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Abstract 

Word2vec embeddings are limited to 
computing vectors for in-vocabulary 
terms and do not take into account 
sub-word information. Character-
based representations, such as 
fastText, mitigate such limitations. We 
optimize and compare these represen-
tations for the biomedical domain. 
fastText was found to consistently 
outperform word2vec in named entity 
recognition tasks for entities such as 
chemicals and genes. This is likely due 
to gained information from computed 
out-of-vocabulary term vectors, as 
well as the word compositionality of 
such entities. Contrastingly, perfor-
mance varied on intrinsic datasets. Op-
timal hyper-parameters were intrinsic 
dataset-dependent, likely due to differ-
ences in term types distributions. This 
indicates embeddings should be cho-
sen based on the task at hand. We 
therefore provide a number of opti-
mized hyper-parameter sets and pre-
trained word2vec and fastText models, 
available on 
https://github.com/dterg/bionlp-
embed. 

1 Introduction 

word2vec (Mikolov et al., 2013) and GloVe 
(Pennington et al., 2014) models are a popular 
choice for word embeddings, representing words 
by vectors for downstream natural language pro-
cessing. Optimization of word2vec has been 
thoroughly investigated by Chiu et al. (2016a) 
for biomedical text. However, word2vec has two 
main limitations: i) out-of-vocabulary (OOV) 
terms cannot be represented, losing potentially 

useful information; and ii) training is based on 
co-occurrence of terms, not taking into account 
sub-word information. With new entities such as 
genetic variants, pathogens, chemicals and drugs, 
these limitations can be critical in biomedical 
NLP.  

Sub-word information has played a critical role 
in improving NLP task performances and has pre-
dominantly depended on feature-engineering. 
More recently, character-based neural networks 
for tasks such as named entity recognition have 
been developed and evaluated on biomedical liter-
ature (Gridach, 2017). This has achieved state-of-
the-art performances but is limited by the quantity 
of supervised training data.  

Character-based representation models such as 
fastText (Bojanowski et al., 2017; Mikolov et al., 
2018) and MIMICK (Pinter et al., 2017) exploit 
word compositionality to learn distributional em-
beddings, allowing to compute vectors for OOV 
words. Briefly, fastText uses a feed-forward archi-
tecture to learn n-gram and word embeddings, 
whereas MIMICK uses a Bi-LSTM architecture to 
learn character-based embeddings in the same 
space of another pre-trained embeddings, such as 
word-based word2vec. 

Here we evaluate and optimize pre-trained 
character-based word representations with the 
fastText implementation for biomedical terms. To 
compare with word2vec models, we also optimize 
word2vec by extending the work by Chiu et al. 
(2016a). We report that fastText outperforms 
word2vec in all named entity recognition tasks of 
feature-rich entities such as chemicals and genes. 
However, in intrinsic evaluation, results and opti-
mal hyper-parameters vary. This is likely due to 
different entity type distributions within the intrin-
sic standards. This indicates representations 
should be selected and optimized based on the 
task at hand and the entities of interest. We evalu-
ate and provide optimized generalized fastText 
and word2vec models and models optimized on 

https://github.com/dterg/bionlp-embed
https://github.com/dterg/bionlp-embed
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individual datasets, outperforming a number of 
current state-of-the-art embeddings.  

2 Materials and Methods 

2.1 Data and pre-processing 

PubMed 2018 baseline abstracts and titles were 
parsed using PubMed parser (Achakulvisut and 
Acuna, 2016), each article was represented as a 
single line, and any new line characters within an 
article were replaced by a whitespace. Pre-
processing was performed using the NLPre mod-
ule (He and Chen, 2018). All upper-case sentences 
were lowered, de-dashed, parenthetical phrases 
identified, acronyms replaced with full term 
phrases (e.g. “Chronic obstructive pulmonary dis-
ease (COPD)” was changed to “Chronic pulmo-
nary disease (Chronic_pulmonary_disease)), 
URLs removed, and single character tokens re-
moved. Tokenization was carried out on 
whitespace. Punctuation was retained. This result-
ed in a training dataset of 3.4 billion tokens and a 

vocabulary of up to 19 million terms (Supp. Table 
1). 

