
Simultaneous Translation using Optimized Segmentation

Maryam Siahbani maryam.siahbani@ufv.ca

Department of Computer Information System,

University of Fraser Valley,

Abbotsford, V2S 7M7, Canada

Hassan S. Shavarani sshavara@sfu.ca

Ashkan Alinejad aalineja@sfu.ca

Anoop Sarkar anoop@sfu.ca

School of Computing Science,

Simon Fraser University,

Burnaby, V5A 1S6, Canada

Abstract
Previous simultaneous translation approaches either use a separate segmentation step followed by a machine

translation decoder or rely on the decoder to segment and translate without training the segmenter to mini-

mize delay or increase translation quality. We integrate a segmentation model and an incremental decoding

algorithm to create an automatic simultaneous translation framework. Oda et al. (2014) propose a method

to provide annotated data for sentence segmentation. This work uses this data to train a segmentation model

that is integrated with a novel simultaneous translation decoding algorithm. We show that this approach is

more accurate than previously proposed segmentation models when integrated with a translation decoder.

Our results on the speech translation of TED talks from English to German show that our system can achieve

translation quality close to the offline translation system while at the same time minimizing the delay in

producing the translations incrementally. Our approach also outperforms other comparable simultaneous

translation systems in terms of translation quality and latency.

1 Introduction
In simultaneous translation the incoming speech stream is segmented and translated incrementally to re-

duce the latency. There are two approaches for simultaneous translation task: sentence segmentation and

incremental decoding, also called stream decoding. In incremental decoding, incoming words are fed into

the decoder one-by-one, and the decoder updates its internal state. The decoder is responsible to decide

when to begin the translation process and when to output the translation. Incremental decoding algorithms

have been proposed for phrase-based (Kolss et al., 2008; Sankaran et al., 2010) translation, hierarchical

phrase-based (Finch et al., 2015) and syntax-based (Oda et al., 2015) translation systems.

Real-world speech translation systems estimate the sentence boundaries using punctuation insertion

methods (Rangarajan Sridhar et al., 2013). As a result, recent work in simultaneous machine translation

assume the input is already segmented into sentences, and focus on splitting the sentences into shorter sub-

sequences of words (segments). This approach is called sentence segmentation. As soon as a segment is

recognized, it is given to a decoder to generate and output the translation for that segment.
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Different methods have been proposed for sentence segmentation. Some use prosodic boundaries for

segmentation (Fügen et al., 2007; Bangalore et al., 2012), while others use classification models. For exam-

ple Rangarajan Sridhar et al. (2013) train a classifier to predict punctuation marks. The other approaches

rely on the reordering probabilities of phrases to predict the segment boundaries (Fujita et al., 2013; Yarmo-

hammadi et al., 2013; Siahbani et al., 2014). Oda et al. (2014) propose a method to provide annotated data

for sentence segmentation which can be used in training a segmentation model. This method which later

have been extended by (Shavarani et al., 2015) aims to find the best segmentation strategy for a given set of

sentence which optimizes the translation accuracy. But the obtained annotated data has never been used in

an end-to-end simultaneous translation system.

In this work, we focus on sentence segmentation approach for simultaneous translation. We model the

segmentation task as a classification problem and investigate different methods to provide annotated data

for training the segmentation model (Section 2). We modify Oda et al. (2014) approach by propose a new

formula to compute the latency and use Pareto-optimality for finding good segment boundaries that can

balance the trade-off between latency versus translation quality. We use the obtained annotated data to train

a segmentation model. We conduct various experiments to evaluate the segmentation model and show that

this model outperforms previous segmentation models in terms of accuracy.

Segmentation-based simultaneous translation approaches typically use a traditional phrase-based de-

coder to translate each input segment individually. Although hierarchical phrase-based (Hiero) translation

system usually performs comparable to or better than conventional phrase-based systems, they use CKY

based decoding algorithm which requires the entire input sentence to generate the translation. While phrase-

based decoders generate translation in a left-to-right manner and it makes phrase-based systems more suit-

able for simultaneous translation than Hiero.

We use LR-Hiero for simultaneous translation which uses hierarchical phrase-based translation models

while generates the translation in left-to-right manner (Watanabe et al., 2006; Siahbani et al., 2013). We

modify LR-Hiero decoder and combine it with the segmentation model to incrementally translate the input

sentence (stream of words).

