et al., 2016). But when applying
this model to new QA tasks, no satisfying results
are achieved. The issues of QA are the huge vo-
cabulary, the length of the contexts and the re-
quired model complexity to find the correct an-
swer.

In this work, we analyze the DNC in QA tasks
and identify four main challenges: 1. High mem-
ory consumption makes it hard to train large mod-
els efficiently. 2. The large variance in training
performance within different initializations. 3. A
slow and unstable convergence requires long vary-
ing training times. 4. The unidirectional architec-
ture makes it hard to handle variable question ap-
pearance.

This work addresses these issues while keeping
the general character of the model intact. We ex-
tend the DNC to be more robust and scalable (rs-
DNC) with the following contributions:

1. A robust training with a strong focus on an
early memory usage and normalization.

2. The usage of a slim, memory efficient,
content-based memory unit for QA tasks.



48

3. A bidirectional DNC which allows a richer
encoding of the input sequences.

The rsDNC is evaluated on two datasets. On
the synthetic bAbI task (Weston et al., 2016), we
show performance improvements by 80% com-
pared to the DNC. These are new state-of-the-
art results within multiple runs in a joint training.
We also decrease the variance by up to 90% be-
tween different random initializations. Addition-
ally, with training-data augmentation on one task,
our model solves all tasks and provides the best-
recorded results to the best of our knowledge. On
the CNN RC task (Hermann et al., 2015), we show
the adaptability of the rsDNC and achieve passable
results without task-specific adaption.

2 Related Work

This section considers the related work regarding
the two used datasets.

Related to bAbI task Rae et al. (2016) pro-
vides technical enhancements with the introduc-
tion of the sparse DNC (SDNC) with sparse read
and write operations. They allow to modifying
only a sparse subset of interesting memory loca-
tions instead of manipulating all. This renders
the memory consumption independent of mem-
ory size. A different approach provides the dy-
namic memory network (DMN) and its succes-
sor the DMN+ (Kumar et al., 2016; Xiong et al.,
2016). They store sentence representations in an
episodic memory and use attention to find the cor-
rect answer. The relation memory network (RMN)
embeds sentences into a memory object and ap-
plies multiple times attention to find the answer
(Yang et al., 2018). In contrast to our model, the
DMN+ and the RMN are optimized for QA tasks,
uses sentence representation and require a dedi-
cated question. The recurrent entity network (Ent-
Net) “can be viewed as a set of separate recur-
rent models whose hidden states store the mem-
ory slots” (Henaff et al., 2017). The memory slots
or locations consist of a key vector and a content
vector and have their own gated RNN as a con-
troller. In contrast, our model has one memory
matrix with no distinction between key and con-
tent.

Related to CNN RC task Hermann et al. (2015)
introduce the Deep LSTM Reader and the Atten-
tive Reader which build a document representa-
tion by direct attention. Chen et al. (2016) in-

Figure 1: System overview of the DNC. The dot-
ted lines illustrate recurrent connections.

troduce the Stanford Attentive Reader which en-
hances the attentive reader and adds a bilinear
term to compute the attention between document
and query. The Attention-Sum (AS) Reader from
Kadlec et al. (2016) also uses separate encoding
for the document and the query. Its successor, the
Attention-over-Attention (AoA) Reader, applies a
two-way attention mechanism to find the answer
(Cui et al., 2017). The ReasoNet uses iterative
reasoning over a hidden representation of the doc-
ument (Shen et al., 2017). The Gated-Attention
(GA) Reader from Dhingra et al. (2017) uses mul-
tiple hops over the document to build an atten-
tion over the candidates to select the answer to-
ken. These models are all conceptually adapted to
the QA tasks they solve. In contrast, our solution
is more versatile due to a more flexible and uni-
versal design. The different parts of the DNC can
be exchanged or adjusted independently which al-
lows simpler handling of new tasks. The versatil-
ity is shown in the original paper with three differ-
ent tasks (Graves et al., 2016).

3 Differentiable Neural Computer

System overview The DNC model consists of
two main parts, a controller and a memory unit
(MU), see Figure 1. The controller is either a
fully-connected ANN or a RNN. It receives at
each time step a concatenation of the input signal
xt ∈ RX and the MU output from the last time
step µt−1 ∈ RP . C is the controller output size
and P the MU output size. The controller can be
considered as a closed function with a set of train-
able weight parameters θc:

ht = Controller([xt,µt−1], θc) . (1)

The purpose of the controller is to manage the



49

MU and additionally to help building the output
signal via a weighted bypass connection. The MU
receives the controller output ht as input and con-
tains a set of trainable weight parameters θµ as
well:

µt = MemoryUnit(ht, θµ) . (2)

The output signal of the whole DNC yt ∈ RY
is a sum of the weighted controller output and the
weighted MU output.

yt = Whht +Wµµt + bt . (3)

Let Y be the size of the target vector zt ∈ RY .
Wh ∈ RY×C , Wµ ∈ RY×P and bt ∈ RY are
trainable weights.