2.2 Embeddings and hyper-parameters 

Word embeddings were trained on the pre-
processed PubMed articles using Skip-Gram 
word2vec and fastText implementations in gensim 
(Řehůřek and Sojka, 2010). As in Chiu et al. 
(2016a), we tested the effect of hyper-parameter 
selection on embedding performance for each hy-
per-parameter: negative sample size, sub-
sampling rate, minimum word count, learning rate 
(alpha), dimensionality, and window size. Extend-
ed parameter ranges were tested for some hyper-
parameters, such as window size. Additionally, we 
test the range of character n-grams for the fastText 
models, as originally performed for language 
models (Bojanowski et al., 2017). Due to the 
computational cost, especially since fastText 
models can be up to 7.2x slower to train compared 
to word2vec (Supp. Figure 1), we modify one hy-
per-parameter at a time, while keeping all other 
hyper-parameters constant. Performance was 
measured both intrinsically and extrinsically on a 
number of datasets. 

2.3 Intrinsic Evaluation 

Intrinsic evaluation of word embeddings is com-
monly performed by correlating the cosine simi-
larity between term pairs, as determined by the 
trained embeddings, and a reference list. We use 
the manually curated UMNSRS covering disor-
ders, symptoms, and drugs (Pakhomov et al., 
2016), and compute graph-based similarity and re-
latedness using the human disease ontology graph 
(Schriml et al., 2012) (HDO) and the Xenopus 
anatomy and development ontology graph 
(Segerdell et al., 2008) (XADO). 1 million pair-
wise combinations of entities and ontologies were 

 
Figure 1: Intrinsic evaluation of window size in word2vec (w2v) and fastText (FastT) models on 

UMNSRS, HDO, and XADO datasets (Supp. Table 4). 

 
Figure 2: Extrinsic evaluation of window size in 
word2vec (w2v) and fastText (FastT) models on 
BC2GM, JNLPBA and CHEMDNER datasets 

(Supp. Table 5).  
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randomly computed from each graph and entities 
which did not map to the ontology map or were 
multi-token were not considered. Similarity be-
tween a pair of terms was computed using the Wu 
and Palmer (1994) similarity metric, and related-
ness was determined by a simplified Lesk algo-
rithm (1986). In the latter, token intersection (ex-
cluding stopwords) was calculated between defi-
nitions and normalized by the maximum defini-
tion length. Pairs which did not have definition 
statements for any of the terms were excluded. 

As with UMNSRS, the computed similarity 
and relatedness scores were correlated with the 
cosine similarity determined by the embeddings 
models. As word2vec is not capable of represent-
ing OOV words, in literature pair terms which are 
not in vocabulary are commonly not considered 
for evaluation. To allow for comparison between 
the word2vec and fastText models, we represent 
OOV words as null vectors – as originally per-
formed by Bojanowski et al. (2017). However, to 
determine the difference in performance of in-
vocabulary word embeddings and OOV word em-

beddings, we measure correlation with only in-
vocabulary terms, and with OOV terms pairs con-
sidered and null-imputed for word2vec. 

2.4 Extrinsic evaluation 

Intrinsic evaluation by itself may provide lim-
ited insights and may not represent the true down-
stream performance (Faruqui et al. 2016; Chiu et 
al., 2016b). Therefore, we perform extrinsic eval-
uation using 3 named entity recognition corpora: 
(i) the BioCreative II Gene Mention task corpus 
(BC2GM) (Smith et al., 2008) for genes; (ii) the 
JNLPBA corpus (Kim et al., 2004) annotating 
proteins, cell lines, cell types, DNA, and RNA; 
and (iii) the CHEMDNER corpus (Krallinger et 
al., 2015) which annotates drugs and chemicals, as 
made available from Luo et al. (2017). Each of 
these corpora are originally split into a train, de-
velopment, and test sets – the same splits and sen-
tence ordering were retained here.  

The state-of-the-art BiLSTM-CRF neural net-
work architecture (Lample et al., 2016), as im-
plemented in the anago package, was used to train 
NER models and predict the development set of 
each corpus for each parameter. Accuracy was de-
termined by the F-score. Each model was run for 
up to 10 epochs and the best accuracy on the de-
velopment set was recorded. 

