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Malostranské náměstı́ 25, Prague, 118 00, Czech Republic

Abstract
Neural Monkey is an open-source toolkit for sequence-to-sequence learning. The focus of this

paper is to present the current state of the toolkit to the intended audience, which includes

students and researchers, both active in the deep learning community and newcomers. For each

of these target groups, we describe the most relevant features of the toolkit, including the simple

configuration scheme, methods of model inspection that promote useful intuitions, or a modular

design for easy prototyping. We summarize relevant contributions to the research community

which were made using this toolkit and discuss the characteristics of our toolkit with respect to

other existing systems. We conclude with a set of proposals for future development.

1 Introduction

Neural Monkey (Helcl and Libovický, 2017) is an open-source tool for sequential learning de-

veloped and maintained at Charles University. It is used mainly for experiments with neural

machine translation (NMT), but also for other natural language processing (NLP) tasks which

use deep learning, such as image captioning, multimodal translation, optical character recogni-

tion, text summarization or sentiment analysis. In this paper, we present the state of the software

at the beginning of 2018 and share the plans for future development.

Neural Monkey is best suited for research and education. Our ambition is not developing

a production-ready software. We also do not focus on technical tricks to achieve the best per-

formance. Instead, we provide an extensible library of implemented features with references to

the papers where they were proposed.

We try to align our aims with the needs of three possibly overlapping groups of users.

First, we want to help students understand how various models work and build intuition for

their training. Second, we want to provide a simple tool for newcomers to the field of deep

learning to help them start experimenting with these models. Third, we design the toolkit in

a highly modular fashion with replaceable components to suit researchers who want to try out

their ideas without having to implement everything from scratch.
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Neural Monkey is implemented in Python 3.5 using the TensorFlow library (Abadi et al.,

2016). We share the source code on GitHub,1 where we also report and solve issues, provide

support for users and discuss the development, so everyone can contribute with their ideas.

This paper is organized as follows. Section 2 presents the goals of the development of the

toolkit with respect to the needs of the considered user groups. Section 3 gives an overview of

the toolkit features. In Section 4, we summarize the research contributions that have been made

with Neural Monkey. We discuss the differences from other toolkits in Section 5. We propose

our plans for the future development and conclude in Section 6.

2 The Goals of Neural Monkey Development

During the development of Neural Monkey, we keep in mind three groups of potential users. In

this section, we discuss the interests of the members of each group, and establish a set of goals

aligned with the considered interests.

The first interest group are researchers or NLP engineers who would like to start using

deep learning. Neural Monkey is easy to install; it uses only a few Python modules which can

be installed using PiPy, the Python package manager. The experiments are configured using

configuration files with a simple ini syntax enriched with elements from Python. The sections

of a configuration file correspond to an established conceptualization of the problem as used in

the NLP community. We provide several examples of configuration files which can be used as

starting points for experiments. A minimal working example configuration for NMT is shown

in Example 1.

The second interest group we consider are students. Most of the modules that implement

network components correspond to research papers which propose the ideas. The corresponding

paper is cited in the code, often including references to a particular section or equation in the

paper. We believe that reading such a commented code can help understand the relation between

equations in papers and the actual implementation.

Finally, the third group of our potential users are researchers in NLP, who are already

experienced in deep learning. For researchers, we provide a collection of modular prototypes

and algorithmic features with a convenient experiment management system.

The four main goals of Neural Monkey development are:

Code Readability. The code is written with an emphasis on readability. This includes refer-

encing the papers and original implementations. Research software often does not focus on the

quality of the code. With Neural Monkey, we are trying to have a clear code base, such that

everyone can easily fork the repository and build their experimental setup on top of that.

Modularity along Research Concepts. While working on neural models, it is common to

reuse existing implementation of the state-of-the-art architectures or apply different training

techniques. For example, one could only modify the encoder in order to improve the input

sequence representation.

Up-to-Date Building Blocks. Deep learning is a rapidly developing field with new architec-

tures appearing every few months. Neural Monkey is a maintained collection of these models,

ready for use in NLP experiments.

Fast Prototyping. We focus on fast and easy prototyping of new architectures and testing

existing architectures on new tasks. We try to keep a clear API that allows reusing architecture

components between various tasks.

