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Abstract

We present OpenSeq2Seq — an open-
source toolkit for training sequence-to-
sequence models. The main goal of our
toolkit is to allow researchers to most
effectively explore different sequence-to-
sequence architectures. The efficiency is
achieved by fully supporting distributed
and mixed-precision training.

OpenSeq2Seq provides building blocks
for training encoder-decoder models for
neural machine translation and automatic
speech recognition. We plan to extend it
with other modalities in the future.

1 Introduction

Sequence-to-Sequence models built around the
encoder-decoder paradigm (Sutskever et al., 2014)
have been successfully used for natural language
processing (NLP) (Vaswani et al., 2017), image-
captioning (Xu et al., 2015), and automatic speech
recognition (ASR) (Chan et al., 2015; Battenberg
et al., 2017). However, implementing a sequence-
to-sequence model in a general purpose deep
learning framework such as TensorFlow (Abadi
et al., 2016), CNTK (Yu et al., 2014) or PyTorch
(Paszke et al., 2017) can be challenging, espe-
cially with support for distributed training. Sev-
eral open-source toolkits have been proposed in
recent years in an attempt to tackle this challenge.
Among the most popular ones are: OpenNMT
(Klein et al., 2017), Seq2Seq (Britz et al., 2017),
NMT (Luong et al., 2017), and Tensor2Tensor
(Vaswani et al., 2017). These toolkits make it
much easier to reproduce most current state-of-
the-art results and train your own models on new
datasets. OpenSeq2Seq is inspired by these ap-
proaches with an additional focus on distributed
and mixed-precision training.
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In particular, OpenSeq2Seq adds support for
mixed precision training as described in (Micike-
vicius et al., 2017). It uses the IEEE floatl6
data format to reduce memory requirements and
speed up training on modern deep learning hard-
ware such as NVIDIA’s Volta GPUs. Furthermore,
OpenSeq2Seq supports multi-GPU and multi-
node distributed training.

OpenSeq2Seq is built using TensorFlow and
is available at: https://github.com/
NVIDIA/OpenSeg2Sed.

2 Design

The main design goals of OpenSeq2Seq are ex-
tensibility and modularity. It provides several
core abstract classes which users can inherit from
when adding new models: DatalLayer, Model,
Encoder, Decoder and Loss. The Model
class implements distributed and mixed precision
training support. For distributed training we sup-
port two modes, both following data-parallel ap-
proaches with synchronous updates: (1) multi-
tower mode in which a separate TensorFlow graph
is built on every GPU and (2) Horovod-based
mode (Sergeev and Del Balso, 2018) which allows
both multi-node as well as multi-GPU executions.

At a high level, the Encoder is a model block
which consumes data and produces a represen-
tation; while the Decoder is a model block
which consumes a representation and produces
data and/or output. While we do not strictly en-
force this, we assume that any encoder can be
combined with any decoder, thus improving flexi-
bility and simplicity of experimentation. Note that
it is possible to have a model consisting of only
an encoder, only a decoder, or having more than
one encoder and/or decoder. Currently, we pro-
vide the DatalLayer, Encoder, Decoder and Loss
class implementations for neural machine trans-
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lation (NMT) and automatic speech recognition
(ASR) tasks.

2.1 API

OpenSeq2Seq provides a top-level run. py script
which takes a flexible Python configuration file
specifying the model and execution mode (train,
eval, train_eval or infer). The configuration file
allows user to specify parts of the model (i.e.
data layer, encoder, decoder and loss) and their
configuration parameters. Since the configuration
file is written in Python, it is possible to pro-
vide actual Python classes as parameters. This
maximizes flexibility by enabling users to define
their own implementations for various compo-
nents (e.g. encoders-decoders or even a custom
learning rate decay schedules) without modifying
the toolkit source code.

3 Mixed Precision support

OpenSeq2Seq fully supports training with mixed
precision using floatl6 data types to utilize the
newest GPUs. When using floatl6 to train large
state-of-the art models, it is sometimes necessary
to apply certain algorithmic techniques and keep
some outputs in float32 (hence, mixed precision)
to achieve best results. For mixed precision train-
ing we follow an algorithmic recipe from (Micike-
vicius et al., 2017). At a high level it can be sum-
marized as follows:

1. Maintain float32 master copy of weights
for weights update while using the floatl6
weights for forward and back propagation

2. Apply loss scaling while computing gra-
dients to prevent underflow during back-
propagation

It is worth mentioning that both (1)-(2) are not al-
ways necessary. However, this method has proven
to be robust across a variety of large set of com-
plex models (Micikevicius et al., 2017).