2.5 Optimized Embeddings 

Hyper-parameters achieving the highest perfor-
mance for each extrinsic corpus and intrinsic 
standard were determined for word2vec and 
fastText. Corpus-specific word2vec and fastText 
models were trained with the set of optimal hyper-
parameters for each corpus, as each corpus anno-
tates different entity classes. For a generalized op-
timal model, we also trained embeddings on op-
timal hyper-parameters determined across all cor-

 
Figure 3: Intrinsic evaluation of dimension size in word2vec (w2v) and fastText (FastT) models on 

UMNSRS, HDO, and XADO datasets (Supp. Table 6). 

 
Figure 4: Extrinsic evaluation of dimension size 
in word2vec (w2v) and fastText (FastT) models 

on BC2GM, JNLPBA and CHEMDNER 
datasets (Supp. Table 7). 

74

76

78

80

82

84

86

88

90

92

0 200 400 600 800

F-
sc

or
e

Dimensions

BC2GM w2v BC2GM FastT
JNLPBA w2v JNLPBA FastT
CHEMDNER w2v CHEMDNER FastT



59

 
 
 

   

pora and standards, as well as across intrinsic and 
extrinsic datasets separately. For the final extrinsic 
optimized evaluation, the test split was predicted. 

3 Results and Discussion 

3.1 General trends: word2vec hyper-
parameter selection 

 

Overall, intrinsic and extrinsic performance of 
word2vec models (Figure 1-12) obtained similar 
trends to Chiu et al. (2016a) for the same corpo-
ra/standards (i.e. UMNSRS, BC2GM, and 
JNLPBA), therefore we refer to Chiu et al. 
(2016a) for further discussion of these trends. Mi-
nor differences were recorded for minimum word 
count (Figure 7-8) and window size (Figure 1-2), 
where both UMNSRS similarity and relatedness 

 
Figure 5: Intrinsic evaluation of negative sampling size in word2vec (w2v) and fastText (FastT) 

models on UMNSRS, HDO, and XADO datasets (Supp. Table 8). 

  
Figure 6: Extrinsic evaluation of negative sampling 
size in word2vec (w2v) and fastText (FastT) models 

on BC2GM, JNLPBA and CHEMDNER datasets 
(Supp. Table 9). 

Figure 7: Extrinsic evaluation of minimum word 
count in word2vec (w2v) and fastText (FastT) 

models on BC2GM, JNLPBA and CHEMDNER 
datasets (Supp. Table 11). 

 

Figure 8: Intrinsic evaluation of the minimum word count in word2vec (w2v) and fastText (FastT) 
models on UMNSRS, HDO, and XADO datasets (Supp. Table 10). 
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decreased with increasing minimum word count, 
whereas in Chiu et al. (2016a) this was only the 
case for relatedness.  

In intrinsic evaluation of window size, particu-
larly UMNSRS (Figure 1), performance consist-
ently increased with increasing window size. This 
trend was also reported by Chiu et al. (2016a), 
where the maximum window size of 30 obtained 
the highest similarity and relatedness. We rea-
soned that abstracts generally concern a single 
topic, therefore predicted that increasing the win-
dow size to the average abstract length would cap-
ture more relevant information. This was indeed 
the case, obtaining 0.675 and 0.639 for UMNSRS 
similarity and relatedness respectively, compared 
to 0.627 and 0.584 similarity and relatedness re-
spectively reported by Chiu et al. (2016a) for 
PubMed. As higher intrinsic performance was ob-
tained in our results for similar window sizes, the 
difference in performance is also contributed to by 
an increase in the training data and different pre-
processing.  

In the case of extrinsic evaluation, the best per-
formance was generally obtained with lower win-
dow size – a similar trend to that reported in Chiu 
et al. (2016a). 

3.2 General trends: fastText hyper-
parameter selection 

Except for the character n-gram hyper-parameter, 
fastText models share the same hyper-parameters 
with word2vec models. Overall, similar trends in 
both intrinsic and extrinsic performance were ob-
tained for word2vec and fastText embeddings 
(Figure 1-12). However, optimal parameters 
were not necessarily identical, as discussed be-
low. 

3.3 Comparison of representations –  
Intrinsic evaluation 

While the overall performance trends with various 
hyper-parameters for fastText are similar to those 
obtained by word2vec, we report a number of no-
table differences.  