The hyperparameters of the controller network
are the number of layers l and the nodes per layer
Cl. The hyperparameters of the MU are the width
W of the internal memory matrix and the number
of locations N . There can be multiple read heads
R which extract information from the memory
matrix. The MU output size is then P = R×W .

Memory Unit The MU contains a memory ma-
trix Mt ∈ RN×W which stores information in
form of row-wise vectors. For controlling the
memory matrix, the input signal from the con-
troller is weighted and divided into different con-
trol signals including gates, vectors or keys. They
allow to write and read from the memory matrix.

For writing to or erasing the memory matrix
two mechanisms are available to find the location
where to manipulate Mt: By the least used mem-
ory location or content-based addressing. The
least used memory location is used to find free
space for new information. A free gate determines
the freeing of used memory to allow forgetting
content. Content-based addressing finds the loca-
tion in Mt which has the lowest cosine-similarity
to a given key kt ∈ RW . An allocation gate deter-
mines which mechanism is used and a write gate
determines the intensity of writing or erasing new
information to Mt.

Two mechanisms are also available for reading
from Mt: A content-based addressing similar to
the writing and a temporal linkage mechanism.
The temporal linkage mechanism contains a link-
age matrix LM t ∈ RN×N which stores the transi-
tion of the current write location and the previous
location to repeat the sequences in forward direc-
tion or with a transposed linkage matrix in back-
ward direction. A read mode determines which

mode is used. Furthermore, a DNC may have
multiple (R) read heads with such reading mech-
anisms. The MU’s output is a concatenation of the
read vectors from all read headsµt ∈ RW×R. The
DNC is described in detail in the appendix of the
original paper (Graves et al., 2016).

4 Analysis of the DNC

This section describes the analysis of the DNC
with regard to question answering.

Training progress We trained multiple models
with same parameters but different initializations
on different bAbI tasks. While some models con-
verges, other do not. This depends only on the ini-
tialization. If a model does not converge but learns
to solve the task, it is overfitting the training data.

We further analyze the influence of the mem-
ory unit. The output of the DNC is a weighted
sum of the controller output and the MU output.
The influence is determinable by exclusively using
the memory output and comparing it to the perfor-
mance when using both. While training, we found
a strong correlation between a high usage of the
MU and a good performance of the model. When
a model does not converges, the memory unit has
nearly no influence on finding the correct answer.

We assume that the direct training signal over
the bypass connection between controller and out-
put leads to a fast success in learning to use the
controller exclusively. This could prevent learn-
ing to use the MU. Additionally, the MU output in
the beginning is noisy which could guide the con-
troller to ignore the MU. This could be influenced
by the initialization.

Functionality The functionality of the DNC can
be analyzed by observing the gates which deter-
mine the mechanisms to write or read content.
We find the DNC to exclusively use content-based
reading when answering a question. The reading
from the the temporal linkage mechanism (in for-
ward and backward direction) has only little im-
pact on finding the answer. Furthermore, the us-
age of the different gates for freeing memory space
(free gate), determine the write mechanism (allo-
cate gate) or write intensity (write gate) does not
seem very meaningful. Figure 3a in Appendix A
shows a plot of the DNC gates during a bAbI task
1 sample.

Computing resources In comparison to a
LSTM, the DNC requires over two times more



50

memory during training. It mainly depends on
the memory size of the DNC and the sequence
length. A closer analysis exhibits that the linkage
matrix and the temporal memory linkage mech-
anism are the main drivers behind memory con-
sumption. This biggest influence is the linkage
matrix of size N × N . The temporal memory
linkage mechanism of the DNC with the config-
uration of the original bAbI experiment accounts
for 50% of the total memory consumption. In our
implementation, the training time per sample is
four times higher in comparison to a TensorFlow
LSTM with the aforementioned configuration.

5 Robust and Scalable DNC

This section describes in detail the two enhance-
ments of the robust and scalable DNC (rsDNC):
An efficient memory unit and a more robust train-
ing. Additionally, it introduces a bidirectional
DNC architecture.