We evaluate our simultaneous translation system on the speech translation of TED talks on English-

German. The experimental results show that our system can achieve translation quality close to offline

SMT system while generate the output translation words around twenty times faster. We also compare

our simultaneous translation system to neural machine translation (NMT) simultaneous translation systems.

Our system outperforms the state of the art NMT-based simultaneous translation system in both translation

quality and latency.

2 Sentence Segmentation

The segmentation task is usually modeled as a binary classifier which is called for each input word to

determine if it is a segment boundary or not. To train the segmentation classifier we need some training

data in the form of sentences with labeled words showing if a word is a segment boundary or not. For each

sentence f = 〈f1 . . . fJ〉 different possible segmentations exist which grows exponentially with the length

of the sentence. Finding the best segmentation can be quite difficult, as it requires a brute-force search over

all possible segmentations which is intractable.

Different heuristics have been proposed to efficiently solve this problem. The two main approaches

are: alignment-based and translation-based heuristics. We modify the translation-based heuristic to use

in our translation framework. We will briefly discuss both approaches in the following and compare their

performance in Section 4.

These heuristics use parallel data on the source and target languages of the simultaneous translation

task to create labeled training data for the segmentation model. We define C = 〈F,E〉 as a parallel corpus
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Figure 1: Word alignment matrix for an English-German sentence pair. Monotone phrases are shown in dashed line

rectangles.

of source and target sentences used to extract training data.

2.1 Alignment-based Heuristic

The idea behind alignment-based heuristic is to split the input sentence into segments which can be translated

to the target language monotonically (Yarmohammadi et al., 2013; Siahbani et al., 2014). To achieve this

goal, the segmentation task is simplified to the problem of segmenting the source sentence in a way that

reordering just occurs inside segments but not across segments. To find such segmentation we can leverage

word alignment models. Given the word alignment a = 〈a1 . . . aJ〉 for a sentence pair 〈f, e〉, we can segment

the source sentence f = 〈f1 . . . fJ〉, into a set of segments (phrases) s = 〈s1 . . . sK〉:

sk = 〈jk−1, jk〉 ∀k = 1 . . .K, j0 = 1 (1)

To restrict the reorderings inside the segments, we should extract segments where ajk−1
< ajk for

k = 1 . . .K. This segmentation results in a phrase alignment for the sentence pair 〈f, e〉 called monotonic
phrase alignment. Figure 1 shows word alignment matrix and monotonic phrase alignment for an English-

German sentence pair. Monotonic phrase alignment for a sentence pair can be found in linear time, given

the word alignment. Experimentally, it has been shown that translation quality improves significantly with

longer phrases (Koehn et al., 2003). Therefore to avoid too many short segments which could lead to word-

to-word translation, the segmentation algorithm is given a constraint based on a constant μ and segments of

length less than μ are disallowed1.

Usually a word alignment model is trained over a parallel corpus containing the parallel data of the

1μ is usually set to 4 (Yarmohammadi et al., 2013; Siahbani et al., 2014).
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translation task and parallel corpus C. It provides us the oracle word alignment for C which can be used to

extract labeled data for the segmentation classifier.

2.2 Translation-based Heuristic

The translation-based segmentation heuristic (Oda et al., 2014) focuses on obtaining segmentation points

that are the least harmful to translation accuracy. This heuristic performs the segmentation using an iterative

greedy approach. It starts with an empty set of segmentation points and each time tries to find a segmentation

point in the given corpus which is the least harming to the translation accuracy. Segmentation points are

described using a set of features. Different kinds of features can be used such as bigram POS tags, lexical

terms, parsing related features and etc. Each feature is used as a metric to recognize segmentation points in a

given input sentence. For instance, suppose we find a feature which is a bigram POS tag: NNS-IN. Using this

feature we can find one segmentation point at index 10 in the English-German sentence shown in Figure 1

(the segmentation point is surrounded by two words engineers and in corresponding to POS tags NNS and

IN). This approach finds an optimal set of features, based on a parallel corpus2.

Given a parallel corpus C = 〈F,E〉 and an expected number of segments, K, the translation-based

segmentation heuristic first extracts all features over the corpus along with their frequencies, 〈c1 . . . cm〉. The

translation-based segmentation heuristic tries to find a feature set s containing l(≤ m) features according to

the least harmful segmentation criterion for the translation accuracy where
∑l

i=1 csi = K (features of set s
appear in K points of source corpus which result in K segments).