When intrinsically evaluated with UMNSRS, 
word2vec representations consistently achieved 
higher similarity and relatedness compared to 
fastText for hyper-parameters such as: window 
size, dimensions and negative sampling, irrespec-
tive of the selected hyper-parameters. However, 
evaluating with HDO and XADO intrinsic da-
tasets, results were more variable. fastText tended 
to perform similar to or outperform word2vec 
across negative sampling size, dimensions and 
window size hyper-parameter ranges.  

Differences in performance between datasets 
may be a result of differences in: (i) number of 
OOV terms; (ii) rarity of terms; and (iii) term 
types. As UMNSRS is a manually curated refer-
ence list of term pairs with the vocabulary of mul-
tiple corpora, including PubMed Central, only up 

 
Figure 9: Intrinsic evaluation of sub-sampling rate in word2vec (w2v) and fastText (FastT) models on 

UMNSRS, HDO, and XADO datasets (Supp. Table 12). 

 
Figure 10: Extrinsic evaluation of sub-sampling 

rate in word2vec (w2v) and fastText (FastT) 
models on BC2GM, JNLPBA and CHEMDNER 

datasets (Supp. Table 13). 
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to 9 total tokens were OOV (1.3%; Supp. Table 
2). HDO contained up to 5% OOV terms. As 
OOV terms are represented by null vectors for 
word2vec models, a decrease in performance with 
increase in OOV terms is expected.  

Skipping OOV term pairs from evaluation (ra-
ther than imputing) obtained similar performance 
trends across datasets, indicating that OOV is not 
the major contributing factor in such intrinsic per-
formance differences. However, this may also im-
ply that fastText degrades the performance for in-
vocabulary terms of the UMNSRS dataset. Simi-
lar results were reported by the original authors 
when assessed on the English WS353 dataset 
(Bojanowski et al., 2017). 

Despite terms being in-vocabulary, the frequen-
cy by which these occur in the training dataset 
may vary. This is indeed the case for UMNSRS 
and HDO, where UMNSRS has a median rank in-
vocabulary frequency 4 times higher than HDO. 
This may indicate fastText provides better repre-
sentations for rarer terms. XADO, however, has a 

median rank in-vocabulary frequency within 1.3 
times of UMNSRS. This implies there are addi-
tional contributing factors to such performance 
differences, including potentially differences in 
the quality of the ontology graph.   

As the intrinsic standards contain various entity 
classes, differences in representation models’ per-
formance (and optimal hyper-parameters) may be 
dependent on the distribution of entity types. 
fastText authors reported that fastText outper-
forms word2vec in languages like German, Ara-
bic, Russian and in rare English words 
(Bojanowski et al., 2017). This indicates that 
word2vec and fastText’s performance is depend-
ent on the compositionality and word character 
features, and may therefore be expected to vary 
between biomedical entity classes. 

Biomedical text generally contains terms such 
as chemicals, genes, proteins and cell-lines which 
are rich in features such as punctuation, special 
characters, digits, and mixed-case characters. 
Such orthographic features have been manually 
extracted in traditional machine learning methods, 
or more recently combined with word embed-
dings, and have been shown to have discriminat-
ing power in tasks such as named entity recogni-
tion (Galea et al., 2018). 

3.4 Comparison of representations –  
Extrinsic evaluation 

When performing named entity recognition as 
extrinsic evaluation of the word representations 
models, fastText consistently outperformed 
word2vec at any hyper-parameter value, and con-
sistently across all 3 corpora (Figures 
2,4,6,7,10,12). With 9-13% total OOV tokens, and 
14-34% OOV entity tokens (Supp. Table 3, Supp. 
Fig. 3,4), this indicates the overall likely positive  

 
Figure 11: Intrinsic evaluation of the alpha hyper-parameter in word2vec (w2v) and fastText (FastT) 

models on UMNSRS, HDO, and XADO datasets (Supp. Table 14). 

 
Figure 12: Extrinsic evaluation of alpha in 

word2vec (w2v) and fastText (FastT) models on 
BC2GM, JNLPBA and CHEMDNER datasets 

(Supp. Table 15). 
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contribution of gained information from computed 
OOV vectors. 

