
Proceedings of Workshop for NLP Open Source Software, pages 47–51
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

47

SUMMA: Integrating Multiple NLP Technologies into an
Open-source Platform for Multilingual Media Monitoring

Ulrich Germann
University of Edinburgh

ugermann@ed.ac.uk

Renārs Liepin, š
LETA

renars.liepins@leta.lv

Didzis Gosko
LETA

didzis.gosko@leta.lv

Guntis Barzdins
University of Latvia
guntis.barzdins@lu.lv

Abstract

The open-source SUMMA Platform is a
highly scalable distributed architecture for
monitoring a large number of media broad-
casts in parallel, with a lag behind actual
broadcast time of at most a few minutes.
It assembles numerous state-of-the-art
NLP technologies into a fully automated
media ingestion pipeline that can record
live broadcasts, detect and transcribe spo-
ken content, translate from several lan-
guages (original text or transcribed speech)
into English,1 recognize Named Entities,
detect topics, cluster and summarize doc-
uments across language barriers, and ex-
tract and store factual claims in these news
items.
This paper describes the intended use cases
and discusses the system design decisions
that allowed us to integrate state-of-the-
art NLP modules into an effective workflow
with comparatively little effort.

1 Introduction
SUMMA (“Scalable Understanding of Multilin-
gual Media”) is an EU-funded collaborative effort
to combine state-of-the-art NLP components into
a functioning, scalable media content processing
pipeline to support large news organizations in
their daily work. The project consortium com-
prises seven acadamic / research partners — the
University of Edinburgh, the Lativan Information
Agency (LETA), Idiap Research Institute, Prib-
eram Labs, Qatar Computing Research Institute,
University College London, and Sheffield Univer-
sity —, and BBC Monitoring and Deutsche Welle
as use case partners.
In this paper, we first describe the use cases that

the platform addresses, and then the design deci-
1 The choice of English as the lingua franca within

the Platform is due to the working language of our
use case partners; the highly modular design of the
Platform allows the easy integration of custom trans-
lation engines, if required.

sions that allowed us to integrate existing state-
of-the art NLP technologies into a highly scalable,
coherent platform with comparatively little inte-
gration effort.

2 Use Cases
Three use cases drive the development of the
SUMMA Platform.

2.1 External Media Monitoring
BBC Monitoring is a business unit within the
British Broadcasting Corporation (BBC). In con-
tinuous operation since 1939, it provides media
monitoring, analysis, and translations of foreign
news content to the BBC’s news rooms, the British
Government, and other subscribers to its services.
Each of its ca. 300 monitoring journalists usually
keeps track up to 4 live sources in parallel (typically
TV channels received via satellite), plus a number
of other sources of information such as social media
feeds. Assuming work distributed around the clock
in three shifts,2 BBC Monitoring thus currently
has, on average, the capacity to actively monitor
about 400 live broadcasts at any given time — just
over a quarter of the ca. 1,500 TV stations that it
has access to, not to mention other sources such as
radio broadcasts and streams on the internet. NLP
technologies such as automatic speech recognition
(ASR), machine translation (MT), and named en-
tity (NE) tagging can alleviate the human media
monitors from mundane monitoring tasks and let
them focus on media digestion and analysis.

2.2 Internal Monitoring
Deutsche Welle is an international broadcaster op-
erating world-wide in 30 different languages. Re-
gional news rooms produce and broadcast content
independently; journalistic and programming deci-
sions are not made by a central authority within
Deutsche Welle. Therefore, it is difficult for the
overall organisation to maintain an accurate and
up-to-date overview of what is being broadcast,
and what stories have been covered.
2 The actual distribution of staff allocation over the

course of the day may differ.



48

Transcribe*

Translate*

Recognise
and link 

named entities

Extract facts
and relations

Cluster 
similar

documents

Detect
topics

Record*

Summarise
clusters

Database of
annotated
news items

* if applicable

Figure 1: The SUMMA Platform Workflow

The Platform’s cross-lingual story clustering and
summarization module with the corresponding on-
line visualization tool addresses this need. It pro-
vides an aggregate view of recent captured broad-
casts, with easy access to individual broadcast seg-
ments in each cluster.