Oda et al. (2014) define translation accuracy as the summation of sentence-level BLEU score (Lin and

Och, 2004) of the translations of segmented sentences. The feature set is initialized as empty (s = {}), then

the best feature (adding it to the corpus causes the least translation loss) is greedily chosen and added to the

feature set. Once a feature has been chosen, all the points exhibiting that feature are segmented at the same

time. This approach requires running the translation system for each possible feature in each iteration which

takes a long time. To overcome this issue, they propose dynamic programming (DP) and call their approach

Greedy-DP (GDP)3.

However, this approach does not consider the latency to choose the features and therefore does not

model the trade-off between accuracy and latency. This trade-off is crucial in designing a simultaneous

translation systems. Shavarani et al. (2015) used Pareto Optimality to model the trade-off between accuracy

and latency. In this approach, the algorithm iteratively goes over the corpus and examines the available

features by computing the difference of translation accuracy (Δ) before and after applying each available

feature to the source corpus. The features which cause least translation loss (the smallest Δ) are selected

as candidate points. Among them, the feature which causes the least latency or the highest throughput is

selected to be added to the feature set s. In the previous works latency was simply defined as the number of

segments divided by the total translation time (Oda et al., 2014; Shavarani et al., 2015).

We extend the Pareto optimality approach by modifying the definition of both objective functions:

translation accuracy and latency.

2.2.1 Translation Accuracy

Our primarily experiments show that using the sentence-level BLEU to measure the translation accuracy

in GDP (and Pareto Optimality approach) tends to oversegment some sentences in the corpus and leave

the other sentences untouched. To overcome this issue, we propose to use corpus-level BLEU (Papineni

et al., 2002) to measure translation accuracy. The corpus-level BLEU gives a general view over the corpus

2The feature set which results in the best segmentation strategy (a set of segmentation points which gives us the best translation for

the given parallel corpus).
3Please refer to (Oda et al., 2014) for more details
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therefore it alleviate the tendency to localize the segmentation.

2.2.2 Latency

In simultaneous translation, the translation process starts before receiving the end of sentence, and the eval-

uation objective is not only sensitive to the translation quality, but it is also caring about the translation

latency; the difference between the receiving time of the utterance in the source language and the delivery

time of its translation in the target language.

Based on this idea we define the translation delay measure as a function of two different types of delay

factors; the transmission delay and the translation delay. The transmission delay measures the amount of

time the system is waiting to reach the end of current segment after producing the translation of the previous

segment, completely. The translation delay on the other side is the amount of time it takes for the system to

perform the mapping of source side utterances into the target side equivalents.

Equation 2 formulates the idea about the latency where we assume latency measure Λ to assess the

latency of a sentence containing N segments and each segment being translated as soon as it is ready. We

assume the target side will have a buffer which will keep the already translated segments in a queue and

pops the translated segments from the queue while any is available and will wait to receive one if the buffer

is empty. In Equation 2, ti represents the time moment that the ith segment is ready and t′i−1 points to the

time moment that the translated segment i − 1 has been completely delivered to the audience. Both of the

measures start from 0 for each new sentence and t′0 = 0 always holds. The phrase max(ti − t′i−1, 0) means

that we will not have any transmission delay if the time moment that we receive the segment i is before the

time moment that we finish delivering the translated segment t′i−1 otherwise the transmission delay will be

equal to ti − t′i−1. δi represents the duration of the time it takes to translate the ith source side segment into

the target side language.

Λ =
N∑
i=1

max(ti − t′i−1, 0) + δi (2)

2.3 Segmentation Model

Given a set of sentences along with the gold segmentations, we can prepare the training data for the segmen-

tation model. For each segment in the gold segmentation we create a positive training example corresponding

to the whole segment and a set of negative examples corresponding to each smaller segment. For example for

a segment 〈i, j〉, the positive example is (i, j), and negative examples are [(i, i+1), (i, i+2), . . . (i, j− 1)].
Using this training data, we train a binary classifier (using a log-linear model) based on different feature

sets. Basic features, used in (Yarmohammadi et al., 2013), are: the last word of the segment (candidate

segment boundary), the position of the boundary in the sentence, and the candidate segment length (set1).

Siahbani et al. (2014) proposed different sets of features for segmentation task including Part Of Speech

(POS) tags and feedback from the decoder (given from the partial hypotheses of decoder during translation).

