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Abstract

In this paper, we propose different ar-
chitectures for language independent ma-
chine transliteration which is extremely
important for natural language process-
ing (NLP) applications. Though a num-
ber of statistical models for translitera-
tion have already been proposed in the
past few decades, we proposed some neu-
ral network based deep learning architec-
tures for the transliteration of named en-
tities. Our transliteration systems adapt
two different neural machine translation
(NMT) frameworks: recurrent neural net-
work and convolutional sequence to se-
quence based NMT. It is shown that our
method provides quite satisfactory results
when it comes to multi lingual machine
transliteration. Our submitted runs are an
ensemble of different transliteration sys-
tems for all the language pairs. In the
NEWS 2018 Shared Task on Translitera-
tion, our method achieves top performance
for the En—Pe and Pe-En language pairs
and comparable results for other cases.

1 Introduction

Machine Transliteration is the process by which
a word written in source language is transformed
into a target language, accurately and unambigu-
ously, by preserving the phonetic aspects and pro-
nunciation. Generally named entities or proper
nouns are transliterated from one orthographic
system to another. Based on the phonetics of
source and target languages, and using statisti-
cal and language-specific methods, many machine
transliteration algorithms have been developed
over the past few years. Transliteration is used
as part of many multilingual applications (Koehn,
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2009), corpus alignment, multilingual text pro-
cessing, cross lingual information retrieval and ex-
traction (Virga and Khudanpur, 2003; Fujii and
Ishikawa, 2001), and most importantly it is used as
a component of machine translation system. Also
considering the presence of various languages and
increasing number of multilingual speakers, there
is an immense need for automated, machine learn-
ing based transliteration systems. Transliteration
can also be used to handle words not present in
vocabulary in machine translation systems (Her-
mjakob et al., 2008). The task of transliteration
is quite challenging and a complicated one ow-
ing to the various types of difficulties that arise.
Pronunciation varies between different languages,
and different dialects of the same language, thus
making the task of transliteration intricate. More-
over, the absence of character correspondences in
many language pairs makes this task complex. So,
these types of characters are needed to be tack-
led in different ways, sometimes these are omitted,
and in most of the cases these are approximated
and represented in the best possible way keeping
the pronunciation intact. Studies have shown that
Machine Transliteration have been done mainly
with traditional and different statistical methods
(Knight and Graehl, 1998; Nguyen et al., 2016;
Rama and Gali, 2009). With the advent of deep
learning techniques, few research attempts have
been made using deep learning (Yan and Nivre,
2016; Rosca and Breuel, 2016; Finch et al., 2016).
The deep learning frame-works used are similar to
that of the Sequence to Sequence machine trans-
lation (Bahdanau et al., 2015; Cho et al., 2014b).
In our work, we present a comprehensive study of
deep learning techniques for Machine Transliter-
ation. We present some segmentation techniques
for Transliteration—Character based and Byte-Pair
based. We also present different deep learning
architectures for machine transliteration such as
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Reccurent Neural Network (RNN) Encoder De-
coder framework and the Convolutional NMT
framework. The Convolutional Sequence to Se-
quence (Conv Seq2Seq) framework is a relatively
new framework when compared to the RNN based
NMT framework. This is the first attempt to
use Conv Seq2Seq framework in transliteration
of named entities and we have successfully im-
plemented this framework. We have also imple-
mented an ensemble method, which is based on
the frequency of occurrence of output words. This
type of ensembling based on the frequency has
never been used before in this domain.

In Section 2, we discuss about the different deep
learning frameworks used for transliteration and
then in Section 3, we present our experimental
methodology. In Section 4, we discuss about the
results and then we conclude with Section 5.

2  Proposed Work

We propose two architectures which we have used
for machine transliteration. These are the RNN
based NMT framework and the Convolutional Se-
quence to Sequence Neural Machine Translation
(ConvS2S NMT) framework.

2.1 RNN based NMT framework

RNN based NMT frameworks are basically the
Sequence-to-sequence models (Sutskever et al.,
2014; Cho et al., 2014b) which have been highly
successful in a wide range of tasks such as speech
recognition, machine translation and text summa-
rization. NMT model portrays a more accurate
translation than phrase-based traditional transla-
tion systems by capturing the context of the source
sentence. The NMT framework is basically an
encoder-decoder framework. An NMT system en-
coder converts the source sentence into a vector
that holds the meaning of the source sentence. The
vector is then processed by the decoder to generate
the translation output. Therefore, NMT oversees
the locality problem in the translation, and cap-
tures long range dependencies like gender agree-
ments and syntax structures, improving the over-
all fluency of the translation system. Encoders
and decoders both use RNN models, though they
might differ in directionality, such as unidirec-
tional or bidirectional, single-layer or multi-layer,
or on the types of units used in the RNN, such as a
vanilla RNN;, a Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), or a Gated
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Recurrent Unit (GRU)(Cho et al., 2014a).
2.2 ConvS2S NMT framework

