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Abstract
Low-resource machine translation is a challenging problem, especially when the source lan-

guage is morphologically complex. We describe a simple procedure for constructing glosses,

or mappings between complex, inflected source-language words and equivalent multi-word

English expressions. We demonstrate the utility of glosses, especially compared to entries in

bilingual dictionaries, across several data-augmentation strategies designed to mitigate a lack

of training data. In our experiments, we achieve improvements of up to 1 BLEU point in a

Russian-English translation task and 2.4 BLEU points in a Spanish-English translation task

over a strong baseline translation system.

1 Introduction

Low-resource machine translation, where only a small amount of parallel data is available be-

tween source and target languages, poses a significant challenge. Machine translation systems,

especially those based on neural network models, tend to be data-hungry. Highly-inflected

source languages further complicate the situation, presenting a significant sparsity problem in

low-resource settings. Most possible inflected wordforms are likely to appear only once in the

data or not at all.

In an effort to improve performance when limited parallel data is available for learning

how to translate from a highly inflected source language into English, we experiment with

two simple data augmentation strategies—appending and substitution. To alleviate sparsity,

we experiment with appending entries from multilingual dictionaries directly to the bitext. We

also leverage linguistic knowledge about the morphological grammar of the highly-inflected

source language to generate multi-word English glosses. We show that these glosses, which

better mimic in-situ translations, are more effective than dictionary entries when appended to

the training data. We also employ glosses for a second strategy, directly substituting them in

place of complex inflected forms in the source language. The overarching idea is to create a

new version of the source, source′, that is more similar to the target language. In theory, this

should improve performance by solving some portion of the translation problem before a final

translation model is trained. We show that gloss substitution has a positive effect on BLEU

scores compared to baseline systems.

We present experimental results translating from Russian and Spanish into English. While

Russian and Spanish are not low-resource languages, we simulate extremely low-resource sce-

narios by relying only on representative language packs from DARPA’s LORELEI (LOw RE-

source Languages for Emergent Incidents) program as our source of parallel training data.
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These packs typically contain less than 50,000 bilingual sentence pairs in total, orders of mag-

nitude below the amount used to train most state-of-the-art MT systems. We run our exper-

iments using traditional phrase-based statistical machine translation models (PBMT). While

neural machine translation offers state-of-the-art performance when training data is plentiful,

PBMT remains competitive or superior in the low resource conditions we focus on (Koehn and

Knowles, 2017).

2 Multilingual Dictionaries Versus Glosses

We define an entry in a multilingual dictionary as a mapping between a lemma form in the

source language to one or more definitions in the target language.

бежать,VERB,to run, to be running

While useful, these types of entries have several notable drawbacks when used as bitext

for a translation system. First, on the source side, the dictionary forms of words, or lemmas,

are typically uninflected, and may not be in common usage. For example, the dictionary form

of verbs in many languages is the infinitive, but in actual text tensed forms are much more

common. Second, on the target side, dictionary definitions are not necessarily equivalent to

in-situ translations of a word, and often contain additional descriptive text.

Glosses, as we define them, are intended to remedy these problems. A gloss is a mapping

between an inflected form of a word, and an in-situ translation. In many cases, English uses

syntactic constructions to express distinctions made by inflectional morphology in a source

language. As a result, single source words are often glossed as multi-word expressions in

English.

бегут, бежать,V;IPFV;PRS;3;PL,(they/NNS) are running; (they/NNS) run

Generating a gloss for an inflected word follows a general process outlined in Hewitt et al.

(2016). In this work, however, we simplify many of the steps. Our implementation is fully

described in the Experiments section below.

1. Apply morphological analysis to an input inflected word to recover its base lemma and

morphological features, e.g.,

comprábamos → comprar, V;1;PL;PST;IPFV

2. Using a separate lemma-to-lemma dictionary, recover a target lemma for the source word:

comprar → buy

3. Specify a conversion from each vector of source morphological features to a target gloss

template. For many language pairs, this can be done manually:

V;1;PL;PST;IPFV → ‘(we) were VBG.’

Here, VBG is a Penn Treebank tag1 which indicates that the template can be filled with the

gerund (-ing) form of an English verb.