POS tags showed promising results and fast to be computed. In addition to POS tags we also propose to

use two features created based on reordering. We compare four different sets of features including the basic

features (set1) to train the segmentation model:

• Part of Speech tags: The first group uses POS tags of the candidate segment as features. We considered

the last three POS tags in a segment and also bigrams and trigrams of the POS tags for each segment

(set2). In addition to these features we consider POS bigram surrounding the segment boundary (set3).

• Reordering Features: The lexicalized reordering model (Koehn et al., 2007) of phrase-based transla-

tion system determines the orientation of phrases with respect to the previous phrase, monotone (M),
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Set1: Word, Position, Length “engineers”, 9, 5

Set2: + POS tags [NNS],[CC-NNS],[NN-CC-NNS]

Set3: + Cross POS tag [NNS-IN]

Set4: + Reordering 0.8904, 0.6

Table 1: Feature sets and an example (for segment “from our scientist and engineers” in the English sentence in Figure 1).

swap (S) and discontinuous (D). We expect the segments to be monotonically ordered. For each seg-

ment, we define two reordering features corresponding to the monotone feature orientation of the first

and last phrases of the segment4. To compute the feature values we use lexicalized reordering model of

Moses (Koehn et al., 2007) for monotone orientation of both left-to-right and right-to-left (correspond-

ing to the first and last phrases of the segment). Adding reordering features to the previous features

creates the last set of features (set4).

Table 1 shows an example for POS-based and reordering-based features defined on the second segment

(“from our scientist and engineers”) of the stream “we desperately need great communication from ...” (see

Figure 1). To simplify the comparison, we consider each set-i contains the features of the previous sets. For

example set2 includes the POS tags and features in set1.

3 Integrating Segmentation and Decoding
In sentence segmentation approaches, the input stream is segmented and for each recognized segment the

machine translation decoder is called to translate the segment individually. In this approach the decoder

treat each segment as an independent input, while we are translating the input stream. We integrate the

segmentation model and decoder. This approach can be also considered as a stream decoding method which

the decoder exploit other resources beyond just decoding cues.

Hiero models encode the translation correspondences in hierarchical phrases, unlike the phrase-based

models that use contiguous translation phrases. The notion of hierarchy allows the Hiero models to capture

long-distance reordering between source and target languages unlike phrase-based models. Additionally

they also model discontiguous translations, e.g. translating the English word not as ne pas in French

(with an appropriate verb form inserted between ne and pas). These properties make Hiero models more

appropriate for some language pairs than phrase-based models (Marcu and Wong, 2002; Och and Ney, 2002,

2004).

Hiero uses a lexicalized synchronous context-free grammar (SCFG) extracted from word and phrase

alignments of a bitext. Typically, Hiero uses a CKY-style decoding algorithm with time complexity O(n3)
where the source input has n words.

Previous translation services proposed for real-time translation environments, are mainly phrase-

based (Fügen et al., 2007; Sankaran et al., 2010; Bangalore et al., 2012; Yarmohammadi et al., 2013; Oda

et al., 2014). Since a phrase-based decoder generates translations in a left-to-right manner, it is more suited

than the CKY based decoding which requires the entire input sentence before generating the translation.

We propose to use left-to-right hierarchical phrase-based translation in our simultaneous translation

framework. It has been shown that left-to-right hierarchical (LR-Hiero) decoder can translate using Hiero

translation model much faster than CKY Hiero decoder (Siahbani et al., 2013). In addition, it generates

the translation in left-to-right manner. These properties make it a suitable decoder for simultaneous transla-

tion (Siahbani et al., 2014). We augment LR-Hiero decoder to incrementally translate the input and integrate

it with our segmentation model. We briefly review the LR-Hiero decoder and then explain our incremental

4We consider the longest phrase which is available in the phrase-table.
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Algorithm 1: Simultaneous Translation

1: Input stream: f = f0f1 . . .

2: buffer = []

3: h0 = (〈s〉, null, null, 0) (Initial history is 〈s〉)
4: history = {h0}
5: while fi �= 〈/s〉 do
6: if Segmenter(buffer, fi) == True then
7: trans = Decoder(buffer, history)
8: print trans
9: buffer = [fi]

10: Update history

11: else
12: Add fi to buffer (Add the current word to the end of buffer)

13: trans = Decoder(buffer, history) (Translate the last segment)

14: print trans

version of the decoder.