2.3 Data Journalism
The third use case is the use of the Platform’s
database of news coverage for investigations involv-
ing large amounts of news reports, for example, ex-
ploring how certain persons or issues are portrayed
in the media over time.

3 System Overview
Figure 1 shows the overall system architecture.
The SUMMA Platform consists of three major
parts: a data ingestion pipeline built mostly upon
existing state-of-the-art NLP technology; a web-
based user front-end specifically developed with
the intended use cases in mind; and a database
at the center that is continuously updated by the
data ingestion pipeline and accessed by end users
through the web-based GUI, or through a REST
API by downstream applications.
The user interfaces and the database structure

were custom developments for the SUMMA Plat-
form. The grapical user interfaces are based on
input from potential users and wireframe designs
provided by the use case partners. They are im-
plemented in the Aurelia JavaScript Client Frame-
work3. For NLP processing, we mostly build on
and integrate existing NLP technology. We de-
scribe key components below.
3 aurelia.io

3.1 Languages Covered
The goal of the project to offer NLP capabilities for
English, German, Arabic, Russian, Spanish, Lat-
vian, Farsi, Portuguese, and Ukrainian. We cur-
rently cover the former 6; the latter 3 are work in
progress.
Due to the large number of individual compo-

nents (number of languages covered times NLP
technologies), it is not possible to go into details
about training data used and individual compo-
nent performance here. Such details are covered
in the SUMMA project deliverables D3.1 (Garner
et al., 2017), D4.1 (Obamuyide et al., 2017), and
D5.1 (Mendes et al., 2017), which are available
from the project’s web site.4 We include applica-
ble deliverable numbers in parentheses below, so
that the inclined reader can follow up on details.

3.2 Live Stream Recorder and Chunker
The recorder and chunker monitors one or more
live streams via their respective URLs. Broad-
cast signals received via satellite are converted into
transport streams suitable for streaming via the
internet and provided via a web interface. This
happens outside of the platform since it requires
special hardware. The access point is a live stream
provided as an .m3u8 playlist via a web interface
that is polled regularly by the respective data feed
module.
All data received by the Recorder-and-Chunker

is recorded to disk und chunked into 5-minutes seg-
ments for further processing. Within the Plat-
form infrastructure, the Recorder-and-Chunker
also serves as the internal video server for recorded

4 www.summa-project.eu/deliverables

aurelia.io
www.summa-project.eu/deliverables


49

transitory material, i.e., material not obtained
from persistent sources.
Once downloaded and chunked, a document stub

with the internal video URL is entered into the
data base, which then notifies the task scheduler
about the new arrival, which in turn schedules the
item for downstream processing.
Video and audio files that are not transitory but

provided by the original sources in more persistent
forms (i.e., served from a permanent location), are
currently not recorded5 but retrieved from the orig-
inal source when needed.

3.3 Other Data Feeds
Text-based data is retrieved by data feed modules
that poll the providing source at regular intervals
for new data. The data is downloaded and entered
into the database, which then again notifies the
task scheduler, which in turn schedules the new
arrivals for downstream processing.
In addition to a generic RSS feed monitor, we

use custom data monitors that are tailored to spe-
cific data sources, e.g. the specific APIs that
broadcaster-specific news apps use for updates.
The main task of these specialized modules is to
map between data fields of the source API’s spe-
cific response (typically in JSON6 format), and the
data fields used within the Platform.

3.4 Automatic Speech Recognition (D3.1)
The ASR modules within the Platform are built on
top of CloudASR (Klejch et al., 2015); the underly-
ing speech recognition models are trained with the
Kaldi toolkit (Povey et al., 2011). Punctuation is
added using a neural MT engine that was trained
to translate from un-punctuated text to punctua-
tion. The training data for the punctuation module
is created by stripping punctuation from an exist-
ing corpus of news texts. The MT engine used
for punctuation insertion uses the same software
components as the MT engines used for language
translation.

