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Abstract

We introduce Texar, an open-source
toolkit aiming to support the broad set of
text generation tasks. Different from many
existing toolkits that are specialized for
specific applications (e.g., neural machine
translation), Texar is designed to be highly
flexible and versatile. This is achieved by
abstracting the common patterns under-
lying the diverse tasks and methodolo-
gies, creating a library of highly reusable
modules and functionalities, and enabling
arbitrary model architectures and vari-
ous algorithmic paradigms. The features
make Texar particularly suitable for tech-
nique sharing and generalization across
different text generation applications. The
toolkit emphasizes heavily on extensibil-
ity and modularized system design, so that
components can be freely plugged in or
swapped out. We conduct extensive exper-
iments and case studies to demonstrate the
use and advantage of the toolkit.

1 Introduction

Text generation spans a broad set of natural lan-
guage processing tasks that aim at generating nat-
ural language from input data or machine rep-
resentations. Such tasks include machine transla-
tion (Bahdanau et al., 2014; Brown et al., 1990),
dialog systems (Williams and Young, 2007; Ser-
ban et al., 2016), text summarization (Hovy and
Lin, 1998; See et al., 2017), article writing (Wise-
man et al., 2017), text paraphrasing and manipula-
tion (Madnani and Dorr, 2010; Hu et al., 2017a),
image captioning (Vinyals et al., 2015b; Karpa-
thy and Fei-Fei, 2015), and more. Recent years
have seen rapid progress of this active area in both
academia and industry, especially with the adop-
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tion of modern deep learning approaches in many
of the tasks. On the other hand, considerable re-
search efforts are still needed to improve relevant
techniques and enable real-world practical appli-
cations.

The variety of text generation tasks share many
common properties and goals, e.g., to generate
well-formed, grammatical and readable text, and
to realize in the generation the desired information
inferred from inputs. To this end, a few key mod-
els and algorithms are increasingly widely-used to
empower the different applications, such as neural
encoder-decoders (Sutskever et al., 2014), atten-
tions (Bahdanau et al., 2014; Luong et al., 2015b),
memory networks (Sukhbaatar et al., 2015), adver-
sarial methods (Goodfellow et al., 2014; Hu et al.,
2017b; Lamb et al., 2016), reinforcement learn-
ing (Ranzato et al., 2015; Bahdanau et al., 2016),
as well as some optimization techniques, data pre-
processing and result post-processing procedures,
evaluations, etc.

It is therefore highly desirable to have an open-
source platform that unifies the development of the
diverse yet closely-related applications, backed
with clean and consistent implementations of the
core algorithms. Such a unified platform enables
reuse of common components and functionali-
ties, standardizes design, implementation, and ex-
perimentation, fosters reproducible research, and
importantly, encourages technique sharing among
different text generation tasks, so that an algorith-
mic advance originally developed for a specific
task can quickly be evaluated and potentially gen-
eralized to many other tasks.

Though a few remarkable open-source toolkits
have been developed, they have been largely de-
signed for one or few specific tasks, especially
neural machine translation (Britz et al., 2017,
Klein et al., 2017; Neubig et al., 2018) and dialog
related algorithms (Miller et al., 2017). This pa-
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per introduces 7exar, a general-purpose text gen-
eration toolkit that aims to support most of the
popular applications in the field, by providing re-
searchers and practitioners a unified and flexible
framework for building their models. Texar is built
upon TensorFlow!, a popular deep learning plat-
form. Texar emphasizes on three key properties,
namely, versatility, modularity, and extensibility.

e Versatility: Texar contains a wide range
of features and functionalities for 1) arbi-
trary model architectures as a combination
of encoders, decoders, discriminators, mem-
ories, and many other modules; and 2) dif-
ferent modeling and learning paradigms such
as sequence-to-sequence, probabilistic mod-
els, adversarial methods, and reinforcement
learning. Based on these, both workhorse and
cutting-edge solutions to the broad spectrum
of text generation tasks are either already in-
cluded or can be easily constructed.