4. Given a gloss template from (3), and a target lemma from (2), replace the PTB placeholder

in the template, inflecting the target lemma as needed with a morphological generation tool

or lookup table:

‘(we) were VBG’ + buy → ‘(we) were buying’

This completes the gloss generation process:

comprábamos → ‘(we) were buying’
1https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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3 Related Work

Prior work has both explored ways of generating morphological information, and incorporating

such morphological information into Phrase Based Machine Translation. While there is work

on generating rich morphology on the target side of translations (for example: (Toutanova et al.,

2008; Huck et al., 2017), we focus on rich source side morphology in this work.

Hewitt et al. (2016) created glosses by re-purposing instructional prompts found in a spe-

cial corpus designed to elicit inflectional paradigms from bilingual speakers (Sylak-Glassman

et al., 2016). For example, the sample prompt ‘(The apple) has been eaten.’ was designed to

elicit third person present perfect verb forms from bilingual Spanish speakers. They heuristi-

cally interpolated between multiple prompts to generate new gloss templates for each possible

feature vector and lemma. They experiment with both appending their synthetic translations to

the parallel text as well as using an additional phrase table (and the combination of both), but

did not find that one method was consistently superior.

Broadly, the goal of our substitution approach is to transform the source language into a

form that is more similar to the target. A number of previous strategies used in MT have fallen

under this umbrella. Compound splitting (Koehn and Knight, 2003; Macherey et al., 2011) of,

for example, German source-side words increases similarity with English as English doesn’t

use nearly as many compounds as German. Fraser and Marcu (2005) use stemming to reduce

Romanian source side vocabulary size to improve Romanian-English word alignment. Ding

et al. (2016) compare supervised (ChipMunk (Cotterell et al., 2015)) and unsupervised (Mor-

fessor (Virpioja et al., 2013), and Byte-Pair encoding (Sennrich et al., 2015)) morphological

segmentation methods on the source side of the PBMT system for the WMT Turkish-English

Translation Task.

4 Experiments

4.1 Model

We use Moses (Koehn et al., 2007) as the Phrase Based Machine Translation (PBMT) system

to run all our translation experiments. Data is tokenized and truecased using standard Moses

scripts. We use GIZA++ (Och and Ney, 2003) for alignment with the grow-diag-final-and

setting. We set the maximum sentence length to 80 and the maximum phrase length to 5. For

decoding, we use Cube Pruning (Huang and Chiang, 2007). We also weigh potential translations

using a 5-gram KenLM (Heafield, 2011) language model.

4.2 Data

Bitext. For our base bitext, we use the Russian-English Corpus from the LORELEI Russian

Representative Language Pack (LDC2016E95 V1.1), and the Spanish-English Corpus from

the LORELEI Spanish Representative Language Pack (LDC2016E97). The corpora primarily

consist of news and web forums. While they are included in the LORELEI corpora, we exclude

Tweets from these experiments. We also remove sentences longer than 80 words.

For the Russian baselines, we randomly split the remaining data into train (46,746), tune

(2,233), and test (2,462) sentence pairs. For the Spanish baselines, we randomly split the re-

maining data into train (22,311), tune (2,031), and test (2,032) sentence pairs. See table 1 for

the number of sentences in the training corpus for each experiment condition.2 The tuning and

test sets remain the same for all experiments in a language.

2Since we perform the length filtering on the training set after gloss substitution in the corresponding condition,

some sentences are removed as substitution makes them too long.
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Dictionary. The LORELEI language packs from Russian and Spanish also contain dictio-

naries mapping source lemmas into target definitions in a custom XML format. Some entries

include multiple definitions. In this case, each definition was split into its own line of bitext.

Furthermore, some of the definitions include notes on gender (e.g. артистка: artist (female).)

or topic (e.g. бить: chime (about clock) ), or other comments (e.g. бензель: (rare) paintbrush).

We remove any text within parenthesis, and then remove any entries with non-English words.

After all post-processing was complete, we were left with 58,856 dictionary entries for Russian,

and 64,450 dictionary entries for Spanish.