1https://github.com/ufal/neuralmonkey
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[main]

output="output dir"

batch size=64

epochs=20

train dataset=<train data>

val dataset=<val data>

trainer=<trainer>

runners=[<runner>]

evaluation=[("target", evaluators.BLEU)]

logging period=500

validation period=5000

[train data]

class=dataset.from files

s source="data/train.en"

s target="data/train.de"

lazy=True

[val data]

class=dataset.from files

s source="data/val.en"

s target="data/val.de"

[encoder vocabulary]

class=vocabulary.from wordlist

path="en vocab.tsv"

[decoder vocabulary]

class=vocabulary.from wordlist

path="de vocab.tsv"

[encoder]

class=encoders.SentenceEncoder

rnn size=500

embedding size=600

data id="source"

vocabulary=<encoder vocabulary>

[attention]

class=attention.Attention

encoder=<encoder>

[decoder]

class=decoders.Decoder

encoders=[<encoder>]

attentions=[<attention>]

rnn size=1000

embedding size=600

data id="target"

vocabulary=<decoder vocabulary>

[trainer]

class=trainers.CrossEntropyTrainer

decoders=[<decoder>]

clip norm=1.0

[runner]

class=runners.GreedyRunner

decoder=<decoder>

Example 1: A minimal example of a configuration file for an attentive RNN sequence-to-

sequence machine translation model with the as presented by Bahdanau et al. (2014).

3 Toolkit Features

In the previous section, we defined our goals with respect to the needs of the target user groups.

In this section, we provide a high-level overview of the features that are implemented in Neural

Monkey. Further implementation details are explained in the following sections. In general,

Neural Monkey distinguishes encoders (components that read data and produce a representa-

tion), and decoders (components that produce an output).

3.1 Processing Input (“Encoders”)
This section summarizes the encoder components implemented in Neural Monkey. Each en-

coder processes an input into either a single state, a (temporal) sequence of states, or a two-

dimensional (spatial) set of states.

• Recurrent Sequence Encoder allows encoding input sequence using stacked recurrent neu-

ral networks (RNNs). In addition to embedded symbolic input (Sutskever et al., 2014), we

allow also a numerical input which can be used for instance for speech recognition.

• RNN over Character-Level Convolutional Neural Network (Lee et al., 2017), a technique

that applies convolutional neural network (CNN) on the unsegmented character-level in-

put. To produce the sequence of states, it uses a recurrent sequence encoder on the CNN

outputs.

• Deep Convolutional Encoder (Gehring et al., 2017), an encoder for sequence-to-sequence

learning with stacked convolutional layers and positional embeddings.
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• Transformer Encoder is the encoder part of the Transformer (Vaswani et al., 2017) archi-

tecture which repeatedly uses the self-attention mechanism over the input representation.

• ConvNet for Sentence Classification. We implement the convolutional network with max-

pooling for sentence classification (Kim, 2014). It is a fast baseline method for sentence

classification such as sentiment analysis.

• Self-Attentive Sentence Embedding. As a more advanced technique for sentence classifi-

cation, we use sentence encoding by Lin et al. (2017) which uses attention to produce a

fixed-size structured representation of the input sequence.

• Wrapper for ImageNet Networks. Tasks combining language and vision usually use im-

age features from deep convolutional networks for image classification. Neural Monkey

provides wrappers for the inclusion of these models as implemented in TensorFlow Slim

library.2 In particular, we support VGG networks (Simonyan and Zisserman, 2014) and

variants of ResNet (He et al., 2016).

• Custom CNN with Residual Connections. We also allow deep convolutional networks for

image processing trained from scratch with an arbitrary architecture of stacked standard

convolutional and max-pooling layers and residual blocks. (He et al., 2016)

3.2 Generating Output (“Decoders”)
The list below describes components that generate an output, which we call decoders. Note that

some of them have hidden states and if they implement the same API as the input processing

model parts, they can be stacked with other decoders. Thanks to this feature, we can for instance

apply a sequence labeler both on top of a recurrent encoder and a recurrent decoder and train

them jointly.

• Attentive Recurrent Sequence Decoder. We implement the attention model introduced by

Bahdanau et al. (2014) which was the main technique for a sequence decoding in the last

few years. We support several recurrent unit implementations, including LSTM (Hochre-

iter and Schmidhuber, 1997), GRU (Cho et al., 2014), and conditional GRU (Firat and

Cho, 2016). On top of the standard attention, we support the scaled dot-product attention

(Vaswani et al., 2017), attention with the sentinel gate (Lu et al., 2016), and advanced at-

tention combination strategies which explicitly model the attention over multiple sources

(Libovický and Helcl, 2017).

• Transformer Decoder, the decoder part of the self-attentive sequence-to-sequence learning

architecture mentioned above (Vaswani et al., 2017).

• Sequence Labeler. While sequence labeling, a multilayer perceptron is applied on the

hidden states of the encoder. Additionally, the conditional random field (Lafferty et al.,

2001; Do and Artieres, 2010) can be used to produce the output labeling.

• Connectionist Temporal Classification, a non-autoregressive technique of sequence decod-

ing (Graves et al., 2006) used mostly in speech recognition and optical character recogni-

tion where the output labels keep the temporal order of the input signal.

• Multilayer perceptron for classification or regression.

2https://github.com/tensorflow/models/tree/master/research/slim
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3.3 Additional Features

This section summarizes additional useful features available in Neural Monkey.

• Beam Search and Model Ensembles.

• Independent Training, Saving and Loading Parts of the Model.

• Multi-Task Learning. Experiment configurations can include definition of multiple de-

coders and specify which contribute to the training loss.