Modularity: Texar is designed to be highly
modularized, by decoupling solutions to di-
verse tasks into a set of highly reusable mod-
ules. Users can construct their model at a high
conceptual level just like assembling LEGO
bricks. It is convenient to plug in or swap out
modules, configure rich options of each mod-
ule, or even switch between distinct model-
ing paradigms. For example, switching be-
tween maximum likelihood learning and re-
inforcement learning involves only minimal
code changes. Modularity makes Texar use-
ful for fast prototyping, parameter tuning,
and model experimentation.

Extensibility: The toolkit provides interfaces
of multiple functionality levels, ranging from
simple Python-like configuration files to full
library APIs. Users of different needs and ex-
pertise are free to choose different interfaces
for appropriate programmability and internal
accessibility. The library APIs are fully com-
patible with the native TensorFlow interfaces,
which allows a seamless integration of user-
customized modules, and enables the toolkit
to take advantage of the vibrant open-source
community by easily importing any external
components as needed.

"https://www.tensorflow.org
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Furthermore, Texar puts much emphasis on
well-structured high-quality code of uniform de-
sign patterns and consistent styles, along with
clean documentations and rich tutorial examples.

In the following, we provide details of the
toolkit structure and design. To demonstrate the
use of the toolkit and its advantages, we perform
extensive experiments and cases studies, including
generalizing the state-of-the-art machine transla-
tion model to multiple text generation tasks, in-
vestigating different algorithms for language mod-
eling, and implementing composite neural archi-
tectures beyond conventional encoder-decoder for
text style transfer. All are easily realized with the
versatile toolkit.

Texar is under Apache license 2.0, and will
be released very soon. Please check out http:
//www.cs.cmu.edu/~zhitingh for the re-
lease progress.

2 Structure and Design

In this section, we first provide an overview of the
toolkit on its design principles and overall struc-
tures. We then present the detailed structure of
Texar with running examples to demonstrate the
key properties of the toolkit (sec 2.2-2.4).

Figure 1 shows the stack of main modules and
functionalities in Texar. Building upon the lower
level deep learning platform (TensorFlow), Texar
provides a comprehensive set of building blocks
for model construction, training, evaluation, and
prediction. Texar is designed with the goals of ver-
satility, modularity, and extensibility in mind. In
the following, we first present the design princi-
ples that lead to the goals (sec 2.1), and describe
the detailed structure of Texar with running exam-
ples to demonstrate the properties of the toolkit
(sec 2.2-2.4).

2.1 The Design of Texar

The broad variation of the many text generation
tasks and the fast-growing new models and algo-
rithms have posed unique challenges to design-
ing a versatile toolkit. We tackle the challenges
through proper decomposition of the whole exper-
imentation pipeline, extensive sets of modules to
assemble freely, and user interfaces of varying ab-
stract levels.

Pipeline Decomposition We begin with a high-
level decomposition of model construction and
learning pipeline. A deep neural model is typically
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Figure 1: The stack of main modules and functionalities in Texar.

Prlor

A—EHEF W WA I—*

(b) () (d)
o E I\ /| D, | v
x> E, =5 D, >y, x E >1;|—>o/1
] I/\i o x—» E >z D >y D, Y
(e) (f) (8)

Figure 2: Example various model architectures in recent text generation literatures. E denotes encoder,
D denotes decoder, C denotes classifier (i.e., binary discriminator). (a) The canonical encoder-decoder,
sometimes with attentions A (Sutskever et al., 2014; Bahdanau et al., 2014; Luong et al., 2015b; Vaswani
et al., 2017), or copy mechanisms (Gu et al., 2016; Vinyals et al., 2015a; Gulcehre et al., 2016); (b)
Variational encoder-decoder (Bowman et al., 2015; Yang et al., 2017); (¢) Encoder-decoder augmented
with external memory (Sukhbaatar et al., 2015; Bordes et al., 2016); (d) Adversarial model using a binary
discriminator C, with or without reinforcement learning (Liang et al., 2017; Zhang et al., 2017; Yu et al.,
2017); (e) Multi-task learning with multiple encoders and/or decoders (Luong et al., 2015a; Firat et al.,
2016); (f) Augmenting with cyclic loss (Hu et al., 2017a; Goyal et al., 2017); (g) Learning to align with
adversary, either on samples y or hidden states (Lamb et al., 2016; Lample et al., 2017; Shen et al., 2017).