Glosses. Glosses for Russian and Spanish were created as follows: Lists of inflected word-

forms were obtained via a union of the UniMorph database (unimorph.githbub.io),

which provides a mapping from inflected forms to their lemmas and morphological feature

vectors, and a tokenization of the monolingual corpus released by the LDC as part of LORELEI

language packs for Russian and Spanish.

For each word in the list, additional morphological analyses were obtained. For Russian,

we applied the PyMorphy2 package (Korobov, 2015)3 to each word, while for Spanish we used

the Freeling package (Padró and Stanilovsky, 2012).4 For both Russian and Spanish, we also

applied a custom sequence-2-sequence neural network analyzer trained on the raw data in the

UniMorph database. The network used an architecture, training scheme, and hyperparameters

identical to that used in (Kann and Schütze, 2016). It mapped sequences of characters rep-

resenting an inflected word directly to a sequence representing the its underlying lemma and

features (c o m p r á b a m o s → c o m p r a r V 1 PL PST IPFV) The feature vectors output

by all analysis methods were manually mapped into the UniMorph feature schema standard

(Sylak-Glassman et al., 2015). As the total set of of unique feature vectors remaining after this

mapping was limited for both Russian (569 vectors) and Spanish (239 vectors), we were able

to manually produce one or more gloss templates for each vector (e.g., V;1;PL;PST;IPFV →
‘(we) were VBG.’).

Source lemmas in Russian and Spanish were converted to English lemmas via lookup in,

preferably, Wiktionary-derived lemma translation data (Kirov et al., 2016), or PanLex (Bald-

win et al., 2010). English lemmas were then inflected using the tools provided by Smedt and

Daelemans (2012) and inserted into the corresponding gloss templates.

We further post-processed the glosses by removing anything in parenthesis or brackets,

and then removed entries containing non-English words in the translation, after which we were

left with 3,122,470 Russian glosses, and 589,188 Spanish glosses.

5 Conditions
We trained three baseline models and five additional experimental setups. Total sizes of training

datasets for each condition, in number of paired sentences, are shown in Table 1.

For Baseline 1, in both Russian and Spanish, we simply trained a default Moses system

on the base bitext in each LORELEI language pack. The language model and truecaser used

during decoding were trained only on the target-side portion of the parallel training data.

For Baseline 2, we made use of the extensive monolingual data available for English. Fol-

lowing previous work, we trained a new truecaser and a much larger language model from the

English side of the Russian-English parallel text plus text from the Associated Press World-

stream, English Service, a subset of the English Gigaword corpus (Parker et al., 2011) (a total

of 54,287,116 sentences). Given the clear performance benefit, we continued to use this larger

language model for all subsequent experiments. While the large language model was trained

3https://github.com/kmike/pymorphy2
4http://nlp.lsi.upc.edu/freeling
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Condition Russian Spanish

Baseline 1 (Small LM) 46,460 22,311

Baseline 2 (Big LM) 46,460 22,311

Append Dictionary 105,316 86,861

Append Glosses 3,168,675 611,439

Append Dictionary + Glosses 3,227,531 675,989

Substitute Glosses 46,414 22,226

Substitute Glosses + Identity Alignment 95,603 40,724

Table 1: Number of train sentences for Russian-English and Spanish-English Translation.

source Женщина была почти при смерти
reference the woman had nearly died

substitution woman were почти при to death

Table 2: An example of gloss substitution in the Russian-English training set.

using the target-side of the Russian-English data, this contributed a minuscule amount in pro-

portion to the contribution of data from the Gigaword corpus. Thus, we use the same language

model for both Russian and Spanish experiments.

For Baseline 3, in both Russian and Spanish, we train PBMT system on the glosses and

dictionary (without any parallel sentences). We use the larger language model from Baseline 2.

Appending. Our next experimental conditions involved appending additional data to the base

bitext for each language. We experimented with appending the processed dictionary entries or

generated glosses, as well as appending both the dictionary and the glosses in one system. Each

of these modifications increased the total size of the training data, as seen in Table 1.

