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Abstract

The problem of sequence labelling in lan-
guage understanding would benefit from
approaches inspired by semantic priming
phenomena. We propose that an attention-
based RNN architecture can be used to
simulate semantic priming for sequence
labelling. Specifically, we employ pre-
trained word embeddings to characterize
the semantic relationship between utter-
ances and labels. We validate the approach
using varying sizes of the ATIS and ME-
DIA datasets, and show up to 1.4-1.9%
improvement in F1 score. The developed
framework can enable more explainable
and generalizable spoken language under-
standing systems.

1 Introduction

Priming (Waltz and Pollack, 1985) is a cognitive
mechanism in which a primary stimulus (i.e. the
prime) influences the response to a subsequent
stimulus (i.e. the target) in an implicit and in-
tuitive manner. In the case of semantic priming,
both the prime and the target typically belong to
the same semantic category. Semantic priming
can be explained in terms of induced activation
in associative neural networks (McClelland and
Rogers, 2003). Further, there is empirical evi-
dence to suggest that the processing of words in
natural language is influenced by preceding words
that are semantically related (Foss, 1982). There-
fore, semantic priming approaches would enable
improvements in sequence labelling.

Previous studies have leveraged contextual in-
formation in utterance sequences (Mesnil et al.,
2015) and dependencies between labels (Ma and
Hovy, 2016) to improve performance in sequence
labelling tasks. However, there is limited work to
use contextual information in utterances to inform

inference of the subsequent labels through seman-
tic priming. For instance, “I’d like to book ...”
not only suggests the next word(s), e.g., flight, but
also the label of the next word(s), e.g., services.
We posit that systems employing this mode of
cross-linked semantic priming could enhance per-
formance in a variety of sequence labelling tasks.

In this work, we hypothesize that semantic
priming in human cognition can be simulated by
means of an attention mechanism that uses word
context to enhance the discriminating power of se-
quence labelling models. We propose and explore
the use of attention (Bahdanau et al., 2014) in a
deep learning architecture to simulate the semantic
priming mechanism. We apply this concept to slot
filling, an example of sequence labelling in spo-
ken language understanding, which aims to label
the utterance sequences with a set of begin/in/out
(BIO) tags. Specifically, we use pre-trained word
embeddings to characterise not only the context of
words, but also the semantic relationship between
words in utterances and words in labels.

Overall, we develop a semantic priming based
approach for the task of slot-filling to associate ut-
terances and label sequences. Our contributions
are as follows: (1) We propose an approach that
applies semantic priming to sequence labelling.
To capture semantic associations between utter-
ance words and label words, we use three differ-
ent strategies for deriving label embeddings from
pre-trained embeddings. (2) We implemented the
approach in an LSTM-based architecture and val-
idate the efficacy of the approach.

In Section 2 we review related work. Section 3
elaborates the proposed approach. An empirical
evaluation is provided in Section 4. Finally, Sec-
tion 5 concludes the paper.

2 Related Work

Our proposed method draws on the attention
mechanism, which has shown to be effective for
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sequence-based NLP tasks, particularly, machine
translation (Bahdanau et al., 2014; Luong et al.,
2015). Since attention allows the neural networks
to dynamically attend to important features in the
inputs, it is a suitable mechanism to achieve the
objective of semantic priming between utterances
and labels. Conditional random field (CRF) has
been used together with RNNs, sometimes also in-
cluding CNNs, to improve accuracy (Mesnil et al.,
2013, 2015; Ma and Hovy, 2016; Reimers and
Gurevych, 2017b). Dinarelli et al. (2017) proposes
to learn label embedding for improving tagging
accuracy, while our label embedding is computed
directly from pre-trained word embeddings. Fur-
thermore, our approach does not require shifted la-
bel sequences as input.

To use external knowledge, previous studies
consider graph or entity embedding (Huang et al.,
2017; Chen et al., 2016; Yang and Mitchell, 2017),
together with other contextual information, such
as dependency graph (Huang et al., 2017) or sen-
tence structures (Chen et al., 2016). Specifically,
Yang and Mitchell (2017) extends LSTM with
graph embedding to learn concepts from knowl-
edge bases and integrate the concept embedding
into the state vectors of words. In contrast, our
approach does not learn or parse sentences to get
extra contextual information, which is suitable for
languages lacking well trained parsers. Moreover,
context integration is achieved without fine-tuning
the underlying RNN structure yet rather through
the attention mechanism.

3 Semantic Priming

Figure 1 depicts an LSTM-based neural network
architecture for semantic priming. Given an ut-
terance, a priming matrix is computed to con-
nect the labels to input features generated by a
bi-directional LSTM. The priming effects are then
used for prediction.

3.1 Computing Priming Matrix

This section considers three different strategies
of the proposed attention-based semantic priming
mechanism. In all the three cases the input words
are compared to proxies of the semantic categories
over word vectors.