learned with the following abstract procedure:
maxg L(fg, D) (D

where (1) fy is the model that defines the model
architecture and the intrinsic inference procedure;
(2) D is the data; (3) L is the losses to optimize;
and (4) max denotes the optimization and learn-
ing procedure. Note that the above can have mul-
tiple losses imposed on different parts of compo-
nents and parameters (e.g., generative adversarial
networks (Goodfellow et al., 2014)). Texar is de-
signed to properly decouple the four elements, and
allow free combinations of them through uniform
interfaces. Such design has underlay the strong
modularity of the toolkit.

In particular, the decomposition of model ar-
chitecture and inference (i.e., fy) from losses
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and learning has greatly improved the clean-
ness of the code structure and the opportuni-
ties for reuse. For example, a sequence decoder
can focus solely on performing different decod-
ing (inference) schemes, such as decoding with
ground truths, and greedy, stochastic, or beam-
search decoding, etc. Different learning algo-
rithms then use different schemes as a subrou-
tine in the learning procedure—for example, max-
imum likelihood learning uses decoding with
ground truths (Mikolov et al., 2010), a policy gra-
dient algorithm can use stochastic decoding (Ran-
zato et al., 2015), and an adversarial learning
can use either the stochastic decoding for policy
gradient-based updates (Yu et al., 2017) or the
Gumbel-softmax reparameterized decoding (Jang
et al., 2016) for direct gradient back-propagation.
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Figure 3: The catalog of a subset of modules for model construction and learning. Other modules, such as
memory network modules, and those for evaluation and prediction, are omitted due to space limitations.
More new modules are continuously added to the library.

With unified abstractions, the decoder and the
learning algorithms need not know the implemen-
tation details of each other. This also enables con-
venient switch between different learning algo-
rithms for the same model, by simply changing
the inference scheme and connecting to the new
learning module, without adapting the model ar-
chitecture (see sec 2.3 for the example).

Modules Readily to Assemble The fast evolu-
tion of modeling and learning methodologies in
the research field has led to sophisticated models
that go beyond the canonical (attentive) sequence-
to-sequence alike paradigms and introduce many
new composite architectures. Figure 2 summarizes
several model architectures recently used in the lit-
erature for different tasks. To versatilely support
all these diverse approaches, we break down the
complex models and extract a set of frequently-
used modules (e.g., encoders, decoders,
classifiers, etc). Figure 3 shows the catelog
of a subset of modules. Crucially, Texar allows
free concatenation between these modules in or-
der to assemble arbitrary model architectures.
Such concatenation can be done by directly in-
terfacing two modules, or through an interme-
diate connector module that provides gen-
eral, highly-usable functionalities of shape trans-
formation, reparameterization (e.g., (Kingma and
Welling, 2013; Jang et al., 2016)), sampling, and
others.
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User Interfaces It is critical for the toolkit to be
flexible enough to allow construction of the sim-
ple or advanced models, while at the same time
providing proper abstractions to relieve users from
overly concerning about low-level implementa-
tions. To this end, Texar provides two types of user
interfaces with different abstract levels: 1) Python-
style configuration files that instantiate pre-defined
model templates, and 2) a set of intuitive library
APIs called in Python code. The former is simple,
clean, straightforwardly understandable for non-
expert users, and is widely adopted by other toolk-
its (Britz et al., 2017; Neubig et al., 2018; Klein
et al., 2017), while the latter allows maximal flexi-
bility, full access to internal states, and essentially
unlimited customizability. Examples are provided
in the following section.