Note that while having two copies of weights in-
crease the memory consumption for weights, the
total memory requirements for mixed precision
is often decreased because activations, activation
gradients, and other intermediate tensors can now
be kept in float16. This is especially beneficial for
models with a high degree of parameter sharing,
such as recurrent models.
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3.1 Mixed Precision Optimizer

Our implementation is different from the previous
approach!: instead of a custom variable getter, we
introduce a wrapper around standard TensorFlow
optimizers. The model is created with float16 data
type, so all variables and gradients are in float16
by default (except for the layers which are explic-
itly redefined as float32; for example data layers or
operations on CPU). The wrapper then automati-
cally converts float16 gradients to float32 and sub-
mits them to TensorFlow’s optimizer, which up-
dates the master copy of weights in float32. Up-
dated float32 weights are converted back to float16
weigths, which are used by the model in the next
forward-backward iteration. Figure 1 illustrates
the MixedPrecisionOptimizerWrapper
architecture.

3.2 Mixed Precision Regularizer

Training in mixed precision may need special care
for regularization. Consider, for example, weight
decay regularization when weights decay term
2w is added to the gradients with respect to the
loss %' Given that the weights are commonly ini-
tialized with small values, multiplying them with
weight decay coefficient A which is usually on the
order of [107°,1073] can result in numerical un-
derflow.

To overcome this problem we use the fol-
lowing approach. First, all regularizers should
be defined during variable creation (a regular-
izer parameter in the t£.get_variable func-
tion or tf.layers objects). Second, the
regularizer function should be wrapped with
mp_regularizer _wrapper function which
does two things. First, it adds variable with the
user-provided regularization function to the Ten-
sorFlow collection. Second, it disables the un-
derlying regularization function for float16 copy.
The created collection will later be retrieved by
MixedPrecisionOptimizerWrapper and
the corresponding functions will be applied to the
float32 copy of the weights ensuring that their
gradients always stay in full precision. Since
this regularization is not in the loss computa-
tion graph, we explicitly call tf.gradients
and add the result to the gradients passed in the
compute_gradients in the optimizer.

'http://docs.nvidia.com/deeplearning/
sdk/mixed-precision-training/. Accessed:
2018-04-06.
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Figure 1: ”Mixed precision” optimizer wrapper around any TensorFlow optimizer

3.3 Automatic Loss Scaling

The mixed precision training approach suggests
that the user set a fixed loss scale hyper-parameter
to adjust the dynamic range of backpropagation to
match the dynamic range of float16 (Micikevicius
et al., 2017). OpenSeq2Seq implements an auto-
matic loss scaling so the user does not have to se-
lect the loss-scale value manually. The optimizer
inspects the parameter gradients at each iteration
and uses their values to select the loss scale for the
next iteration.

4 Machine Translation and Automatic
Speech Recognition

NMT and ASE are two modalities which currently
have full implementation in OpenSeq2Seq.

4.1 NMT experiments

Neural Machine Translation (NMT) is naturally
expressed in terms of encoder-decoder paradigm
(Bahdanau et al., 2014; Wu et al., 2016; Vaswani
et al., 2017). OpenSeq2Seq provides several en-
coder and decoder implementations for this task
- RNN and non-RNN based ones with various
types of attention. It has all the necessary blocks
for GNMT-like (Wu et al., 2016) and Transformer
(Vaswani et al., 2017) models. Also, these blocks
can be easily mixed together.

For example, if the user wants to train GNMT-
like (Wu et al., 2016) model he/she needs
to construct a configuration file which uses
GNMTLikeEncoderWithEmbedding as the
encoder, and RNNDecoderWithAttention
as the decoder for training and
BeamSearchRNNDecoderWithAttention
for inference. — The precision mode (float32,
float16 or mixed) as well as the number of GPUs
and other parameters are also specified in the
configuration file.