3.1 LR-Hiero Decoder

LR-Hiero uses a constrained lexicalized SCFG usually called GNF grammar: X → 〈γ, b̄ β〉, where X is

a non-terminal, γ is a string of non-terminal and terminal symbols, b̄ is a string of terminal symbols and

β is a possibly empty sequence of non-terminals. Using GNF rules ensures that in derivations the target

side is always generated from left to right. The rules are obtained from a word and phrase aligned bitext by

replacing the smaller source-target phrase pair within a larger phrase pair with some non-terminal.

The decoding algorithm in LR-Hiero follows an Earley-style search (Earley, 1970) on the source side.

The dot jumps around on the source side of the rules based on the order of nonterminals on the target side.

Thus the target side derivation is strictly developed in left to right order. The search algorithm is integrated

with beam search or cube pruning to find the k-best translations.

We slightly modify LR-Hiero decoder proposed by (Siahbani et al., 2013) and explain it over an exam-

ple 5 (Figure 2). Each partial hypothesis h contains (ht, hs, hc): a translation prefix ht, a (LIFO-ordered) list
hs of uncovered spans and the hypothesis cost hc which includes future cost and a model score computed

based on feature values (using a log-linear model).

In the standard LR-Hiero decoder, translation prefix for the initial hypothesis is 〈s〉 and the initial

hypothesis would be h0 = (〈s〉, {[0, n]}, 0). The hypotheses are stored in stacks S0, . . . , Sn, where Sp

contains hypotheses covering p source words, just like in stack decoding for phrase-based SMT (Koehn

et al., 2003). Decoding process finishes when stack Sn has been filled.

To Expand each hypothesis we find a rule that matched the first uncovered span (hs[0]). For example

to expand the initial hypothesis in Figure 2, we apply rule #1 which is matched to the first uncovered span

([0,5]). The new hypothesis will be generated by appending the lexical part of target side of the rule to the

translation prefix of the previous hypothesis (”wir” is appended to ”〈s〉”). The list of uncovered span, hs, is

created by removing the first uncovered spand and pushing the new uncovered spans after applying the rule.

In Figure 2, after applying rule #1 we translate the first word so a new uncovered span is generated (matched

to non-terminal X1 in rule #1) and is pushed to the hs after popping the first uncovered span from the initial

hypothesis.

5Please refer to (Siahbani et al., 2013) for more details.
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<s> {[0, 5]} , 0
<s> wir {[1, 5]} , -0.6
<s> wir brauchen {[1, 2][3, 5]}  , -1.14
<s> wir brauchen unbedingt {[3, 5]} , -2.8
<s> wir brauchen unbedingt groß  artige {[4, 5]} , -3.4
<s> wir brauchen unbedingt groß  artige kommunikation {} , -4.1

groß  artige kommunikation {[5, 10]} , -4.1
groß  artige kommunikation aus unserer {[7,10]} , -4.8
groß  artige kommunikation aus unserer wissenschaftler und ingenieure {} , -5.7

und ingenieure {[10, 17]} , -5.7
und ingenieure um {[12, 17]} , -6.3
und ingenieure um die welt {[12, 14][16, 17]} , -7.1
und ingenieure um die welt zu verändern {[16, 17]} , -7.7 
und ingenieure um die welt zu verändern . </s> {} , -8.05

Figure 2: Simultaneous translation for an English-German sentence using LR-Hiero. The word alignment is shown on

the top. The segmentation points are shown by red stars. On the bottom, different steps of the decoder are shown.

The left side shows the rules used in the derivation.The hypotheses column shows partial hypotheses containing the

translation prefix, ht, the ordered list of yet-to-be-covered spans, hs and cost hc.

3.2 Incremental Translation

In our simultaneous translation framework, we integrate LR-Hiero with the segmentation model. This frame-

work is shown in Algorithm 1. The input is a stream of words (f = f0f1 . . .) which is fed to the translation

system word by word. In this algorithm, buffer always contains the sequence of yet-to-be-translated words

(initially empty), and history keeps the previous state of the decoder. We define history as the set of best

hypotheses generated by the decoder while translating the previous segment. history is initialized by a null

hypothesis (containing the sentence initial marker).