2.2 Assemble Arbitrary Model Architectures

Figure 4 shows an example of specifying an atten-
tive sequence-to-sequence model through either
the YAML configuration file (left panel), or sim-
ple Python code (right panel), respectively.

e The configuration file passes hyperparame-
ters to the model template which instantiates
the model for subsequent training and eval-
uation (which are also configured through
YAML). Text highlighted in blue in the fig-
ure specifies the names of modules to use.
Module hyperparameters follow the module



| source_embedder: WordEmbedder

2 dim: 300 2
3 encoder: UnidirectionalRNNEncoder 3
4 rnn_cell: 4
5 type: BasicLSTMCell 5 # Encode

6 num_units: 300 6
7 num_layers: 1
8 dropout: 8
9 output_dropout: 0.5 9
variational_recurrent: True
target_embedder: WordEmbedder
dim: 300 12
13 decoder: AttentionRNNDecoder 13
rnn_cell:
15 type: BasicLSTMCell
num_units: 300

# Decode

num_layers: 1 # Loss
attention:
type: LuongAttention 19

20 connector: ZeroConnector

I # Read data
dataset = PairedTextData(data_hparams)
data = Datalterator(dataset).get_next()

embedder = WordEmbedder(dataset.vocab_size, emb_dim)
7 encoder = UnidirectionalRNNEncoder(hparams=cell_hparams)
enc_outputs, _ = encoder(

embedder(data['source_text_ids']), data['source_length')

decoder = AttentionRNNDecoder(

memory=enc_outputs, attn_type='LuongAttention’, hparams=cell_hparams)
outputs, length, _ = decoder(

embedder(data['target_text_ids']), data['target_length']-1, mode='greedy_train')

loss = sequence_sparse_softmax_cross_entropy(
labels=data['target_text_ids'|[:,1:], logits=outputs.logits, seq_length=length)

Figure 4: Two ways of specifying an attentive sequence-to-sequence model. Left: Snippet of an example
YAML configuration file of the sequence-to-sequence model template. Only those hyperparameters that
the user concerns are specified explicitly in the particular file, while the remaining many hyperparameters
can be omitted and will take default values. Right: Python code assembling the sequence-to-sequence
model, using the Texar library APIs. Modules are created as Python objects, and then can be called as
functions to perform the main logic (e.g., decoding) of the module. (Other code such as optimization is

omitted.)

names as children in the configuration hier-
archy. Note that most of the hyperparameters
have sensible default values, and users only
have to specify a small subset of them. Hy-
perparameters taking default values can be
omitted in the configuration file.

The library APIs offer high-level function
calls. Users are enabled to efficiently build
desired pipelines at a high conceptual level,
without worrying too much about the low-
level implementations. Power users are also
given the option to access the full internal
states for native programming and low-level
manipulations.

2.3 Plug-in and Swap-out Modules

Texar builds a shared abstraction of the broad
set of text generation tasks, and creates highly
reusable modules. It is thus very convenient to
switch between different application contexts, or
change from one modeling paradigm to another,
by simply plugging in/swapping out a single or
few modules, or even merely changing a configu-
ration parameter, while keeping other parts of the
modeling and training pipeline agnostic.
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Figure 5 illustrates an example of switching
between three major learning paradigms of an
RNN decoder, i.e., maximum-likelihood based su-
pervised learning, adversarial learning, and rein-
forcement learning, using the library APIs. Local
modification of only few lines of code is enough
to achieve such change. In particular, the same
decoder is called with different decoding modes
(e.g., greed_train and greedy_infer), and
discriminator or reinforcement learning agent is
added when needed, with simple API calls.

The convenient module replacement can be
valuable for fast exploration of different algo-
rithms for a specific task, or quick experimentation
of an algorithm’s generalization on different tasks.