In terms of the specific corpora, the largest per-
formance difference was recorded for genes 
(BC2GM) and chemical names (CHEMDNER). 
As these two corpora only tag one entity type, en-
tity variation is lower than JNLPBA which tags 5 
entity classes and therefore this may contribute to 
the dissimilarities in performance difference be-
tween the corpora. 

 In addition to the rich and unique features, 
outperformance of fastText in extrinsic evaluation 
may also be attributed to the standardized nomen-
clature used in biomedical entities which provides  
additional within-token structure. For example, 
systematic chemical names follow the IUPAC 
nomenclature. Prefixes such as mono, di, and tri 
indicate number of identical substituents in a 
compound. Similarly, residual groups are repre-
sented by prefixes such as methyl- and bromo-. 
Additionally, the backbone structure of the mole-
cule is assigned a suffix that indicates structure 
features (e.g. simple hydrocarbon molecules uti-
lize suffixes to indicate number of single, double 
or more bonds, where -ane indicates single bonds, 
-ene double bonds, -ynes triple bonds etc).  

With such structure, as fastText is a character-
level model, for chemicals such as 1,2-
dichloromethane, most similar words include 
chemicals which share the substituents and their 
specific position, defined by the 1,2-dichloro- pre-
fix (Table 1). Therefore, fastText provides more 
structurally-similar chemicals, whereas word2vec 
would treat 1,2-dichloromethane and 2-
dichloromethane as two completely differ-
ent/unrelated terms (when excluding context or 
setting a small window size). 

As chemicals can be synthesized and named, it 
is likely for very specific and big molecules such 
as 1-(dimethylamino)-2-methyl-3,4-
diphenylbutane-1,3-diol to be OOV. This is a great 
advantage of character-level embeddings which 
still enable computing a representation. 

Given the highly standardized and structured 
nomenclature of chemicals, we briefly observed 

that fastText models are also able to recall struc-
tural analogs when performing analogy tasks. For 
example, methanol → methanal is an oxidation 
reaction where an alcohol is converted to an alde-
hyde, specifically the -OH group is converted to a 
=O group. Given ethanol and performing analogy 
task vector arithmetic, the aldehyde ethanal is re-
turned. Similar results were observed for sulfu-
ric_acid – sulfur + phosphorous, giving phosphor-
ic_acid. Formal evaluation on analogy tasks is re-
quired to assess how character-based embeddings 
perform compared to word2vec. 

Genes and proteins have full names as well as 
short symbolic identifiers which are usually acro-
nymic abbreviations. These are less structured 
than chemical names, however, as the root portion 
of the symbols represents a gene family, this ac-
counts for the similarity performance of character-
based embeddings. ZNF560 is an example of 
OOV protein that was assigned a vector close to 
ZNF* genes (Table 1) as well as SOX1. While 
SOX1 does not share character n-grams with 
ZNF560, similarity was determined based on co-
occurrence of ZNF genes and SOX1 – genes 
which are associated with adenocarcinomas 
(Chang et al., 2015).  

While the advantages of character-based simi-
larity for OOV terms are clear, from intrinsic 
evaluation it appears that for some entities 
word2vec provides better embeddings. An exam-
ple of this is when querying phosphatidylinositol-
4,5-bisphosphate (Supp. Table 16). Whereas the 
top 5 most similar terms returned by fastText are 
orthographically, morphologically, and structural-
ly similar, word2vec recalled PIP2 and PI(4,5)P2. 
These are synonyms of the queried term hence 
more similar than phosphatidylinositol-4-
phosphate, for example. A similar result was also 
observed for genetic variants (SNPs). While 
fastText returned rs- prefixed terms as most simi-
lar terms to the reference SNP identifier 
rs2243250 (which refers to the SNP Interleukin 4 
– 590C/T polymorphism), word2vec recalled 
terms 590C>T and 590C/T; the nucleotide poly-
morphism specified by the identifier itself (Supp  

 1,2-dichloromethane 1-(dimethylamino)-2-methyl-3,4-diphenylbutane-1,3-diol ZNF560  
 1,2-dichloroethane 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate ZNF580  
 1,2-dichlorobenzene 1,3-dimethylamylamine ZNF545  
 Dibromochloromethane 8-(diethylamino)octyl ZNF582  
 1,2-dichloropropane 2-cyclohexyl-2-hydroxy-2-phenylacetate ZNF521  
 water/1,2-dichloroethane diethylamine SOX1  

Table 1: Top 5 most similar words to a selection of out-of-vocabulary terms (two chemical systemat-
ic names and a protein symbol; top row). Sequences in bold indicate overlap with queried term. 
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Table 19).  
Additional examples comparing word2vec and 

fastText’s most similar terms for chemicals, genes 
and diseases are provided in Supp. Tables 18-22.  