5.1 Efficient Memory Unit for QA

For an efficient usage of the model and the scala-
bility to large-scale tasks, less memory consump-
tion is relevant. This allows dealing with larger se-
quences and bigger batch sizes for faster iterations
needed e.g. for feasible hyperparameter tuning.
The memory consumption of the DNC is very high
compared to other recurrent models. As the anal-
ysis in Section 4 shows, the main cause for mem-
ory consumption is the temporal memory linkage
mechanism. But the analysis also shows that the
DNC does not use them in the bAbI task. This
makes sense since restoring sequences is barely
necessary for finding the correct answer in a QA
task.

To allow a more efficient usage in QA we used
a slim, only content-based memory unit (CBMU).
The CBMU has the same features as the DNC’s
MU but without the temporal memory linkage
mechanism. Consequently, the linkage matrix and
all related components are removed. The read
weightings are only based on the content-based
addressing. The write head, memory update and
the actual memory reading stay the same.

The drop in memory consumption depends on
the hyperparameters and the sequence length but
in this paper, it is between 30% and 70%. The
computation time is also reduced by 10% to 50%.

5.2 Robust DNC Training
A more robust training improves the large variance
in the training progress within different initializa-
tions as well as the slow and unstable convergence
behaviour. This makes the training repeatable and
reduces the training time. To achieve this, we ap-
ply normalization to the DNC and present Bypass
Dropout to force a faster memory usage.

DNC Normalization Analysis of the DNC
shows a high variance in performance between dif-
ferent runs. We approach this issue with a normal-
ization technique to enforce a robust and smooth
convergence behaviour. In recent years especially
layer normalization (LN) shows performance im-
provements in ANNs on several applications (Ba
et al., 2016; Klambauer et al., 2017). In the DNC
setup, it can be applied to the controller as well as
the MU. Let µt be the mean of a vector xt and σ2t
the variance of it. Then the normalization

LN(xt) = g ◦
xt − µt√
σ2t + ε

+ b (4)

is applied before each activation function. The
recurrent and current input signals are computed
jointly. Each LN has trainable variables, called
bias b and gain g for scaling the normalization.

In the MU we applied LN to the gates, the vec-
tors and the keys separately but this gave no per-
formance increase compared to a joint normaliza-
tion of all signals. Thus, we apply it after the
weighting of the controller output ht

ξt = LN(htWξ) (5)

and before the vector ξt is split into the different
control signals. It is applied during training and
test times. The drawbacks are increased compu-
tation time and memory need due to momentum
calculation and the additional gain and bias vari-
ables.

Bypass Dropout The analysis in Section 4
shows that convergence behaviour of the DNC de-
pends on the usage of the MU. If the MU strongly
impacts the system output, the model achieves a
good performance. This insight demands the ex-
plicit force of MU usage during training to reach
convergence faster and obtain better performance.

To force the MU’s influence, the impact of the
controller to the output via the bypass connection
can be limited. This can be achieved by reduc-
ing the connectivity between the controller and the



51

output. A reduction of the connectivity by weight-
ing or lower the feature space would be permanent
and not adjustable. By using dropout in the by-
pass connection between controller and output is a
controllable lowering of the connectivity possible.
Dropout is a regularization technique introduced
2014 in Srivastava et al. (2014) to prevent ANNs
from overfitting. In our use-case, dropout allows
a adjustable reduction of the bypass connectivity.
It can be controlled with the keep probability and
is only used during training. His helps to enforce
a faster usage of the MU. We call this technique
Bypass Dropout (BD).

The dropout probability p regularizes the signal
flow exactly without permanent declining the con-
troller’s functionality. Bypass Dropout is applied
to the DNC setup by multiplying a Bernoulli vec-
tor rt to the bypass connection:

rt ∼ Bernoulli(p)

yt = Wh(ht ◦ rt) +Wµµt .
(6)

5.3 Bidirectional DNC
The unidirectional architecture of the DNC makes
it hard to handle variable input where for example
the question appears in the middle of a text and the
full text is relevant. It also prevents a rich informa-
tion extraction in forward and backward direction
in any sequential task.

Therefore, this work introduces a bidirectional
setup to provide complete availability of the in-
put sequence to the model. No more distinction
between context and question is necessary. The
model is able to use information from a later point
in the input sequence to determine what to store.
In the bidirectional DNC (BDNC) and rsDNC
(BrsDNC) an additional RNN in backward link-
age provides a sequential comprehension in both
directions.