2.4 Customize with Extensible Interfaces

With the aim of supporting the rapidly advancing
research area of text generation, Texar emphasizes
heavily on extensibility, and allows easy addition
of customized or external modules through various
interfaces, without editing the Texar codebase.
With the YAML configuration file, users can di-
rectly insert their own modules by providing the
Python importing path to the module. For exam-
ple, to use a externally implemented RNN cell in



(a) Maximum likelihood learning

Cross entropy loss

outputs, length, _ = decoder(
embedder(data['target_text_ids"]), data['target_length'l-1, mode='greedy_train')

loss = sequence_sparse_softmax_cross_entropy(
labels=data['target_text_ids'][:,1:], logits=outputs.logits, seq_length=length)

helper = GumbelSoftmaxTrainingHelper(
start_tokens=[BOS]"batch_size, end_token=EOS, embedding=embedder)
outputs, _, _ = decoder(helper=helper)

discriminator = Conv1DClassifier(conv_hparams)
soft_embedder = SoftWordEmbedder(embedder.value) # Share embedding

G_loss, D_loss = binary_adversarial_losses(
embedder(data['target_text_ids’]),
soft_embedder(softmax(outputs.logits)),discriminator)

agent = PolicyGradientAgent(

policy_kwargs={'start_tokens’: [BOS]*batch_size, ‘end_token’: EOS,

‘embedding’: embedder, ‘mode’: ‘greedy_infer’})

foriin range(STEPS):
samples = agent.get_samples()
rewards = BLEU(samples, data_batch['target_text_ids’])
agent.perceive(samples, rewards)
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Figure 5: Switching between the different learning paradigms of a decoder involves only modification of
Line.14-19 in the right panel of Figure 4. In particular, the same decoder is called with different decoding
modes (schemes), and the discriminator or reinforcement learning agent is added when needed, with
simple API calls. Left: The module structure of each of the paradigms; Right: The respective code. For
the adversarial learning in (b), the continuous Gumbel-softmax approximation (Jang et al., 2016) (with
GumbelSoftmaxTrainingHelper) to the generated sample is used to enable gradient propagation

from the discriminator to the decoder.

the sequence-to-sequence model encoder, one can
simply change Lines.5-6 in the left panel of Fig-
ure 4 to the following:

w

type: path.to.MyCell
6 num_units: 300
7 some_new_arg: 123

as long as the MyCell class is accessible by
Python, and its interface is compatible to other
parts of the model.

Incorporating customized modules with Texar
library APIs is even more flexible and straightfor-
ward. As the library APIs are designed to be co-
herent with the native TensorFlow programming
interfaces, any externally-defined modules can be
seamlessly combined with Texar components to

18

build arbitrary complex models and pipelines.

3 Experiments

We perform extensive experiments to demonstrate
the use and advantage of Texar. In particular, we
conduct case studies on fechnique sharing that is
uniquely supported by our toolkit: (1) We deploy
the state-of-the-art machine translation model on
other tasks to study its generality, and obtain im-
proved performance over previous methods; (2)
We apply various model paradigms on the task of
language modeling to compare the different meth-
ods. Besides, to further demonstrate the versatil-
ity of Texar, we show a case study on the newly-
emerging task of text style transfer, which typi-
cally involves composite neural architectures be-
yond the conventional encoder-decoder.



Task: VAE language modeling

Dataset Metrics VAE-LSTM  VAE-Transformer
TestPPL 6831 61.26

Yahoo (Yang etal., 2017)  p 8T 337 5 328.67
TestPPL 10527 102.46

PTB (Bowman etal., 2015) oo N1 102,06 101.46

Table 1: Comparison of Transformer decoder and LSTM RNN decoder on VAE language model-
ing (Bowman et al., 2015). Test set perplexity (PPL) and sentence-level negative log likelihood (NLL)

are evaluated (The lower the better).

3.1 One Technique on Many Tasks:
Transformer

Transformer (Vaswani et al., 2017) is a recently
developed model that achieves state-of-the-art per-
formance on machine translation. Different from
the widely-used attentive sequence-to-sequence
models (Bahdanau et al., 2014), Transformer in-
troduces a new self-attention technique in which
each generated token attends to all previously gen-
erated tokens. It would be interesting to see how
the technique generalizes to other text generation
tasks beyond machine translation. We deploy the
self-attention Transformer decoder on two tasks,
namely, variational autoencoder (VAE) based lan-
guage modeling (Bowman et al., 2015) and con-
versation generation (Serban et al., 2016).