For each new input word, fi, the translation system queries the segmentation model. The content of

buffer and fi are passed to the Segmenter to determine whether the sequence of words in buffer is a valid

segment to be translated or not. Once a segment is recognized, the segment (content of buffer) and history
are passed to the decoder. The decoder translates the given source segment, and produces the translation

output for that segment. After emitting the translation to the output, buffer is initialized with the last input

word, fi which has not been translated yet and history is updated with the set of best hypotheses generated

by the decoder. In other words, we freeze the the state of the decoder and continue the translation when the

new segment arrives.

Figure 2 illustrates the process of generating just one translation. After reading the sixth word in the

input stream (“from”) the segmentation model recognize a segment (“we desperately need great communica-

tion”). This segment is passed to the decoder. The decoder generates the translation and the best translation

will be emitted. Then history will be updated by the set of best hypotheses generated by the decoder. The

translation system keeps reading the input stream and after recognizing the next segment (after reading

“in”) the new segment along with the history is passed to the decoder. The decoder translated the given
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Task Sentences Tokens

MT Train 1033491 27948039

Tune 3669 74883

Seg. model Train 3669 74883

Test 1025 22026

Table 2: Corpus statistics in number of sentences and tokens (source side).

segment while using partial hypotheses in history as initial hypotheses (the figure just shows one of them

〈groBartige kommunikation, {[5, 10]},−4.1〉). The process is repeated until the end of sentence is detected.

In this approach, the translation output is updated over time by adding the translation of the next input

segments and the decoder does not change the output which is already produced and emitted.

4 Experimental Results
Following the International Workshop on Spoken Language Translation (IWSLT) shared task, we evaluate

our approach on the speech translation of TED talks for English-German.Section 4.2 describe the experimen-

tal setting. We conduct many experiments to evaluate our approach. We first evaluate different approaches

to create the segmentation model and experiment on various feature sets to obtain the best segmentation

model (Section 4.2). Then we use the trained segmentation model in an end-to-end simultaneous translation

system (Section 4.3). We evaluate the performance of end-to-end simultaneous translation system in terms

of translation quality and latency and compare it with different baselines.

4.1 System Setup

We use the parallel text provided as training data of IWSLT 2013 and about one million sentence pairs of

Europarl (v7), to train the translation system. We use development set 2010 and 2012 and test set 2010 of

IWSLT shared task as development set to tune the translation system (LR-Hiero) and test set of IWSLT 2013

is used as the test set to evaluate the simultaneous translation system. We use a 5-gram LM trained on the

monolingual German data provided by WMT 2013 shared task using KenLM (Heafield, 2011).

In LR-Hiero, we set pop limit 500, maximum source rule length 7 and at most 2 non-terminals. The

standard feature set of LR-Hiero (Siahbani et al., 2013) is used in a discriminative log-linear model. The

weights in the log-linear model are tuned by minimizing BLEU loss through MERT (Och, 2003) on the dev

set for each language pair. In these experiments, we use the reference transcript of the utterance for dev and

test sets. LR-Hiero is trained once and used in all experiments.

We use Stanford POS-Tagger (Toutanova et al., 2003) to obtain the POS tags to extract features for the

segmentation model 6.

4.2 Evaluating the Segmentation Model

In Section 2 we discussed two heuristics: translation-based and alignment-based, to provide training data for

segmentation model. We conduct some experiments to compare different feature sets for these heuristics.

We use Dev 2010 and 2012 and Test 2010 from IWSLT to provide the training date for the segmentation

model. Table 2 shows the statistics of data used in our experiments.

To evaluate segment translation quality, we use corpus level BLEU (Papineni et al., 2002). To compute

the latency model, we use sayit7 script by Hal Daumê III which receives the content of the segment (in text

format) and estimates the time it takes from a human to say the segment in some languages: English (US),

6In our experiments we use the standard POS-Tagger.
7http://www.umiacs.umd.edu/hal/sayit.py
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Labeled data Heuristic Features P R F1

Translation-based

Set1 81.38 52.56 63.87

Set2 82.03 53.90 65.06

Set3 97.18 69.89 81.31
Set4 93.41 64.14 76.06

Alignment-based

Set1 71.78 62.88 67.04

Set2 74.58 56.46 64.27

Set3 79.78 58.39 67.43
Set4 79.09 59.62 67.97

Table 3: Results of segmentation model trained on different labeled data using various feature sets.