Due to the recurrent connection from MU to
controller, an encapsulated bidirectional controller
is not possible, since such a model is not unfold-
able in time. The solution presented in this work
applies an independent backward-directed recur-
rent controller which provides an additional input
signal to the MU and the output layer, illustrated in
Figure 2. Hence, the BrsDNC has two controllers,
a forward controller and a backward controller

hfwt = ForwardController([xt,h
fw
t−1,µt−1], θcfw)

hbwt = BackwardController([xt,hbwt+1], θcbw)

(7)

Figure 2: The bidirectional DNC architecture un-
folded in time.

with independent weights θ and recurrent connec-
tions. The MU receives a concatenation of the two
controller outputs

µt = MemoryUnit([hfwt ,hbwt ], θmu) . (8)

The output of the BrsDNC system is the sum of
the weighted memory output, the weighted back-
ward controller output and the weighted forward
controller output:

yt = Wµµt +Wfwhh
fw
t +Wbwhh

bw
t

. (9)

This architecture allows first an independent un-
folding of the backward controller and second an
unfolding of the forward controller and MU.

6 Experiments

The rsDNC and the BrsDNC are evaluated on two
datasets, the bAbI task and the CNN RC task.1

6.1 bAbI Task
Task description The bAbI task is a set of 20
synthetic QA tasks for testing text understanding
and logical reasoning (Weston et al., 2016). Each
task has several stories and each story contains a
context, one or more questions and the correct an-
swers. There are different sets available but this
work only uses the 10k set in English. Each story
is pre-processed by removing numbers, transform-
ing all words to lower case and splitting the se-
quences into word tokens. The whole set contains

1All experiments are implemented in TensorFlow (Abadi
et al., 2015) and are trained on a single K80 GPU within
two to nine days. The source code is available at
https://github.com/joergfranke/ADNC.



52

156 unique words and three symbols: ’?’, ’!’, and
’-’. The ’-’ symbol in an input sequence sym-
bolizes that an answer is requested. From each
task 10% of the samples are used as a validation
set. The test set is separate and has 1k questions
per task. Inconsistencies in the training set, like a
question asked twice, are deleted. The loss met-
ric for the bAbI task is the word error rate (WER),
the fraction of incorrectly answered words to all
requested words.

Task 16 augmentation Many related models
struggle with task 16 in the bAbI dataset and only
achieve a WER of roughly 50% (Graves et al.,
2016; Sukhbaatar et al., 2015; Xiong et al., 2016).
The task is to find a colour given a name and
name-animal-colour constellations. In the dataset
are four different colours, four animals and five
names but not equally distributed in the samples.
In many samples one or more colours or animals
are present multiple times, see training sample of
task 16:

Greg is a lion. Julius is a swan. Julius is yellow.
Greg is yellow. Brian is a swan. Bernhard is a
frog. Brian is white. Lily is a frog. Bernhard is
yellow. What colour is Lily? yellow

There are 9k samples in the training set, but in
4181 cases the correct word appears only once in
the context. In all other cases, the correct word ap-
pears two, three or four times in the context. If the
model learns only to count the colour words and to
answer the colour that appears multiple times, then
it is correct in 3449 cases and in 1370 additional
cases with a 50/50 probability. In 4181 cases it is
able to guess and has a 1/4 probability to be cor-
rect. This leads to a mean probability over 50% for
a correct answer by guessing and counting words.
This is a strong local optimum and makes it hard
to find a better solution strategy.

We provide an augmentation of task 16 so that
each sample contains different colours and differ-
ent animals. We pretrain a model on augmented
task 16 plus all other tasks and then fine-tune it
without any augmentation to learn the original dis-
tribution of the data. This model is marked as
+aug16. The augmentation also could be helpful
in related models but it is only evaluated with this
work.

Training details Different enhanced DNC mod-
els are evaluated on the bAbI task as well as the
rsDNC with Bypass Dropout, DNC Normaliza-

tion and the CBMU, the bidirectional rsDNC (Brs-
DNC) and the BrsDNC with augmented task 16
(BrsDNC +aug16). All tasks are trained jointly on
all bAbI tasks without any additional information.

For a direct comparison, the hyperparameters
are based on the original paper (Graves et al.,
2016). The unidirectional controller has one
LSTM layer and 256 hidden units and the bidirec-
tional has 172 hidden units in each direction. Thus
both models have about 891k parameters. The MU
of all models has 192 locations, a width of 64 and
4 read heads. All models have a dropout probabil-
ity of 10%.

Each word of the bAbI task is encoded as a one-
hot vector with the size of 159. An additional se-
quence mask is used to generate only training sig-
nals when an answer is requested, so the outputs
of all other time steps are ignored. The output is a
vector of size 159 and normalized with a softmax
function. For training, the cross-entropy loss be-
tween the prediction vector and the target one-hot
vector is minimized.