• Loading Nematus Models. Models that have been trained with Nematus (Sennrich et al.,

2017b) can be loaded into Neural Monkey. This can be used either for fine-tuning, domain

adaptation, or multi-task learning.

• Bandit Learning. Neural Monkey can be also used for bandit learning using expected loss

minimization (Kreutzer et al., 2017). In this setup, a pre-trained model is tuned using either

a simulated or real user feedback.

• Detailed Logging and Visualization. We implement several evaluation metrics that can

be used for continuous validation of the models. We also plot the loss, norms of the

parameters, and histograms of the parameter gradients to TensorBoard. It can also be used

for embeddings visualization. There is also a standalone tool for attention visualization

(Rikters et al., 2017).

4 Research Contributions

The development of Neural Monkey began in spring 2016 and since that time it has been used in

various research papers and MT competitions. In this section, we describe a selection of these

contributions.

Kreutzer et al. (2017) used Neural Monkey for domain adaptation using bandit learning

with simulated user feedback. This technique brings a significant improvement over both the

out-of-domain model and other domain adaptation techniques.

Libovický and Helcl (2017) published interpretable attention combination strategies for

multi-source sequence-to-sequence learning tasks, such as multimodal translation. These com-

bination strategies allow to explicitly model the different importance of the source sequences in

each step during the decoding.

Bastings et al. (2017) used Neural Monkey to develop a new convolutional architecture

for encoding the input sentences using dependency trees. This syntax-aware source language

representation brings a consistent improvement over the attentive sequence-to-sequence model

baseline.

Kocmi and Bojar (2017) published a thorough examination of various embedding initial-

ization strategies, both random and pre-trained. They conclude that improvements from pre-

trained embeddings are not always beneficial, and that high-quality embeddings can be trained

using an initialization with a normal distribution with a small variance or even with zeros.

Neural Monkey has also been used in various submissions to shared tasks at the Conference

on Machine Translation (WMT). In 2016 and 2017, it was used in submissions for multimodal

translation task (Libovický et al., 2016; Helcl and Libovický, 2017). It was also part of a system

combination used in the English-to-Czech MT system in the news task (Sudarikov et al., 2017).

Neural Monkey models were used as baselines in bandit learning and neural training tasks.

(Sokolov et al., 2017; Bojar et al., 2017b).
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5 Comparison to Other Toolkits

Due to its goals, Neural Monkey differs from other open-source packages used for sequence-

to-sequence learning.3

There are several production-oriented tools. They aim to be easy to use and work well in

an online setup. They also aim to reach the best result possible as long as it does not intervene

with its practical usability. Tools like this are most importantly OpenNMT (Klein et al., 2017),

Marian (Junczys-Dowmunt et al., 2016), Sockeye NMT (Hieber et al., 2017), and Tensor2Tensor
(Kaiser et al., 2017). All of them contain several well-tuned pre-made architectures that can be

used out of the box for sequence-to-sequence learning tasks.

Tools like Nematus (Sennrich et al., 2017b) and nmtpy (Caglayan et al., 2017) built on

Theano (Al-Rfou et al., 2016) or xnmt based on DyNet (Neubig et al., 2017) are more research

oriented. For instance, Nematus implements several techniques which improve the performance

of the system in the offline setup but which would be prohibitively slow in the online use. Using

these techniques (such as model ensembling or right-to-left rescoring) repeatedly achieved the

best results in the annual MT systems comparison at WMT (Sennrich et al., 2017a; Bojar et al.,

2016, 2017a).

Research-oriented tools allow easy modification of the model architectures and other

model properties. Unlike Neural Monkey, these software packages do not declare an ambi-

tion to collect architectures for other NLP tasks, nor do they plan to drive research towards

understanding representations learned by the networks.

6 Conclusions and Future Work

The main future plans with Neural Monkey remain unchanged: the implementation of the state-

of-the-art neural architectures for NMT with a strong focus on multimodality in MT.

Among the important features we plan to implement are the support for multi-GPU training

via data parallelism and model import from other tools heavily used in MT research, most

importantly Tensor2Tensor and Marian.

Additionally, we plan to focus on understanding language representations that emerge in

neural architectures during end-to-end training of NLP tasks. In order to do so, we would like to

get close to the state-of-the-art in other NLP tasks including image captioning, sentence classi-

fication tasks (e.g. sentiment analysis), or various sequence labeling tasks (e.g. tagging, named

entity recognition). For studying the representations, we will implement additional visualization

tools.

With the growing number of implemented models, we plan to introduce a model zoo.

Neural Monkey users will be able to reuse configuration files, data preprocessing scripts, or

even trained models or their parts in their own research.
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Helcl, J. and Libovický, J. (2017). Cuni system for the wmt17 multimodal translation task. In Proceedings
of the Second Conference on Machine Translation, pages 450–457, Copenhagen, Denmark. Association

for Computational Linguistics.
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