Let m denote the number of labels. An ut-
terance of length n is represented by the matrix
X : n×k, where k is the dimension of pre-trained
word vectors. Given a word vector xj , semantic
priming is achieved by comparing xj with a label
embedding matrixL : m′×k, withm′ unique con-

Figure 1: Proposed topology for priming. FC de-
notes a fully connected layer.

cepts, each encoded in k dimensions. In addition,
let Eli,1≤i≤m′ denote the set of embedded words
tagged with the label li in the dataset. Note that
the corresponding embedding of li is Li. Below
are the definitions of three different strategies to
compute the label embeddings L.

• Priming using Instance Centroid (PIC): L is
defined to be m × k and Li = mean(Eli).
Intuitively, the proxy of the concept, Li, is
the centroid (mean vector) of the cluster of
all known instance words in the concept.

• Priming using Instance Neighbor (PIN): L is
defined to be m× k and

Li = argmin
∀e∈Eli

(1− cos(xj , e))

In this case, the proxy of the concept is the
nearest instance having the same label as xj .

• Priming using Concepts (PC): L is defined to
be m′ × k, m′ is pre-specified, and Li = ci,
where ci is a manually selected concept from
li. The embedding representation, ci, is of
dimension k as it is either the word vector per
se of a single concept label or the mean vector
of a set of such word vectors.

While PIN is a straightforward simulation of the
semantic priming mechanism between a prime and
its potential targets in different classes, PIC and
PC are variants of a categorization mechanism re-
ferred to as the Basic Level (Rosch et al., 1976), in
which the targets are intermediate, dominant con-
cepts that represent the category.
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ATIS MEDIA

# utterances in train 3982 12908
# utterances in dev 995 1259
# utterances in test 893 3005

# labels 127 138
vocab. size† 572 1671

max utterance length 46 192

Table 1: Statistics of datasets. †The vocabulary is
a mix of words and entities.

OnceL is computed, the priming matrix is com-
puted by the cosine similarity, or the induced dis-
tance, between the word embedding of the utter-
ance and L, i.e., p = cos(X,L).

3.2 Attention to Semantic Priming
In Figure 1, the hidden states, h, of the bi-
directional LSTM are considered to be the source,
while the priming matrix p is analogous to the tar-
get. Following (Luong et al., 2015), we define the
alignment scoring function to be s(p, h) = pWah
and compute the final output as follows:

α =
exp(s(p, h))∑n
i=1 exp(s(p, hi))

c =
∑
h

αh

t = tanh(Wc[c; p])

4 Experiments

To validate the efficacy of the architecture in Fig-
ure 1, an empirical evaluation was performed and
implemented in Keras1. This section elaborates
the experimental setup and presents our results.

4.1 Datasets
Two datasets on spoken dialogues were used in
the experiments, namely, the Air Travel Infor-
mation System (ATIS) task (Dahl et al., 1994)
and MEDIA, French dialogues collected by ELDA
(Bonneau-Maynard et al., 2005). The statistics of
the two datasets is given in Table 1. For ME-
DIA, using entities significantly impacts the per-
formance. Thus entities are used together with
words in utterances, as implied by the size of vo-
cabulary in Table 1. Since bi-directional LSTM
is used in the architecture in Figure 1, no context
word windows (Mesnil et al., 2015) were used as
additional inputs in the datasets. The pre-trained

1https://keras.io/

word embedding sources for the two datasets are
GloVe (English) (Pennington et al., 2014) and fast-
Text (French) (Bojanowski et al., 2016), respec-
tively. In particular, we found that there are about
100 words missing in the fastText French word
embedding. Some of the words, however, are due
to original tokenization in MEDIA.

4.2 Setup and Hyperparameters
To facilitate mini-batching for training, the ut-
terances were padded to the maximum utterance
length. For all experiments, we use one set of
fixed hyperparameters to enable meaingful com-
parison. The dimension of word embedding is 300
for both GloVe and fastText. Following the recom-
mendations in (Reimers and Gurevych, 2017a), all
dropout layers have a rate of 0.5, and LSTM has
an additional recurrent dropout of 0.5 between re-
current units. During learning phase, a mini-batch
size of 18 and an initial learning rate of 0.004 was
used with the Adam optimizer to minimize the
cross-entropy loss. The learning rate was reduced
by 50% after no improvement in three epochs.

As semantic priming provides connections be-
tween words and labels through the use of the
same pre-training embedding, it will enable more
robust performance even when the datasets are
small. To validate this, we investigated the effects
of semantic priming in cases where the datasets
are reduced. Note that both ATIS and MEDIA
have many short utterances; in particular, ME-
DIA has over 4000 utterances consisting of a sin-
gle word. For reduction, we rank vocabulary by
word frequency in the training and development
sets and choose utterances containing the words
until 100% of vocabulary is covered.

4.3 Results
In this section the conlleval-F12 scores are re-
ported. The experiments were run on a NVIDIA
DGX1 station (Tesla V100 and 16GB memory),
and the F1 scores are the average of that in the
first 30 epochs in three independent runs.