Each training uses mini-batches with a batch
size of 32. Different-length sequences are padded.
The maximum sequence length during training is
limited to 800 words. The optimizer is found us-
ing a grid search, the underlined options are used:
optimization algorithm [SGD, Adam, RMSprop]
with a learning rate of [1, 3, 6] ∗ 10−[3,4,5] and a
momentum of 0.9 (Kingma and Ba, 2015; Tiele-
man and Hinton, 2012). Each model runs five ex-
periments with different initializations.

Model Mean WER

DNC* 16.7 ± 7.6
EntNet* 9.7 ± 2.6
SDNC* 6.4 ± 2.5

DNC +CBMU 17.6 ± 1.6
DNC +CBMU+Norm 13.6 ± 3.3
DNC +CBMU+BD 9.7 ± 2.9
rsDNC (CBMU+Norm+BD) 6.3 ± 2.7
BrsDNC (bidirectional rsDNC) 3.2 ± 0.5
BrsDNC +aug16 0.4 ± 0.0

Table 1: Mean word error rate of different mod-
els and our enhancements to the DNC in the bAbI
task. All models are trained jointly on all 20 bAbI
tasks at once without information about the actual
task. *Result from (Graves et al., 2016; Henaff
et al., 2017; Rae et al., 2016)



53

Results Table 1 shows the mean word error rate
and variance on the test set from all tasks and all
models of this work in comparison to the original
paper (DNC) (Graves et al., 2016) and the EntNet,
the best model with reported mean results as far as
we know (Henaff et al., 2017).

It also shows the performance impact of the dif-
ferent enhancements: DNC Normalization, By-
pass Dropout (BD) and the content-based memory
unit (CBMU). The use of CBMU leads to a drop
in performance but it also reduces the required
memory consumption and lowers the standard de-
viation within different initializations. Both DNC
Normalization and BD show a clear performance
gain and together they achieve the best perfor-
mance.

Experiments on a single bAbI task with step-
wise validation provides a closer insight on these
results. The usage of the CBMU affects the con-
vergence behaviour only marginally. With use of
DNC normalization, the time until convergence is
reduced by more than 50%. Additional use of BD
lowers the mean convergence time further and in-
creases the reliability of convergence. A bidirec-
tional controller speeds up convergence even more
and allowing improvements of up to 75% less re-
quired iterations. Figure 4 in Appendix B shows
the impacts in bAbI task 1.

In Appendix C, Table 3 shows the mean word
error rate of all tasks and Table 4 contains the re-
sults of the best runs with additional comparison
to the RMN (Yang et al., 2018), the best-reported
model in literature as far as we know.

The rsDNC outperforms the DNC from the
original paper as well as the jointly trained EntNet.
This shows the impact of the normalization and the
BD which improves the model performance even
without the temporal memory linkage mechanism.
This could imply that this mechanism is not im-
portant for QA tasks. It also leads to a significant
drop in variance which demonstrates that our mod-
els are more robust.

The additional model complexity through the
bidirectional design shows clear improvements
without requiring more parameters. It outperforms
the DNC in terms of mean error as well as vari-
ance. The lower variance indicates a very robust
model for different random initializations. But
through the bidirectional controller, the model has
access to information about the question while
reading the context similar to the RMN or DMN+.

Particularly the performance on task 3, 17 and 19
reaches a new quality in the mean results without
any failed tasks.

The BrsDNC with augmentation of task 16
leads to the best-reported overall results as far as
we know. The modifications allow to learn the
task correctly and solves it completely. Even when
ignoring the task 16 in the results, the perfor-
mance of this model is better than previous results.
This indicates that the corrected task has a positive
cross-effect on the learning of the other tasks.

But the advancements of the rsDNC not only
improve the overall performance. The function-
ality of the MU, as analyzed in Section 4, shows
more meaningful control signals, see Figure 3b in
appendix A. The allocate gate chooses the writ-
ing by the least used location when it writes new
information and uses content-based writing when
it adds supplementary information to existing en-
tries. The write gate prevents writing of unin-
formative words like articles or prepositions. The
free gate prevents freeing memory when adding
new information to not overwrite stored informa-
tion. The memory influence is maximal when a
answer is requested. All of this shows that our
advancements probably increase the fundamental
functionality of the DNC.

The training time of our implementation is 40
min per epoch for the rsDNC and 45 min per epoch
for the BrsDNC. An epoch of training a DNC takes
double the time due to smaller batch sizes and
additional computation for the temporal linkage
mechanism.