We adapt a convolutional neural network (CNN)-
based sequence-to-sequence NMT with multi-hop
attention mechanism between encoder and de-
coder (Gehring et al., 2017). Our CNN architec-
ture computes the encoder state z and the decoder
state h. We embed input units and their absolute
positions as a combined input element representa-
tion f. We proceed with a similar CNN architec-
ture to build the output element representation e
for the decoder network. We use a multi-step at-
tention mechanism that allows the network to look
back multiple times into f in order to produce e.
The encoder creates a vector representation of f
units using a CNN, and the computations of every
f units are done simultaneously. The CNN de-
coder produces e output units, one at a time at ev-
ery step, using a multi-step attention mechanism.
The multi-step attention layer works as follows:

e The first layer determines a useful source
context from f which is fed to the second
layer.

e The second layer uses this information during
attention weight computation and then prop-
agates it to the next layer and so on.

e The decoder also has immediate access to the
attention history of the previous time steps.

Source Target Dataset Size
Language | Language Train | Dev | Test
English Thai 30781 | 1000 | 1000
Thai English 27273 | 1000 | 1433
English Persian 13386 | 1000 | 1000
Persian English 15677 | 1000 | 908
English Chinese 41318 | 1000 | 1000
Chinese English 32002 | 1000 | 1000
English | Vietnamese | 3256 500 500
English Bangla 13623 | 1000 | 1000
English Hindi 12937 | 1000 | 1000
English Tamil 10957 | 1000 | 1000
English Kannada 10955 | 1000 | 1000
English Hebrew 10501 | 1000 | 523
Hebrew English 9447 | 1000 | 590
Table 1: Source and Target languages for the

NEWS 2018 Shared Task on Transliteration

3 Experimental Methodology

In our work, we have explored two different archi-
tectures for both character level and byte-pair level
segmentation.



3.1 Corpora

The corpora as provided by NEWS 2018' con-
sisted of paired names between source and target
languages. The size of the datasets varies from
3K to 41K. This is used as our training set. Ad-
ditionally, they have also provided a development
dataset of 1000 paired names for each language
pair, which we have used as validation data for
hyper-tuning the different system parameters. The
test set consisted of 500—1433 paired names, de-
pending on the language pairs. The details of the
corpora is shown in Table 1.

3.2 Data Preprocessing

We have visualized the Machine Transliteration as
a Machine Translation task, where we segmented
each word into different small units. Here we de-
scribe the ways we used to segment the words.
These sequence of segmented words forms the ba-
sis of input to different architectures.

3.2.1 Character Based segmentation

In character level segmentation, we segment the
input word as a sequence of character units. Here,
characters are the smallest representable unit. For
example, a word ‘sourjyakta’ will be segmented as
‘s-0-u-r-j-y-a-k-t-a’, where the different segments
are shown by a ‘-’ sign.

3.2.2 Byte-Pair based segmentation

Byte Pair encoding is a simple data compression
technique in which the most common pair of con-
secutive bytes of data are replaced with a byte that
does not occur within the data. In this segmenta-
tion type, we divide the words into different sub-
word units and these units form a sequence, which
in turn represents the word. The subword units
are generally character n-gram which are gener-
ated by a process described in (Sennrich et al.,
2015). Character n-grams of variable lengths are
produced. The training set is processed and all
character n-grams with frequency greater than a
certain threshold value are considered. Now, when
an input word is considered, the word is searched
according to these character n-grams and are seg-
mented accordingly. For example, for a training
sample, the most frequent character n-grams are
‘sa’, ‘sou’, ‘ta’, etc. An input word ‘sourjyakta’
will be segmented as ‘sou-r-y-t-a-k-ta’. The seg-
mentation is shown with the help of - sign. We can

'http://workshop.colips.org/news2018/
dataset.html
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see that, ‘sou’ and ‘ta’, being the frequent n grams
are segmented accordingly.

3.3 Ensemble method

Based on different architectures, segmentation
methods and hyper parameters, we have generated
different test data results. Taking into account all
the generated output results, we implement an en-
semble technique based on the frequency of occur-
rence of the output words. Corresponding to each
input word, we calculate the most occurring output
word from all the generated results.