Segmentation model Features BLEU Latency Number of segments

Translation-based Set3 20.86 0.311 3313

Alignment-based
Set3 20.60 0.540 2648

Set4 20.62 0.524 2654

Prosodic heuristic - 20.88 0.514 2709

Fixed Segmentation - 19.81 0.283 3580

Random Segmentation - 19.63 0.218 3980

No Segmentation - 21.04 6.353 1025

Table 4: Results of our simultaneous translation using different segmentation models on English-German translation

task. The last row shows the offline translation (regular SMT without segmentation). Segment length is set to 6 in Fixed
Segmentation and Random Segmentation.

German, French, Italian, Spanish, and Japanese. These estimates are then used to evaluate the terms ti and

t′i−1 in Equation 2.

For the alignment-based heuristic, we concatenate the training data of segmentation model (3669 sen-

tence pairs) to the training data of the translation system and run GIZA++ to get the word alignment. Then

the heuristic discussed in Section 2 is used to extract segments. To have fair comparison, we choose μ = 5
in translation-based heuristic which provides comparable number of segments on the training data in both

alignment-based and translation-based heuristics.

We train separate segmentation models using the training data created by translation-based and

alignment-based heuristics and different feature sets. To compare the feature sets, we test the models on

a heldout set8 (5000 sentences randomly selected from training data of IWSLT 2013). Table 3 shows the

results in terms of precision, recall and F1 measure. Feature set3 outperforms the other feature sets for

the segmentation models trained on the data obtained by translation-based heuristic. Therefore we use this

model in the further experiments (Section 4.3). Hence feature set3 and set4 show comparable results, for the

alignment-based heuristic, in these experiments, we will use both trained models in the end-to-end simulta-

neous translation system (Section 4.3).

4.3 Evaluation of Simultaneous Translation

We evaluate our simultaneous translation framework on a English-German translation task. We calculate

latency as the total time taken to translate the whole sentence divided by the number of segments. Latency

8We use the set of POS tags obtained by translation-based heuristic to create the gold reference for this experiment.
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in Table 4 shows the result of taking the average over 5 different runs for 50 sentences randomly selected

from the test set.

The first three rows of Table 4 compare the results of the end-to-end simultaneous translation using seg-

mentation models trained by translation-based and alignment-based heuristics. We can see that segmentation

model trained on translation-based heuristic outperforms the other segmentation models both in translation

accuracy and latency.

To evaluate our simultaneous translation framework we use four baselines. We implemented a heuristic

segmenter based on (Rangarajan Sridhar et al., 2013) which segments on surface clues such as punctuation

marks. These segments reflect the idea of segmentation on silence frames of around 100ms in the ASR output

used in (Bangalore et al., 2012). The results of this heuristic (prosodic) has been shown in the forth row of

Table 4. The last row in Table 4 shows the results of the regular translation strategy (with no segmentation

employed). For a relatively small loss in the BLEU score we obtain a much faster incremental translation

system. To evaluate the impact of segmentation model we add two more baselines in which decoder segments

the input stream without using the segmentation model: (i) Fixed Segmentation: a segmentation with equally

sized fragments; (ii) Random Segmentation: decoder randomly segments the input. These two baselines

show comparable performance. The reduction in the BLEU score for these segmentation models shows that

we need a more informative segmentation model.

We also compare our output against a state-of-the-art simultaneous neural MT approach (Gu et al.,

2017), which uses a reinforcement learning style agent which is trained using a policy gradient algorithm

to find segments that minimize delay and maximize the BLEU score. The agent uses a softmax policy

over the segmentation outcomes (either read or write, aka segment) and trains its parameters by learning

segmentations decisions based on a fully-trained non-simultaneous NMT encoder-decoder. Gu et al. (2017)

use a new metric to measure the latency called average proportion proposed by(Cho and Esipova, 2016).

Average proportion is defined as the average number of source words being used, when translating each

word. The average proportion d(X,Y ) for a source sentence X and translation output Y is defined as
∑|Y |

t=1 s(t)
|X||Y | where |X| and |Y | are the length of source and translation sentences respectively, and s(t) is the

number of already seen words from source sentence, when translating each word. We ran the Gu et al. (2017)

approach on our English-German task (Figure 3). In order to compare the latency, we compute the average

proportion for the output of our translation system which are shown in Figure 1. In this figure we have shown

the results of our translation framework using different segmentation models trained for different segment

lengths (μ values 3 to 8). We trained the NMT system with μ = 8. Figure 3 also shows the results of offline

translation for our approach and the NMT system (which results in average proportion of 1). There is a

substantial loss in translation quality for simultaneous NMT (consistent with the results in Gu et al. (2017)).