6.2 CNN Reading Comprehension Task

Task description The CNN reading comprehen-
sion (RC) task is introduced by Hermann et al.
(2015) and is based on crawling the online news
articles published on the CNN website from April
2007 to April 2015. The dataset contains samples
with news article as context and short article sum-
maries as query statements. The articles and query
statements are anonymized by replacing all name
entities with tokens. This is required since the arti-
cles contain name entities, for example celebrities,
and the task aims to exploit general relationships
between anonymized entities rather than common
knowledge. Each article is the source for four
queries on average and each query is the finding
of a token which is replaced by a placeholder in
the query statement.



54

The task is divided into training, validation and
test sets on a monthly base. The training set con-
tains 90,266 articles and 380,298 samples with
a mean length of 775 words. The used pre-
processed dataset has all words in lower case and
reduced inconsistencies. The vocabulary size of
118,497 is limited to 50k by replacing rarely-seen
words with a ’zero’ token. The task contains 408
name entity tokens. The loss metric for the CNN
is the accuracy, the fraction of all samples with
correct words to the number of samples in total.

Training details The query and the article are
concatenated (the query first) as an input se-
quence. The sequence is fed to the model word
by word and each word is represented as a word
vector with a size of 100 and GloVe initialization
(Pennington et al., 2014). The word vector is op-
timized during training. The target is the correct
word represented as the index of a one-hot vector
with the size of all name entity tokens. A can-
didate mask is created which masks out all name
entity tokens which are not present in the sam-
ple. The last model output predicts the word and
is normalized with a softmax function. The cross-
entropy loss between the prediction output vector
and the target one-hot vector is minimized.

We use a batch size of 32; different-length se-
quences are padded starting from the beginning.
Two models are evaluated on this task, rsDNC and
BrsDNC. All hyperparameters are chosen inspired
by related work. The controller is a LSTM with
one hidden layer and a layer size of 512 in the
unidirectional setup and 384 each in the bidirec-
tional setup. Both models have a memory matrix
with 256 locations, a width of 128 and four read
heads. Bypass Dropout is applied with a dropout
rate of 10%. The maximum sequence length dur-
ing training is limited to 1400 words. The model is
optimized with RMSprop with fixed learning rate
of 3e-05 and momentum of 0.9.

Results The results on the CNN RC task are
shown in Table 2. Both models achieve passable
results compared to task-specific state-of-the-art
models. But when focusing on the fact that our
model is trained without any adaption to the task
like sentence representations or word-windows,
without hyperparameter tuning or any other op-
timization it is a satisfactory result. The bidi-
rectional model outperforms the unidirectional rs-
DNC, but only on the test set. The training time of

Model valid test

Deep LSTM Reader 55.0 57.0
Attentive Reader 61.6 63.0
rsDNC 67.5 69.0
AS Reader 68.6 69.5
BrsDNC 67.1 69.8
Stanford AR 72.2 72.4
AoA Reader 73.1 74.4
ReasoNet 72.9 74.7
GA Reader 77.9 77.9

Table 2: The validation and test accuracy (%) of
the rsDNC/BrsDNC and others on CNN dataset.

our implementation is 14/16 hours per epoch on
the rsDNC/BrsDNC. A DNC/BDNC requires up
to 35/41h per epoch. The overall training time is
7 epochs on average. The memory savings of the
CBMU result in 4 training days instead of 12. This
shows the model’s adaptability to perform other
tasks without any task-specific adjustment and its
scalability due to a drastic reduction of training
time.

7 Conclusion

This work introduces the robust and scalable DNC
(rsDNC), an improved DNC applied in QA tasks.
It achieves state-of-the-art results on the bAbI task
and passable results on the CNN RC task without
any task-specific model adaption.

We show that the rsDNC is more robust and
usable in contrast to the vanilla DNC due to a
faster and more stable training behaviour as well
as less dependence on the initialization. This
is caused by the introduced Bypass Dropout and
DNC Normalization. These advancements make
the DNC easier applicable to other tasks. Further-
more, we demonstrate the scalability of the rsDNC
to a large-scale QA task by introducing a contend-
based memory unit. It lowers memory consump-
tion and training time accompanied by only a min-
imal loss of performance. A novel bidirectional
architecture improves the contextual accessibility
and allows questions at every position in the input
sequence. Additionally, we provide a training aug-
mentation for one of the bAbI tasks to solve all of
them.

In further work, the rsDNC architecture could
be extended to a sequence-to-sequence model
which enables the usage in other NLP tasks.



55

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. Tensor-
Flow: Large-scale machine learning on heteroge-
neous systems. Software available from tensor-
flow.org. https://www.tensorflow.org/.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. 2016. Layer normalization. CoRR
abs/1607.06450.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the cnn/-
daily mail reading comprehension task. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers). volume 1, pages 2358–2367.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
attention neural networks for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). volume 1, pages 593–602.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William
Cohen, and Ruslan Salakhutdinov. 2017. Gated-
attention readers for text comprehension. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). volume 1, pages 1832–1846.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural net-
work with dynamic external memory. Nature
538(7626):471–476.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking the world
state with recurrent entity networks. ICLR .