The first task is to use the VAE model (Kingma
and Welling, 2013) for language modeling. LSTM
RNN has been widely-used in VAE for decoding
sentences. We follow the experimental setting in
previous work (Bowman et al., 2015; Yang et al.,
2017), and test two models, one with the LSTM
RNN decoder, and the other with the Transformer
decoder. All other configurations (including the
encoders) are the same in the two models. Chang-
ing the decoder in the whole experiment pipeline
is easily achieved on Texar, thanks to the modu-
larized design. Both the LSTM decoder and the
Transformer decoder have around 6.3M free pa-
rameters to learn. Table 1 shows the results. We
see that the VAE with Transformer decoder con-
sistently improves over the VAE with conventional
LSTM decoder.

The second task is to generate response
given a conversation history. We use the popu-
lar hierarchical recurrent encoder-decoder model
(HRED) (Serban et al., 2016) as the base model,
which treats a conversation as a transduction task.
The conversation history is seen as the source se-
quence and is modeled with a hierarchical en-
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Task: Conversation generation

Metrics HERD-GRU HERD-Tnsfmr
BLEU-3 prec  0.281 0.289
BLEU-3 recall 0.256 0.273
BLEU-4 prec  0.228 0.232
BLEU-4 recall 0.205 0.214

Table 2: Comparison of Transformer decoder and
GRU RNN decoder on conversation generation
within the HERD model (Bowman et al., 2015).
The Switchboard data (Zhao et al., 2017) is used.

coder. Each utterance in the dialog history is
first encoded with a first-level RNN. The result-
ing hidden states of the sequence of utterance
are then encoded with a second-level RNN. We
follow the experimental setting in (Zhao et al.,
2017). In particular, the first-level RNN is set
to be bidirectional and the second-level is uni-
directional. Such configuration is easily imple-
mented by setting the hyperparameters of the
Texar HierarchicalRNNEncoder. Similar to
the above task, we compare two models, one with
an GRU RNN decoder as in the original work, and
the other with an Transformer decoder. Table 2
shows the results. Again, we see that the Trans-
former model generalizes well to the conversation
generation setting, and consistently outperforms
the GRU RNN counterpart.

3.2 One Task with Many Techniques:
Language Modeling

We next showcase how Texar can support inves-
tigation of diverse techniques on a single task.
This can be valuable for research community to
standardize experimental configurations and fos-
ter fair, reproducible comparisons. As as case
study, we choose the standard language modeling
task (Zaremba et al., 2014). Note that this is differ-



Models Test PPL
LSTM RNN with MLE (Zaremba et al., 2014) 74.23
LSTM RNN with seqGAN (Yu et al., 2017) 74.12
Memory Network LM (Sukhbaatar et al., 2015)  94.82

Table 3: Comparison of the three models on
the task of language modeling, using the PTB
dataset (Zaremba et al., 2014).

Models Accuracy BLEU
Shen et al. (2017) 79.5 124
Shen et al. (2017) on Texar  82.5 13.0
Hu et al. (2017a) on Texar  88.6 38.0

Table 4: Text style transfer on the Yelp data (Shen
et al., 2017). The first row is the original open-
source implementation by the author (Shen et al.,
2017). The subsequent two rows are Texar imple-
mentations of the two work.

ent from the VAE language modeling task above,
due to different data partition strategies conven-
tionally adopted in respective research lines.

We compare three models as shown in Table 3.
The LSTM RNN trained with the maximum like-
lihood estimation (MLE) (Zaremba et al., 2014)
is the most widely used model for language mod-
eling, due to its simplicity and prominent perfor-
mance. We use the exact same architecture as gen-
erator and setup a (seq)GAN (Yu et al., 2017) sys-
tem to train the language model with adversarial
learning. (The generator is pre-trained with MLE.)
From Table 3 we see that adversarial learning does
not improve the perplexity. This is partly because
of the high variance of the policy gradient in seq-
GAN learning. Besides, test set perplexity is not
a perfect metric for evaluating language model-
ing, though it is the most widely-used metrics in
the field. We further evaluate a memory network-
based language model (Sukhbaatar et al., 2015)
which has the same number of free parameters
(11M) with the LSTM RNN model. The test set
perplexity is significantly higher than the LSTM
RNNSs, which is not unreasonable because LSTM
RNN models are well studied for language mod-
eling and a number of optimal modeling and opti-
mization choices are already known.