3.5 Machine Translation (D3.1)
The machine translation engines for language
translation currently use the Marian7 decoder
(Junczys-Dowmunt et al., 2016) for translation
with neural MT models trained with the Nematus
toolkit (Sennrich et al., 2017). We have recently
switched to the Marian toolkit for training.

3.6 Topic Classification (D3.1)
The topic classifier uses a hierarchical attention
model for document classification (Yang et al.,
5 On a marginal note, recording a single live stream

produces, depending on video resolution, up to 25
GiB of data per day.

6 https://www.json.org
7 www.github.com/marian-nmt

2016) trained on nearly 600K manually annotated
documents in 8 languages.

3.7 Storyline Clustering (D3.1) and
Cluster Summarization (D5.1)

Incoming stories are clustered into storylines with
Aggarwal and Yu’s (2006) online clustering algo-
rithm. The resulting storylines are summarized
with the extractive summarization algorithm by
Almeida and Martins (2013).

3.8 Named Entity Recognition and
Linking (D4.1)

For Named Entity Recognition, we use TurboEn-
tityRecognizer, a component within TurboParser8
(Martins et al., 2009). Recognized entities and re-
lations between them (or propositions about them)
about them are linked to a knowledge base of
facts using techniques developed by Paikens et al.
(2016).

3.9 Databases
The Platform currently relies on two databases.
The central database in the NLP processing
pipeline is an instance of RethinkDB9, a document-
oriented database that allows clients to subscribe
to a continuous stream of notifications about
changes in the database. This allows clients (e.g.
the task scheduler) to be notified about the lastest
incoming items as they are added to the database,
without the need to poll the database periodically.
Each document consists of several fields, such as
the URL of the original news item, a transcript for
audio sources, or the original text, a translation
into English if applicable, entities such as persons,
organisations or locations mentioned in the news
items, etc.
For interaction with web-based user interfaces,

we are using a PostgreSQL10 database, which is
periodically updated with the latest arrivals from
the data ingestion pipeline. This second database
was not part of the original design; it was added
out of performance concerns, as we noticed at some
point that RethinkDB’s responsiveness tended to
deteriorate over time as the number of items in the
database grew. Ultimately, this turned out to be
an error in the set-up of our RethinkDB instance:
certain crucial fields weren’t indexed, so that Re-
thinkDB resorted to a linear search for certain op-
erations. The current split between two databases
is not ideal; however, it is operational and elimi-
nating it is not a high priority on the current de-
velopment agenda.

8 https://github.com/andre-martins/TurboParser
9 www.rethinkdb.com
10 www.postgresql.org

https://www.json.org
www.github.com/marian-nmt
https://github.com/andre-martins/TurboParser
www.rethinkdb.com
www.postgresql.org


50

4 Platform Design and
Implementation

As is obvious from the description above, the Plat-
form utilizes numerous existing technologies. In
designing and implementing the Platform, we had
two main objectives:

1. Minimize the effort necessary to integrate the
various existing technologies.

2. Keep individual NLP components as indepen-
dent as possible, so that they can be re-used
for other purposes as well.

In order to meet these objectives, we designed the
processing pipeline as a federation of microservices
that communicate with each other via REST APIs
and/or a message queue.
For rapid prototyping, we defined REST APIs

for each NLP module within the OpenAPI Specifi-
cation Framework11. The suite of Swagger tools12
associated with OpenAPI allowed us to specify
REST APIs quickly and generate boilerplate code
for the back-end server of each microservice. This
reduced integration efforts to implementing a few
back-end functions for each RESTful server — in
whatever programming language the contributing
partner felt most comfortable with.
In the Platform prototype, we used separate pro-