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Rudolf Kadlec, Martin Schmid, Ondřej Bajgar, and Jan
Kleindienst. 2016. Text understanding with the at-
tention sum reader network. In Proceedings of the

54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). vol-
ume 1, pages 908–918.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Günter Klambauer, Thomas Unterthiner, Andreas
Mayr, and Sepp Hochreiter. 2017. Self-normalizing
neural networks. In Advances in Neural Information
Processing Systems. pages 972–981.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for
natural language processing. In International Con-
ference on Machine Learning. pages 1378–1387.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy
Harley, Andrew W Senior, Gregory Wayne, Alex
Graves, and Tim Lillicrap. 2016. Scaling memory-
augmented neural networks with sparse reads and
writes. In Advances In Neural Information Process-
ing Systems. pages 3621–3629.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2017. Reasonet: Learning to stop
reading in machine comprehension. In Proceedings
of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM,
pages 1047–1055.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of machine learning re-
search 15(1):1929–1958.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems. pages
2440–2448.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural
networks for machine learning 4(2):26–31.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2016. Towards ai-complete
question answering: A set of prerequisite toy tasks.
ICLR .

Caiming Xiong, Stephen Merity, and Richard Socher.
2016. Dynamic memory networks for visual and
textual question answering. In International Con-
ference on Machine Learning. pages 2397–2406.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162


56

Hyochang Yang, Sungzoon Cho, et al. 2018. Finding
remo (related memory object): A simple neural ar-
chitecture for text based reasoning. arXiv preprint
arXiv:1801.08459 .



57

A DNC functionality on the bAbI task 1

(a
)F

un
ct

io
na

lit
y

D
N

C
(b

)F
un

ct
io

na
lit

y
rs

D
N

C

Fi
gu

re
3:

T
he

fu
nc

tio
na

lit
y

of
th

e
D

N
C

’s
(a

)
an

d
th

e
rs

D
N

C
’s

(b
)

ga
te

s
an

d
th

e
in

flu
en

ce
s

in
a

bA
bI

ta
sk

1
sa

m
pl

e.
T

he
ac

tiv
ity

of
th

e
ga

te
s

an
d

re
ad

m
od

es
ar

e
th

e
ac

tu
al

ga
tin

g
va

lu
es

be
tw

ee
n
0

an
d
1

.I
nfl

ue
nc

es
ar

e
no

rm
al

iz
ed

be
tw

ee
n
0%

an
d
10

0%
.T

he
ga

te
us

ag
e

of
th

e
rs

D
N

C
(b

)s
ee

m
s

to
be

m
or

e
m

ea
ni

ng
fu

la
nd

th
e

m
em

or
y

in
flu

en
ce

is
hi

gh
er

w
he

n
an

sw
er

in
g

a
qu

es
tio

n.



58

B Convergence behaviour on the bAbI task 1

0
1
2
3
4

DNC

0
1
2
3
4

DNC 
 +DNC norm

0
1
2
3
4

DNC 
 +DNC norm
 +CBMU

0
1
2
3
4

DNC 
 +DNC norm
 +CBMU 
 +bypass dropout
(rsDNC)

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

0
1
2
3
4DNC 

 +DNC norm
 +CBMU 
 +bypass dropout
 +bidirectional
(BrsDNC)

bAbI task 1

Figure 4: The convergence behaviour of the DNC with different improvements on the bAbI task 1. The
plot shows the validation loss for 5 model with the same parameters but different initializations, the red
line is the worst model and the green line the best.