3.3 Text Style Transfer

To further demonstrate the versatility of Texar for
composing complicated model architectures, we
next choose the the newly emerging task of text
style transfer (Hu et al., 2017a; Shen et al., 2017).
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The task aims to manipulate the text of an input
sentence to change from one style to another (e.g.,
from positive sentiment to negative), given only
non-parallel training data of each style. The crite-
ria is that the resulting sentence accurately entails
the target style, while preserving the content and
other properties well.

We use Texar to implement the models from
both (Hu et al., 2017a) and (Shen et al., 2017),
whose model architectures fall in the category
(f) and (g) in Figure 2, respectively. Experimen-
tal settings mostly follow those in (Shen et al.,
2017). Following previous setting, we use a pre-
trained sentiment classifier to evaluate the trans-
ferred style accuracy. For evaluating how well the
generated sentence preserves the original content,
we measure the BLEU score between the gen-
erated sentence and the respective original one
(The higher the better). Note that we do not mean
to perform exhaustive evaluations of the meth-
ods, but instead aim to demonstrate the flexibil-
ity of the toolkit for implementing different com-
posite model architectures beyond conventional
encoder-decoder. Table 4 shows the results. Our
re-implementation of (Shen et al., 2017) recovers
and slightly surpasses the original results, while
the implementation of (Hu et al., 2017a) provides
the best performance in terms of the two metrics.

4 Related Work

Text generation is a broad research area with rapid
advancement. Figure 2 summarizes some popu-
lar and emerging models used in the diverse con-
texts of the field. There are some existing toolk-
its that focus on tasks of neural machine trans-
lation and alike, such as Google Seq2seq (Britz
et al., 2017) and Tensor2Tensor (Vaswani et al.,
2018) on TensorFlow, OpenNMT (Klein et al.,
2017) on (Py)Torch, XNMT (Neubig et al., 2018)
on DyNet, and Nematus (Sennrich et al., 2017)
on Theano, and MarianNMT (Junczys-Dowmunt
et al., 2018) on C++. ParlAI (Miller et al., 2017)
is a software platform specialized for dialog re-
search. Differing from these task-specific toolk-
its, Texar aims to cover as many text generation
tasks as possible. The goal of versatility poses
unique challenges to the design. We combat the
challenges through proper pipeline decomposi-
tion, ready-to-assemble modules, and user inter-
faces of varying abstract levels.

There are also libraries for general NLP appli-



cations (AllenAl; Pytorch; DMLC). With the fo-
cus on text generation, we provide a more com-
prehensive and readily-usable modules and func-
tionalities to relevant tasks, enable users to ef-
ficiently build their pipelines at a high concep-
tual level without worrying too much on low-level
details. Some platforms exist for specific types
of algorithms, such as OpenAl Gym (Brockman
etal., 2016), DeepMind Control Suite (Tassa et al.,
2018), and ELF (Tian et al., 2017) for reinforce-
ment learning in game environments. Texar has
drawn inspirations from these toolkits when de-
signing relevant specific algorithm supports.

5 Conclusion and Future Work

This paper has introduced Texar, a text generation
toolkit that is designed to be versatile to support
the broad set of applications and algorithms, to
be modularized to enable easy replacement of any
components, and to be extensible to allow seam-
less integration of any external modules. Features
and functionalities will continue be added to the
toolkit, including distributed model training, ser-
vice deployment, more model building blocks, and
more applications related to text generation or be-
yond. We invite researchers and practitioners to
join and enrich the toolkit, and in the end help push
forward the text generation research and applica-
tions together.
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