The results shown are for baseline with train-
able embedding (BE), baseline with pre-trained
embedding (BP), and the strategies defined in Sec-
tion 3.1, i.e., PIC, PIN and PC. For PC, the con-
cepts are the keywords that have occurred in the
labels. Example concepts include airline in ATIS
and chambre in MEDIA. A total of 30 and 53 con-
cepts are extracted for PC in ATIS and MEDIA,
respectively.

2http://www.cnts.ua.ac.be/conll2000/chunking/output.html
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Although BE yields much higher F1, we com-
pare the proposed approach with the baseline ap-
proach, BP, where F1 is computed using pre-
trained embedding. This is because all strategies,
except for BE, are based on pre-trained word em-
bedding. We also compare the results in the ME-
DIA dataset with and without CRF. Since CRF
in ATIS was shown to lead to no improvement
(Dinarelli et al., 2017), so, no CRF layer was ap-
plied to ATIS in the experiments.

ATIS MEDIA

BP 94.22 72.66 79.46†

PIC 94.23 69.37 80.49†

PIN 94.41 69.79 80.56†
PC 94.51 72.55 78.35†

BE 94.75 82.16 86.38†

Table 2: F1 of the two datasets. †CRF used.

Table 2 shows the F1 computed over the full
datasets. In ATIS, although no significant con-
clusions can be drawn, all strategies, in particular,
PC, outperform the baseline BP. Note that, when
CRF, instead of SOFTMAX, is used in MEDIA,
there is an increase of 4% for BE, 7% for BP, and
10% for PIC/PIN. For MEDIA, F1 has a consid-
erable drop when pre-trained word embedding is
used instead of trainable embedding. When SOFT-
MAX is used, none of the strategies outperformed
the baselines BP or BE. In contrast, once CRF is
used both PIC and PIN gained over 1% increase
compared with BP.

ATIS100 MEDIA100

BP 85.39 67.64 76.95†

PIC 87.25 66.84 76.81†

PIN 86.31 68.25 78.34†
PC 87.01 67.37 77.95†

BE 86.04 78.81 83.77†

Table 3: F1 of the reduced datasets. †CRF used.
100% of the vocabulary in datasets are retained.

Table 3 describes the results over reduced
datasets that cover the full (100%) vocabulary in
the datasets. ATIS100 has a total of 583 utter-
ances for training/development, while MEDIA100

has 1717 for training/development. Note that re-
duction was not performed to test datasets, i.e., full
test sets were used. For both ATIS and MEDIA,

PIN shows consistent performance gain (+1%)
over the pre-trained baseline approach (BP).

ATIS70 MEDIA70

BP 83.21 65.37 76.34†

PIC 83.23 66.44 75.2†

PIN 82.65 66.09 77.12†
PC 83.4 65.75 75.4†

BE 81.62 76.3 80.3†

Table 4: F1 of the reduced datasets. †CRF used.
70% of the vocabulary in datasets are retained.

Table 4 describes the results over further re-
duced datasets, i.e., these two reduced datasets
covers only 70%3 of the whole vocabulary, con-
taining 348 and 1216 utterances (train/dev) for
ATIS and MEDIA, respectively. As shown in Ta-
ble 4, PC was the best strategy for ATIS while PIN
consistently outperformed the baseline BP in ME-
DIA.

Overall, we have seen performance gains when
priming is used over the original and reduced
datasets, compared to the pre-trained baseline ap-
proach BP. In particular, we recommend PIN over
the other strategies as it is less computational ex-
pensive compared with PIC while it seems to pro-
vide more consistent improvement over BP than
other strategies.

5 Conclusions and Future Work

We have demonstrated an approach to leverage se-
mantic priming for natural language understand-
ing tasks. The approach employs pre-trained em-
beddings to prime label concepts based on utter-
ance words. Our experimental results suggest im-
provements over baselines are feasible. However,
we note that the coverage of the dataset vocabulary
in the pre-trained word embedding may limit per-
formance improvements. For example, the miss-
ing words in the pre-trained French word embed-
ding adversely affected the F1 scores for MEDIA.
The approach can be easily adapted to a variety
of different network architectures (e.g., (Dinarelli
et al., 2017)) and word embeddings (e.g., (Reimers
and Gurevych, 2017a)). Future studies will focus
on how to choose a good set of concepts for the PC
priming strategy. It will also be fruitful to under-
stand how to explain the sequence labelling out-
puts using attention mechanisms.

370% allows for a considerable reduction of the full vo-
cabulary yet not resulting in too small datasets.



26

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Helene Bonneau-Maynard, Sophie Rosset, Christelle
Ayache, A Kuhn, and Djamel Mostefa. 2005. Se-
mantic annotation of the french media dialog corpus.

Yun-Nung Chen, Dilek Z. Hakkani-Tür, Gökhan Tür,
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