Substitution. Finally, we substituted our glosses directly into the base bitext. Any inflected

source word appearing in the list of glosses was a candidate for substitution. Many words

had multiple glosses available. To decide which one to use for substitution, we considered the

following confidence hierarchy. First, any gloss corresponding to a pre-existing entry in the

UniMorph database was preferred. Next, we preferred entries corresponding to an off-the-shelf

morphological analysis (derived from PyMorphy2 in Russian, and Freeling in Spanish). Glosses

based on the custom-trained neural-network analyzer were used when a UniMorph entry was

not available and both PyMorphy2 and Freeling failed to provide an analysis. An example of

the substitution process is shown in table 2.

While substitution is intended to make the source language appear more like the target

(in this case literally, since target language words are substituted directly into the source), the

alignment algorithm in the PBMT system is not character-aware and therefore has no sense of

identity between the source and target vocabularies. To get around this, we add a condition

attempting to bias the aligner to notice identical source and target phrases. In particular, for

each gloss substitution, we append a gloss-to-gloss identity mapping to the bitext.

6 Results & Discussion

Table 3 indicates the lowercased BLEU scores achieved by the model in each experimental

condition in Russian-English and Spanish-English settings. Results were consistent across both

language pairs. As expected, using a larger target-side language model (Baseline 2) provides

a significant boost over the initial baseline (Baseline 1) with language model trained only on
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Condition Russian BLEU %OOV(Type/Token) Spanish BLEU %OOV (Type/Token)

Baseline 1 (bitext + Small LM) 15.6 31.1/11.2 18.6 24.6/8.0

Baseline 2 (bitext + Big LM) 16.2 31.1/11.2 20.6 24.6/8.0

Baseline 3 (dictionary + Glosses + Big LM) 7.7 26.5/26.7 14.6 12.1/13.1

Append Dictionary 17.0 28.7/10.2 21.5 20.2/6.6

Append Glosses 17.8 15.2/5.5 23.8 6.8/2.3

Append Dictionary + Glosses 18.0 15.1/5.5 23.9 6.6/2.3

Substitute Glosses 17.7 26.3/5.0 22.2 19.5/4.0

Substitute Glosses + Identity Alignment 17.8 26.3/5.0 22.9 19.5/4.0

Table 3: Lowercased BLEU for Russian-English and Spanish-English Translation.

the available bitext. This was true even for Spanish, where the large language model was par-

tially trained on the Russian-English target-side data, and was potentially out-of-domain. Every

augmentation strategy provided some further improvement. Baseline 3 demonstrates that sim-

ply using the lexical resources and a strong language model can produce decent results in the

absence of bitext (particularly in the Spanish experiments).

As we hypothesized, appending the glosses to the training data results in better perfor-

mance than just appending dictionary pairs. This is likely because glosses are closer to actual

translations. However, there is an additive effect of appending both dictionary items and glosses,

suggesting that the two external data sources contain at least some complementary information.

The substitution trials did not fare as well as the appending trials. They did, however, still

provide an improvement over Baseline 2. This was even without adding identity pairs to the

training data in order to bias alignment (so the model was not aware which parts of the source

sentences were actually English), or increasing the amount of bitext in any way. This suggests

that using simple techniques like gloss substitution to transform the source into something closer

to the target language makes learning a complex MT model after the fact more effective. In the

Russian gloss substitution, 67% of tokens were replaced in the training set. In Spanish, 80% of

tokens were replaced.

Table 3 includes the out-of-vocabulary rate (type and token) for each experiment. The

low out-of-vocabulary rate for baseline 3 demonstrates the coverage of the the dictionary and

glosses (particularity for Spanish). The glosses in particular have very broad coverage. They

provide a dramatic drop in OOV’s (dropping the rate by over 50%). In addition to the BLEU

improvement, reducing the OOV rate can greatly improve the usability of low resource machine

translation.

7 Conclusions & Future Work
We showed that glosses of morphologically complex source words are a useful resource for

rapidly improving machine translation performance in extremely low-resource scenarios. As

glosses mimic in-situ translations of inflected words, they are more informative than dictionary

items, which map lemmas to definitions. Glosses are useful both for augmenting training data

with additional bitext, or transforming source language data into a form that is more similar to

the target language. Future work will explore different ways of generating glosses, and apply

additional transformations to the language data to ease the amount a translation model needs to

learn. This would include changing both the source language, and making reversible changes

to the target. If a non-English, morphologically complex target is used, these might include

target-side morphological segmentation.
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