Suppose there are 6 different methods, giving
6 output results for an input. For example, for
an input word, there are 6 output words (‘amit’,
‘ameet’, ‘amit’, ‘amit’, ‘amet’, ‘amit’) generated
from 6 different methods. So, here we see that
amit occurs 4 times, so it is the most occurring
word. As it is the most occurring word, the prob-
ability of ‘amit’ being the correct output is quite
high. The frequency based ensembling provides
an increase in accuracy about 2-3% on an aver-
age.

3.4 Training and Hyper parameters

For each language pair, character based and byte-
pair based models are trained separately. To seg-
ment the words into subword units using byte-
pair model, we consider only the 100 most fre-
quent character n-grams as the byte-pairs, evalu-
ated from the training data. Here, we choose 100
as a parameter, after extensive experimentation.

3.4.1 Hyper-parameters for RNN based
NMT

For the training of the Sequence to Sequence ar-
chitecture, we consider a learning rate of 1, and
trained the systems till they converged. We used
a batch size of 64, Cross Entropy as loss function
and Gradient Descent Optimizer as the optimizer.
Generally, it took about 20-50 epochs for each of
the models to converge, using a single GPU sys-
tem. We used a unidirectional RNN encoder with
an attention RNN decoder for the Seq2Seq NMT.

3.4.2 Hyper-parameters for ConvS2S based
NMT

The convolutional Sequence to Sequence model
uses 15 layers in both the encoder and decoder,
both with 256 hidden units with a kernel width
of 3 for each CNN layer. We set the batch size


http://workshop.colips.org/news2018/dataset.html
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Language RNN Based NMT CpnvSZS NMT Ensemble
Pairs Byte-Pair Character Byte-Pair Character (Frequency based)
ACC | F-score | ACC | F-score | ACC | F-score | ACC | F-score | ACC | F-score

En-Ch 0.240 | 0.648 0.261 | 0.657 0.187 | 0.608 0.041 | 0.457 0.261 | 0.660
Ch-En 0.128 0.767 0.154 | 0.788 0.152 | 0.785 0.160 | 0.785 0.191 | 0.800
En-Th 0.130 | 0.749 0.145 | 0.761 0.076 | 0.663 0.108 | 0.716 0.144 | 0.755
Th-En 0.211 0.788 0.229 | 0.799 0.235 | 0.801 0.169 | 0.759 0.268 | 0.809
En-Pe 0.001 0.214 | 0.001 | 0.215 0.000 | 0.199 0.001 | 0.193 - -

Pe—-En 0.000 | 0.357 0.009 | 0.366 - - - - - -

En-Vi 0.094 | 0.677 0.200 | 0.756 0.008 | 0.586 0.178 | 0.740 - -

En-Ba 0.334 | 0.854 | 0.343 | 0.863 0.255 | 0.829 0.118 | 0.751 0.382 | 0.862
En-Hi 0.255 0.820 | 0.283 | 0.836 0.247 | 0.822 0.250 | 0.827 0.299 | 0.840
En - Ka 0.224 | 0.809 0.237 | 0.819 0.187 | 0.817 0.211 | 0.817 0.265 | 0.839
En-Ta 0.134 | 0.759 0.164 | 0.811 0.154 | 0.801 0.146 | 0.799 0.182 | 0.808
En-He 0.145 0.752 0.166 | 0.788 0.120 | 0.769 0.130 | 0.775 0.164 | 0.782
He - En 0.061 0.679 0.075 | 0.712 0.071 | 0.703 0.061 | 0.713 0.083 | 0.716

Table 2: Evaluation Results in terms of Top 1 accuracy and mean F-score

to 32 for training our models, and that took ap-
proximately 1-2 hours on a single GPU setting.
Network parameters are optimized with the neg-
ative log-likelihood objective. During transliter-
ation we set the beam size to 5. Other addi-
tional hyper-parameter settings are borrowed from
Gehring et al. (2017).

3.5 Evaluation Metrics

As mentioned in the News 2018 Shared Task
Whitepaper (Chen et al., 2018), there are 4 differ-
ent evaluation metrics - Word Accuracy in Top-1
(ACCQ), Fuzziness in Top-1 (Mean F-score), Mean
Reciprocal Rank (MRR) and MAP. All these met-
rics are explained in detail in (Chen et al., 2018).