From the quantitative results and the above 
qualitative examples, we observe a trade-off be-
tween character sequence similarity and context. 
The importance of which depends on the entity 
types – just as different languages benefit differ-
ently from word2vec and fastText models 
(Bojanowski et al., 2017).  

3.5 Effect of n-grams size 

Intrinsic evaluation shows high variability in the 
range of n-grams between the different standards 
(Table 2 & Supp. Table 25). UMNSRS achieves 
the highest performance (in terms of similarity) 
with 6-7 n-grams, whereas XADO achieves best 
results with 3-4 n-grams, and HDO achieves equal 
performance with ranges: 5-{6,7,8}, 4-6 and 6-8. 
This indicates the heterogeneity of the terms, both 
within the reference standards for HDO and 
XADO, and between standards. This further backs 
up the difference between the representation mod-
els due to entity type differences. 

Contrastingly, extrinsic evaluation showed high 
consistency in n-gram ranges, with all corpora re-
cording highest performance for the ranges 3-7 

and 3-8. Within standard error (Supp. Table 23, 
24), high performance was also obtained for rang-
es with lower limit of 2 and 3. Such ranges indi-
cate that both short and long n-grams provide rel-
evant information, complying with the previous 
discussion and examples for gene nomenclature 
and chemical naming conventions. 

3.6 Optimized Models 

Word embeddings trained on individual reference 
standards’ optimal hyper-parameters (Supp. Table 
25) achieved 0.733/0.686 similarity/relatedness 
with word2vec for UMNSRS (Supp. Table 26). 
This exceeds 0.652/0.601 reported by Chiu et al. 
(2016a), and the more recent 0.681/0.635 by Yu et 
al. (2017) achieved by retrofitting representations 
with knowledgebases, but not 0.75/0.73 by 
MeSH2Vec using prior knowledge (Jha et al., 
2017). We expect further improvement to our 
models by retrofitting and augmenting prior 
knowledge. 

Corpus-optimized fastText embeddings outper-
formed word2vec across all extrinsic corpora, re-
cording: 79.33%, 73.30% and 90.54% for 
BC2GM, JNLPBA, and CHEMDNER (Supp. Ta-
ble 26). This outperforms Chiu et al. (2016a), 
Pyysalo et al. (2013) and Kosmopoulos et al. 
(2015), although differences are also due to differ-