5 Related Work
Early work on speech translation uses prosodic pauses detected in speech as segmentation boundaries (Fügen

et al., 2007; Bangalore et al., 2012). Segmentation methods applied on the transcribed text can be divided

to two categories: heuristic methods which use linguistic cues, like conjunctions, commas, etc. (Rangara-

jan Sridhar et al., 2013); and statistical methods which train a classifier to predict the segmentation bound-

aries. Some early methods use prosodic and lexical cues as features to predict soft boundaries (Matusov

et al., 2007); while some other methods rely on word alignment information to identifies contiguous blocks

of text that do not contain alignments to words outside them (Yarmohammadi et al., 2013; Siahbani et al.,

2014). In addition to these segmentation approaches which are applied before calling the translation de-

coder, there is another strategy which perform the segmentation during decoding which is usually called

stream or incremental decoding. Various incremental decoding approaches have been proposed for phrase-

based (Kolss et al., 2008; Sankaran et al., 2010), hierarchical phrase-based (Siahbani et al., 2014; Finch et al.,
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Figure 3: Comparing translation quality versus average proportion (latency) for our approach (SMT) and the simultane-

ous neural MT approach (NMT). We show the comparison of different μ values from 3 to 8 for the SMT system. The

NMT system was trained with a μ value of 8. The offline translation systems with no segmentation (no seg) (for both

SMT and NMT) have average proportion 1.

2015), and syntax-based (Oda et al., 2015) translation systems. In most incremental decoding algorithms,

the decoder waits for more input and commit the translation when the current utterance is enough to gener-

ate a fluent translation. Oda et al. (2015) propose a method to predict the future syntactic constituents and

use it in generating complete parse trees which helps to find a good point to commit the translation. Some

researches have been focused on language pairs with divergent word order. Grissom II et al. (2014) predict

sentence-final verbs using reinforcement learning which greatly affects the delay. He et al. (2015) design

syntactic transformations to rewrite batch translations into more monotonic translations. Some research has

been conducted on human simultaneous interpretation to determine the effect of the latency and accuracy

metrics on the human evaluation of the output of simultaneous translation. The results indicate that latency

is not as important as accuracy (Mieno et al., 2015). This implies that we need algorithms that can make a

careful choice between different segmentation decisions of the same latency to produce translations with the

best translation quality possible (for that latency) which we have done in this paper.

Neural machine translation has also been extended to perform simultaneous translation. Cho and Es-

ipova (2016) proposed a manually defined heuristic waiting criteria to define an optimal segmentation point.

A trainable agent which considers both quality and delay during segmentation first introduced by Satija and

Pineau (2016). This work was extended by Gu et al. (2017) who designed a segmentation agent trained to

incrementally translate using a policy gradient over a linear combination of translation quality (based on a

sentence level BLEU score) and latency (calculated as minimizing delay). They showed that such an ap-

proach can learn a trade-off between quality and delay. However, in our comparison with their results our

system provides a higher BLEU score while providing a comparable latency (see Figure 3).

6 Summary and Conclusion

This work combines segmentation with incremental decoding. The segmentation model is trained to mini-

mize latency of producing translations as it reads from the input stream and maximize translation quality as

measured by the BLEU score. Our framework is able to produce fast yet accurate translation in a simulta-

neous translation setting. Our experiments show that we obtain higher quality translations with near similar

latency compared to a simultaneous neural machine translation system.
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Fügen, C., Waibel, A., and Kolss, M. (2007). Simultaneous translation of lectures and speeches. Machine
Translation, 21(4):209–252.

Fujita, T., Neubig, G., Sakti, S., Toda, T., and Nakamura, S. (2013). Simple, lexicalized choice of translation

timing for simultaneous speech translation. In INTERSPEECH, pages 3487–3491.

Grissom II, A. C., Boyd-Graber, J., He, H., Morgan, J., and Daume III, H. (2014). Don’t until the final verb

wait: Reinforcement learning for simultaneous machine translation. In EMNLP, pages 1342–1352.

Gu, J., Neubig, G., Cho, K., and Li, V. O. (2017). Learning to translate in real-time with neural machine

translation. In 15th Conference of the European Chapter of the Association for Computational Linguistics
(EACL), Valencia, Spain.

He, H., Grissom II, A., Morgan, J., Boyd-Graber, J., and Daumé III, H. (2015). Syntax-based rewriting
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