cesses that act as dedicated intermediaries between
the message queue13 and each individual NLP com-
ponent. As the Platform matures, we gradually
moving to implementing RabbitMQ interfaces di-
rectly with the NLP processors, to eliminate the
intermediaries and reduce the overall complexity
of the system.
One of the great advantages of using a message

queue is that it makes scaling and load balancing
easy. If we need more throughput, we add more
workers (possibly on different machines) that talk
to the same message queues. Each type of task has
two queues: one for open requests, the other one for
completed requests. Each worker loops over wait-
ing for a message to appear in the queue, popping it
of it, acknowledging it upon successful completion
(so that it can be marked as done), and pushing
the response onto the respective queue. Workers
need not be aware of the overall architecture of
the system; only the overall task scheduler has to
be aware of the actual work flow.
Maintaining the RESTful APIs is nevertheless

worthwhile: it allows individual components to be
deployed easily as a service outside of the Plat-
form’s context and workflow.

11 www.openapis.org; formerly Swagger
12 www.swagger.io
13 RabbitMQ (https://www.rabbitmq.com/) works

well for us.

The overall NLP processing workflow is designed
as an icremental annotation process: each ser-
vice augments incoming media items with addi-
tional information: automatic speech recognition
(ASR) services add transcriptions, machine trans-
lation (MT) engines add translations, and so forth.
Each component of the Platform runs indepen-

dently in a Docker14 application container. Similar
to conventional virtual machines (VMs), Docker
containers isolate applications from the host sys-
tem by running them in a separate environment
(“container”), so that each application can use its
own set of libraries, ports, etc. However, unlike
conventional VMs, which emulate a complete ma-
chine including device and memory management,
the Docker engine allows containers to share the
host’s kernel and resources, greatly reducing the
virtualisation / containerization overhead. For
small-scale single-host deployment (up to ten live
streams on a 32-core server), we use Docker Com-
pose;15 for multi-host scaling, Docker Swarm16.
Another great advantage of the Docker platform

is that many third-party components that we rely
on (message queue, data bases) are available as
pre-compiled Docker containers, so that their de-
ployment within the Platform is trivial. No de-
pendencies to manage, no compilation from scratch
required, no conflicts with the OS on the host ma-
chine.
Our approach to the design of the Platform has

several advantages over tigher integration within a
single development framework in which contribut-
ing partners would be required to provide software
libraries for one or more specific programming lan-
guages.
First, in line with our first design objective, it

minimizes the integration overhead.
Second, it is agnostic to implementational

choices and software dependencies of individual
components. Each contributing partner can con-
tinue to work within their preferred development
environment.17
Third, it provides for easy scalability of the sys-

tem, as the Platform can be easily distributed over
multiple hosts. With the message queue approach,
multiple workers providing identical services can
share the processing load.
Fourth, modules can be updated without having

to re-build the entire system. Even live continu-
ous upgrades and server migration can be accom-
plished easily by starting up a new instance of a
specific service and then shutting down the obso-

14 www.docker.com
15 https://docs.docker.com/compose/
16 https://docs.docker.com/engine/swarm
17 In the case of Windows-based software, however, li-

censing issues have to be considered for deployment
in container environments such as Docker.

www.openapis.org
www.swagger.io
https://www.rabbitmq.com/
www.docker.com
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm


51

lete one.
Fifth, meeting our second design objective, the

strong modularization of the Platform allows for
easy re-use of components. The back-end server for
each component can easily be integrated into other
applications (albeit potentially requiring augmen-
tations to the API).

5 Conclusion

We have reported on our experiences in imple-
menting a high-performance, highly scalable natu-
ral language processing pipeline from existing im-
plementations of state-of-the art as an assembly of
containerized micro-services. We found that this
approach greatly facilitated technology integration
and collaboration, as it eliminated many points
of potential friction, such as having to agree on
a joint software development framework, adapting
libraries, and dealing with software dependencies.
Using the Docker platform, we are able to deploy
and scale the Platform quickly.