 UMNSRS HDO XADO 
 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 
2 0.443 

0.427 
0.463 
0.458 

0.503 
0.497 

0.532 
0.507 

0.544 
0.512 

0.554 
0.516 

0.219 
0.193 

0.282 
0.218 

0.295 
0.219 

0.296 
0.222 

0.302 
0.223 

0.302 
0.224 

0.031 
0.105 

0.047 
0.106 

0.039 
0.106 

0.032 
0.113 

0.030 
0.114 

0.024 
0.114 

3  0.487 
0.478 

0.517 
0.506 

0.548 
0.524 

0.560 
0.530 

0.561 
0.522 

 0.298 
0.213 

0.307 
0.217 

0.307 
0.215 

0.312 
0.226 

0.312 
0.225 

 0.054 
0.111 

0.048 
0.112 

0.038 
0.117 

0.032 
0.117 

0.030 
0.117 

4   0.534 
0.523 

0.562 
0.539 

0.570 
0.533 

0.582 
0.540 

  0.313 
0.218 

0.318 
0.227 

0.316 
0.228 

0.315 
0.227 

  0.040 
0.110 

0.036 
0.111 

0.035 
0.113 

0.030 
0.109 

5    0.584 
0.554 

0.603 
0.565 

0.596 
0.552 

   0.320 
0.230 

0.319 
0.226 

0.320 
0.228 

   0.034 
0.112 

0.031 
0.108 

0.029 
0.109 

6     0.612 
0.556 

0.607 
0.549 

    0.317 
0.228 

0.319 
0.234 

    0.037 
0.110 

0.035 
0.108 

7      0.601 
0.542 

     0.314 
0.231 

     0.033 
0.102 

                   
 BC2GM JNLPBA CHEMDNER 
 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 
2 78.96 79.72 79.78 79.91 79.71 80.26 78.20 77.76 77.99 77.89 77.96 77.96 89.14 89.48 89.66 89.72 89.58 89.46 
3  79.69 78.88 78.77 79.90 79.91  77.83 77.86 77.67 78.46 78.30  89.48 89.67 89.67 89.75 89.62 
4   78.94 78.42 78.91 79.05   77.58 76.91 78.00 77.58   89.28 89.37 89.22 89.32 
5    77.12 78.67 77.45     76.72 78.04 76.92    89.22 89.13 89.10 
6     77.77 77.97     77.82 78.06     89.03 88.81 
7      77.73      77.83      88.60 

 UMNSRS HDO XADO BC2GM JNLPBA CHEMDNER Sim Rel Sim Rel Sim Rel 

in
t w2v 0.726 0.690 0.314 0.237 0.095 0.077 76.43 71.84 87.83 

FastT 0.694 0.659 0.330 0.243 0.074 0.093 76.48 72.47 88.89 

ex
 w2v 0.506 0.469 0.252 0.184 0.024 0.120 77.13 73.61 88.93 

FastT 0.479 0.446 0.283 0.221 0.054 0.116 79.63 74.29 90.14 
Table 3. Intrinsic and extrinsic performance for word2vec and fastText models optimized on 
optimum hyper-parameters from intrinsic (int) and extrinsic (ex) datasets (Supp. Table 27). 

 

Table 2: Intrinsic (UMNSRS, HDO, XADO; upper row = similarity, lower row = relatedness) and ex-
trinsic (BC2GM, JNLPBA, CHEMDNER) evaluation of the effect of character n-gram ranges on per-

formance. Highest absolute accuracy is indicated in bold and accuracies within the standard error of the 
highest accuracy is italicized. 
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ent NER architectures used. However, our 90.54% 
CHEMDNER performance outperforms 89.28% 
using similar architectures and is close to the 
90.84% achieved for attention-based architectures 
(Luo et al., 2017) - the best performance reported 
in literature to date. 

Optimizing word2vec and fastText representa-
tions across all corpora and standards (Supp. Ta-
ble 28) decreased the performance difference in 
NER between word2vec and fastText. This is due 
to the differences in the optimal hyper-parameters 
between intrinsic and extrinsic data (Supp. Table 
29). Based on these differences, and as it had been 
shown that intrinsic results are not reflective of 
extrinsic performance (Chiu et al. 2016b), we 
generated separate word2vec and fastText models 
optimized on intrinsic and extrinsic datasets sepa-
rately (Table 3). Again, fastText outperforms 
word2vec in all NER tasks but only outperforms 
word2vec for the HDO intrinsic dataset, possibly 
due to similarity implied from disease suffixes 
captured by n-grams.  

4 Conclusion and future directions 

We show that fastText consistently outperforms 
word2vec in named entity recognition of entities 
such as chemicals and genes. This is likely to be 
contributed to by the ability of character-based 
representations to compute vectors for OOV, and 
due to the highly structured, standardized and fea-
ture-rich nature of such entities.  

Intrinsic evaluation indicated that the optimal 
hyper-parameter set, and hence optimal perfor-
mance, is highly dataset-dependent. While num-
ber of OOV terms and rarity of in-vocabulary 
terms may contribute to such differences, further 
investigation is required to determine how the dif-
ferent entity types within the corpora are affected. 
Similarly, for named entity recognition, investigat-
ing the performance differences for each entity 
class would provide a more fine-grained insight 
into which classes benefit mostly from fastText, 
and why.  

Empirically, we observed a trade-off between 
character sequence similarity and context in 
word2vec and fastText models. It would be inter-
esting to assess how embedding models such as 
MIMICK, where the word2vec space can be pre-
served while still being able to generate character-
based vectors for OOV terms, compare. 
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