4 Results

In this work, we implement 4 different systems
for each language pair. Two systems are based
on RNN based NMT framework whereas the
other two systems are based on ConvS2S NMT
framework and each framework are trained on
two separate preprocessing methods i.e., char-
acter and byte-pair based segmentations. Ad-
ditionally, we implement a frequency based en-
semble technique using the results of these 4
systems. In NEWS 2018 Shared Task on
Transliteration, we have participated in 13 lan-
guage pairs i.e. English—Chinese (En—Ch),
Chinese—English (Ch—En), English—Persian (En—
Pe), Persian—-English (Pe—En), English-Thai (En—
Th), Thai-English (Th—En), English—Vietnamese
(En—Vi), English—Bangla (En—-Bn), English—Hindi
(En—Hi), English-Kannada (En-Ka), English—
Tamil (En-Ta), English-Hebrew (En-He) and
Hebrew—English (He—En). The results of our sys-
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tem for these 13 language pairs are shown in Ta-
ble 2. From Table 2, we see that the sequence
to sequence architecture with character level seg-
mentation gave the maximum accuracy among all
the methods for most of the language pairs. Also,
on ensembling, there is a significant amount of in-
crease in accuracy. Overall, ensembling gives the
best results for most of the language pairs. For
some of the language pairs like En—-He, En—Th,
En-Vi, En—Pe and Pe—En, the output results of the
different methods are vary so much, therefore en-
sembling does not provide improvement in accu-
racy.

5 Conclusion and Future Work

Our work presented some different approaches to
machine transliteration using deep learning and
neural network architecture. The official evalua-
tion results of the NEWS 2018 Shared Task show
that we achieved state-of-the-art results in En-
Pe and Pe-En, and for the other language pairs,
our system achieved almost competitive results as
other systems. Therefore, we can conclude that
we have successfully applied different deep learn-
ing approaches to machine transliteration. In the
future, we aim to explore more neural network ar-
chitectures such as explore an ensemble of bidi-
rectional encoder frameworks along with different
types of cell units such as LSTM, vanilla RNN,
GRU, along with extensive parameter estimation.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In International



Conference on Learning Representations (ICLR),
San Diego, CA, USA.

Nancy Chen, Xiangyu Duan, Min Zhang, Rafael E
Banchs, and Haizhou Li. 2018. Whitepaper on news
2018 shared task on machine transliteration.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the Prop-
erties of Neural Machine Translation: Encoder—
Decoder Approaches. In Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, pages 103—111, Doha,
Qatar. Association for Computational Linguistics.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Andrew Finch, Lemao Liu, Xiaolin Wang, and Eiichiro
Sumita. 2016. Target-bidirectional neural models
for machine transliteration. In Proceedings of the
Sixth Named Entity Workshop, pages 78-82.

Atsushi Fujii and Tetsuya Ishikawa. 2001.
Japanese/english ~ cross-language  information
retrieval:  Exploration of query translation and
transliteration.  Computers and the Humanities,
35(4):389-420.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convo-
lutional Sequence to Sequence Learning. CoRR,
abs/1705.03122.

Ulf Hermjakob, Kevin Knight, and Hal Daumé III.
2008. Name translation in statistical machine
translation-learning when to transliterate. Proceed-
ings of ACL-08: HLT, pages 389-397.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735—
1780.

Ma-
Computational Linguistics,

Kevin Knight and Jonathan Graehl. 1998.
chine transliteration.
24(4):599-612.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Binh Minh Nguyen, Hoang Gia Ngo, and Nancy F
Chen. 2016. Regulating orthography-phonology re-
lationship for english to thai transliteration. In Pro-
ceedings of the Sixth Named Entity Workshop, pages
83-87.

Taraka Rama and Karthik Gali. 2009. Modeling ma-
chine transliteration as a phrase based statistical
machine translation problem. In Proceedings of
the 2009 Named Entities Workshop: Shared Task
on Transliteration, pages 124—127. Association for
Computational Linguistics.

83

Mihaela Rosca and Thomas Breuel. 2016. Sequence-
to-sequence neural network models for translitera-
tion. arXiv preprint arXiv:1610.09565.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104-3112.

Paola Virga and Sanjeev Khudanpur. 2003. Transliter-
ation of proper names in cross-lingual information
retrieval. In Proceedings of the ACL 2003 work-
shop on Multilingual and mixed-language named
entity recognition-Volume 15, pages 57-64. Associ-
ation for Computational Linguistics.

Shao Yan and Joakim Nivre. 2016. Applying neural
networks to english-chinese named entity transliter-
ation. In Sixth Named Entity Workshop, joint with
54th ACL.


http://www.aclweb.org/anthology/W14-4012
http://www.aclweb.org/anthology/W14-4012
http://www.aclweb.org/anthology/W14-4012
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