Availability

The Platform infrastructure and most of its com-
ponents are scheduled to be released as open-source
software by the end of August 2018 and will be
available through the project web site at

www.summa-project.eu.

Acknowledgements

This work was conducted within the scope
of the Research and Innovation Action

SUMMA, which has received funding from the Eu-
ropean Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 688139.

References
Aggarwal, Charu C and Philip S Yu. 2006. “A
framework for clustering massive text and cat-
egorical data streams.” SIAM Int’l. Conf. on
Data Mining, 479–483.

Almeida, Miguel B and Andre FT Martins. 2013.
“Fast and robust compressive summarization
with dual decomposition and multi-task learn-
ing.” ACL, 196–206.

Garner, Philip N., Alexandra Birch, Andrei
Popescu-Belis, Peter Bell, Herve Bourlard, Steve
Renals, Sebastião Miranda, and Ulrich Ger-
mann. 2017. SUMMA Deliverable D3.1: Initial
Progress Report on Shallow Stream Processing.
Tech. rep., The SUMMA Consortium.

Junczys-Dowmunt, Marcin, Tomasz Dwojak, and
Hieu Hoang. 2016. “Is neural machine transla-
tion ready for deployment? A case study on 30
translation directions.” International Workshop

on Spoken Language Translation. Seattle, WA,
USA.

Klejch, Ondřej, Ondřej Plátek, Lukáš Žilka, and
Filip Jurčíček. 2015. “CloudASR: platform and
service.” Int’l. Conf. on Text, Speech, and Dia-
logue, 334–341.

Martins, André FT, Noah A Smith, and Eric P
Xing. 2009. “Concise integer linear programming
formulations for dependency parsing.” ACL,
342–350.

Mendes, Afonso, Pedro Balage, Mariana Almeida,
Sebastião Miranda, Nikos Papasarantopou-
los, Shashi Narayan, and Shay Cohen. 2017.
SUMMA Deliverable 5.1: Initial Progress Report
on Natural Language Understanding. Tech. rep.,
The SUMMA Consortium.

Obamuyide, Abiola, Andreas Vlachos, Jeff
Mitchell, David Nogueira, Sebastian Riedel,
Filipe Aleixo, Samuel Broscheit, Andre Mar-
tins, Mariana Almeida, Sebastião Miranda,
Afonso Mendes, and Andrei Popescu-Belis. 2017.
SUMMA Deliverable D4.1: Initial Progress Re-
port on Automatic Knowledge Base Creation.
Tech. rep., The SUMMA Consortium.

Paikens, Peteris, Guntis Barzdins, Afonso Mendes,
Daniel Ferreira, Samuel Broscheit, Mariana S. C.
Almeida, Sebastião Miranda, David Nogueira,
Pedro Balage, and André F. T. Martins. 2016.
“SUMMA at TAC knowledge base population
task 2016.” TAC. Gaithersburg, Maryland,
USA.

Povey, Daniel, Arnab Ghoshal, Gilles Boulianne,
Lukáš Burget, Ondr̆ej Glembek, Nagendra Goel,
Mirko Hannemann, Petr Motlíček, Yanmin
Qian, Petr Schwarz, Jan Silovský, Georg Stem-
mer, and Karel Veselý. 2011. “The Kaldi speech
recognition toolkit.” ASRU.

Sennrich, Rico, Orhan Firat, Kyunghyun Cho,
Alexandra Birch, Barry Haddow, Julian
Hitschler, Marcin Junczys-Dowmunt, Samuel
Läubli, Antonio Valerio Miceli Barone, Jozef
Mokry, and Maria Nadejde. 2017. “Nematus: a
toolkit for neural machine translation.” EACL
Demonstration Session. Valencia, Spain.

Yang, Zichao, Diyi Yang, Chris Dyer, Xiaodong
He, Alexander J. Smola, and Eduard H. Hovy.
2016. “Hierarchical attention networks for doc-
ument classification.” NAACL. San Diego, CA,
USA.

www.summa-project.eu