59

C Results on the bAbI task

Task DNC EntNet SDNC rsDNC BrsDNC
BrsDNC
+aug16

1: 1 supporting fact 9.0 ± 12.6 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.1 0.1 ± 0.0
2: 2 supporting facts 39.2 ± 20.5 15.3 ± 15.7 7.1 ± 14.6 0.8 ± 0.5 0.8 ± 0.2 0.5 ± 0.2
3: 3 supporting facts 39.6 ± 16.4 29.3 ± 26.3 9.4 ± 16.7 6.5 ± 4.6 2.4 ± 0.6 1.6 ± 0.8
4: 2 argument relations 0.4 ± 0.7 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
5: 3 argument relations 1.5 ± 1.0 0.4 ± 0.3 0.9 ± 0.3 1.0 ± 0.4 0.7 ± 0.1 0.8 ± 0.4
6: yes/no questions 6.9 ± 7.5 0.6 ± 0.8 0.1 ± 0.2 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0
7: counting 9.8 ± 7.0 1.8 ± 1.1 1.6 ± 0.9 1.0 ± 0.7 1.0 ± 0.5 1.0 ± 0.7
8: lists/sets 5.5 ± 5.9 1.5 ± 1.2 0.5 ± 0.4 0.2 ± 0.2 0.5 ± 0.3 0.6 ± 0.3
9: simple negation 7.7 ± 8.3 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0
10: indefinite knowledge 9.6 ± 11.4 0.1 ± 0.2 0.3 ± 0.2 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.1
11: basic coreference 3.3 ± 5.7 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
12: conjunction 5 ± 6.3 0.0 ± 0.0 0.2 ± 0.3 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0
13: compound coreference 3.1 ± 3.6 0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
14: time reasoning 11 ± 7.5 7.3 ± 4.5 5.6 ± 2.9 0.2 ± 0.1 0.8 ± 0.7 0.3 ± 0.1
15: basic deduction 27.2 ± 20.1 3.6 ± 8.1 3.6 ± 10.3 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
16: basic induction 53.6 ± 1.9 53.3 ± 1.2 53.0 ± 1.3 52.1 ± 0.9 52.6 ± 1.6 0.0 ± 0.0
17: positional reasoning 32.4 ± 8 8.8 ± 3.8 12.4 ± 5.9 18.5 ± 8.8 4.8 ± 4.8 1.5 ± 1.8
18: size reasoning 4.2 ± 1.8 1.3 ± 0.9 1.6 ± 1.1 1.1 ± 0.5 0.4 ± 0.4 0.9 ± 0.5
19: path finding 64.6 ± 37.4 70.4 ± 6.1 30.8 ± 24.2 43.3 ± 36.7 0.0 ± 0.0 0.1 ± 0.1
20: agents motivation 0.0 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

Mean WER: 16.7 ± 7.6 9.7 ± 2.6 6.4 ± 2.5 6.3 ± 2.7 3.2 ± 0.5 0.4 ± 0.3
Failed Tasks (>5%): 11.2 ± 5.4 5.0 ± 1.2 4.1 ± 1.6 3.2 ± 0.8 1.4 ± 0.5 0.0 ± 0.0

Table 3: The mean word error rate (WER) of the different models on the 20 bAbI tasks . All models
are trained jointly on all 20 bAbI tasks at once without information about the actual task. Best results in
bold.

Task DNC EntNet
EntNet
†

DMN+
† SDNC RMN rsDNC BrsDNC

BrsDNC
+aug16

1: 1 supporting fact 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1
2: 2 supporting facts 0.4 2.8 0.1 0.3 0.6 0.5 0.8 0.5 0.6
3: 3 supporting facts 1.8 10.6 4.1 1.1 0.7 14.7 2.5 2.5 1.6
4: 2 argument relations 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5: 3 argument relations 0.8 0.4 0.3 0.5 0.3 0.4 1.6 0.7 0.4
6: yes/no questions 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0
7: counting 0.6 0.8 0.0 2.4 0.2 0.5 1.5 0.3 0.6
8: lists/sets 0.3 0.1 0.5 0.0 0.2 0.3 0.1 0.4 0.6
9: simple negation 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
10: indefinite knowledge 0.2 0.0 0.6 0.0 0.2 0.0 0.0 0.0 0.0
11: basic coreference 0.0 0.0 0.3 0.0 0.0 0.5 0.0 0.0 0.0
12: conjunction 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
13: compound coreference 0.0 0.0 1.3 0.0 0.1 0.0 0.0 0.0 0.0
14: time reasoning 0.4 3.6 0.0 0.2 0.1 0.0 0.1 0.1 0.5
15: basic deduction 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0
16: basic induction 55.1 52.1 0.2 45.3 54.1 0.9 52.0 49.9 0.0
17: positional reasoning 12.0 11.7 0.5 4.2 0.3 0.3 11.1 0.8 0.2
18: size reasoning 0.8 2.1 0.3 2.1 0.1 2.3 1.6 1.0 0.9
19: path finding 3.9 63.0 2.3 0.0 1.2 2.9 0.8 0.0 0.3
20: agents motivation 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0

Mean WER: 3.8 7.4 0.5 2.8 2.9 1.2 3.6 2.8 0.3
Failed Tasks (>5%): 2 4 0 1 1 1 2 1 0

Table 4: The word error rate (WER) of the best runs on the bAbI 20 task. Best results per row in bold.
Models tagged with † are trained on each task individually, the other are trained on all tasks jointly.