For training using mixed precision we do not
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Model Iteration Score

GNMT-like float32 340K 23.21 BLEU
GNMT-like mixed 340K 23.63 BLEU
Transformer float32 220K 25.2 BLEU
Transformer mixed 220K 25.4 BLEU
DS2-like float32 110K 4.59% WER
DS2-like mixed 110K 4.47% WER

Table 1: Evaluation scores after training using
float32 and mixed precision. We used 2, 4 and
8 GPUs to train Transformer, GNMT and Deep-
Speech2 models. All configs are available on
OpenSeq2Seq’s GitHub.

change network topology or any of the hyper pa-
rameters. Figure 2 (A) demonstrates that training
loss curves for GNMT-like model using float32
and mixed precision track each other very closely
during training (the same is true for Transformer
training). In our experiments, we used WMT
2016 English—German data set obtained by com-
bining the Europarlv7, News Commentary v10,
and Common Crawl corpora and resulting in
roughly 4.5 million sentence pairs. Table 1 com-
pares BLEU scores after training with float32 and
mixed precision. These scores are computed using
multi-bleu.perl’ script from Moses against new-
stest2013.tok.de file.

In our experiments, for Transformer and
GNMT-like model, total GPU memory consump-
tion is reduced to about 55% of what it was
while using float32. We also observe performance
boosts (around x1.8 for GNMT) which can vary
depending on the batch size. The general rule of
thumb is that bigger batch size yields better per-
formance.

https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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Training loss curves for: (A) GNMT-like model, and (B) DeepSpeech2-like model using

float32 and mixed precision. For both models, float32 and mixed precision training very closely match

each other.

4.2 ASR experiments

Many recent Automated Speech Recognition
(ASR) models are built using explicit encoder-
decoder topology (Battenberg et al., 2017; Prab-
havalkar et al., 2017; Chiu et al., 2017). How-
ever, even for models without explicit encoder-
decoder topology, it is easy to re-formulate them
as such in our toolkit. For example, let’s con-
sider an encoder-decoder implementation of Deep
Speech 2 (DS2) model (Amodei et al., 2016)
in OpenSeq2Seq. DS2 consists of three convo-
lutional layers, several bidirectional or unidirec-
tional recurrent layers (with LSTMs or GRUs),
an optional row convolutional layer, and a fully
connected layer followed by a hidden layer which
produces logits for the Connectionist Temporal
Classification (CTC) loss (Graves et al., 2006).
Logits represent a probability distribution over
alphabet characters at each timestep. A beam
search CTC decoder with language model re-
scorer is usually employed for producing the out-
put characters sequence during inference. While
DS2 doesn’t contain explicit encoder and decoder
(in seq2seq sense), we can split the model in
the following fashion: convolutional, recurrent
and fully connected layers are encapsulated in
the DeepSpeech2Encoder, and logits’ hidden
layer together with the CTC decoder are encapsu-
lated in the FullyConnectedCTCDecoder.
The reason behind this split point is simple: it al-
lows the encoder to output a custom-sized repre-
sentation and it encourages encoder and decoder
re-use. For example, the CTC decoder can be re-
placed with any decoder from text-to-text models.

In our experiments, we trained DeepSpeech2-
like model on a “clean” and “other” subsets of Lib-
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riSpeech training dataset (Panayotov et al., 2015).
Table 1 shows final Word Error Rates (WER)?
on LibriSpeech “dev-clean” subset, obtained after
training using float32 and mixed precision. Sim-
ilarly to GNMT experiments, we did not change
any of the hyper parameters when training in
mixed precision. During training in mixed pre-
cision, we observed a total memory reduction to
around 57% compared to float32 mode. Figure 2
(B) demonstrates that mixed precision has no ef-
fect on convergence behaviour.

5 Conclusion and future plans

Modern deep learning hardware is moving to-
wards training with low precision. NVIDIA’s
Volta-based GPUs offer significant performance
boost and reduced memory footprint while train-
ing using Tensor Cores (e.g. using floatl6)*.
OpenSeq2Seq natively supports training using
mixed precision and allows NLP and ASR re-
searchers to increase their productivity. In our
experiments, we see total memory reductions to
55%—-57% of float32 mode for GNMT, Trans-
former and DeepSpeech2 models.

OpenSeq2Seq aims to offer a rich library of
commonly used encoders and decoders. We plan
to extend it with other modalities such as text-to-
speech and image-to-text. Finally, we are working
on providing more encoder and decoder choices
for already supported tasks such as machine trans-
lation and speech recognition.

*With beam width = 2048 and language model pro-
vided by Mozilla: https://github.com/mozilla/
DeepSpeech/tree/master/data/lm

*http://images.nvidia.com/
content/volta-architecture/pdf/
volta—architecture-whitepaper.pdf
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