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Abstract
Neural machine translation systems have been shown to achieve state-of-the-art translation per-

formance for many language pairs. In order to produce a correct translation, MT systems must

learn how to disambiguate words with multiple senses and pick the correct translation. We ex-

plore the extent to which the word embeddings for ambiguous words are able to disambiguate

senses at deeper layers of the NMT encoder, which are thought to represent words with sur-

rounding context. Consistent with previous research, we find that the NMT system fails to

translate many ambiguous words correctly. We provide an evaluation framework to use for

proposed improvements to word sense disambiguation abilities of NMT systems.

1 Introduction

Neural machine translation systems have to be able to perform many different linguistic tasks

successfully in order to obtain good translations. For example, MT systems have to be able to

deal with syntactic reordering, semantic relationships, co-reference, and discourse roles, among

other phenomena. The obvious question that arises is: how well are state-of-the-art NMT sys-

tems doing at detecting linguistic features?

This question is not new. Statistical machine translation (SMT) systems have achieved

consistently high BLEU scores because they explicitly try to model features such as word or

phrase alignments. For lower-resource languages, SMT systems have been shown to outperform

NMT systems, but NMT systems overtake SMT once there is enough training data (Koehn and

Knowles, 2017). Recent work has looked at the ability of neural systems to learn syntactic and

morphological features. Specifically, Belinkov et al. (2017) showed that recurrent neural net-

works are able to achieve high accuracy on tasks such as predicting morphological or part of

speech tags and Linzen et al. (2016) showed that RNNs follow similar patterns as humans with

respect to sentences that are grammatical or ungrammatical in agreement structure. Addition-

ally, specific RNN cells can be shown to have high correlation with features such as sentence

length (Karpathy et al., 2016), part of speech (Ding et al., 2017), or whether or not the RNN has

finished a relative clause (Linzen et al., 2016).

Another linguistic issue NMT systems have to deal with is translating words in the source

language that might have multiple translations in the target language. When these words don’t

differ orthographically, this task is known as word sense disambiguation. Typically, humans

can successfully translate these kinds of words by looking at the contexts in which they appear.

If NMT systems are able to successfully translate these words, it seems likely that they would

have had to learn something about word sense disambiguation.

There has been much research on improving machine translation performance by simulta-

neously improving word sense disambiguation (Vickrey et al., 2005; Chan et al., 2007; Carpuat
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and Wu, 2007) for SMT systems, showing that adding word sense disambiguation to a baseline

SMT system greatly improves translation performance. For NMT, recent work points out that

NMT systems are not very reliable at translating rare word senses, but that disambiguation per-

formance can be improved by using sense embeddings either as additional input to the encoder

or to extract more structured lexical chains from the training data (Rios et al., 2017), or by using

context-aware embeddings (Liu et al., 2017).

To the best of our knowledge, no work has yet attempted to examine the hidden activations

of an NMT system to see whether it is able to disambiguate word senses. In this paper, we

present means for evaluating the word sense disambiguation performance of NMT systems.

Specifically, we visualize the hidden activations of an NMT encoder to see whether it is able

to disambiguate word senses at deeper layers. We also present metrics that represent how

well-disambiguated the senses are, with the hope that these metrics can be used to evaluate the

word sense disambiguation performance of NMT systems in the future.

Word Sense Disambiguation
Word sense disambiguation (WSD) is the task of figuring out what a word with multiple

potential senses means in context. For example, in the sentences below, the word like has four

different meanings, or senses.

1. similar: Her English, like that of most people here, is flawless.

2. speech: We were like, what do we do?

3. enjoy: Of the youngers, I really like the work of Leo Arill.

4. request: I would like to be a part of them, but I cannot.

It is crucial for NMT systems to excel at this task in order to produce fluent translations. If

the NMT systems do not correctly translate ambiguous words, the resulting translations could

be incomprehensible or misleading.

Evaluation metrics have been proposed for assessing word sense disambiguation perfor-

mance in the past. Lexical choice in MT systems has been evaluated using WSD tasks (Carpuat,

2013) or fill-in-the-blank tasks where the blank represents an ambiguous word (Vickrey et al.,

2005), to name a couple methods. These are based on the idea that the entire sentential context

should disambiguate the intended word sense. If MT systems are paying attention to the full

context, they should be able to succeed at this task.

2 Methodology

We present experiments for examining the word sense disambiguation abilities of the attention-

based encoder-decoder model (Bahdanau et al., 2015). In this model, since the encoder com-

putes both forward and backward hidden states after reading the input sequence, each encoder

hidden state hi can be thought of as containing the entire context for the input word i. The

idea continues as we add more layers to the encoder: each hidden state hi should be learning

more contextual information about the words surrounding word i. Intuitively, it seems that if

the hidden states represent the context for a particular word, then these hidden states would be

able to separate words with different senses based on the contexts in which they appear.

In order to formally examine the extent to which the hidden states of the encoder layer(s)

of an NMT system disambiguate word senses, we look at the following metrics:

Distinctness. We will extract the hidden states from the last layer of the encoder and

compute a principle component analysis (PCA) for these contextualized “embeddings.” We can

then plot the embeddings for an ambiguous word with different true senses. We also compute

two metrics for how well-clustered our embeddings are.
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Depth of encoder. We will look at these PCA embedding plots for NMT systems with

different numbers of layers in the encoder. Since we are always extracting from the last layer

of the encoder, we can get a sense of what the deeper layers in NMT systems are doing with

respect to word sense disambiguation.

Correlation with translation performance. It might be that the NMT system only

produces well-clustered embeddings for words that it correctly translates. We would like to

look at the PCA embedding plots and internal cluster evaluation scores for all four layers when

we only include the embeddings for correctly-translated words.

Cluster Measures
We use two intrinsic cluster evaluation metrics to score how well-clustered our resulting

embeddings are. These are the Dunn Index and the Davies-Bouldin Index. We would like

our plots to have reasonably distinct clusters which could indicate that word senses are being

disambiguated in the encoder. Thus, the purpose of both of these metrics is to identify clusters

that are compact and well-separated from other clusters.

The Dunn Index is defined as:

D =
min1≤i<j≤nd(i,j)

max1≤k≤nd′(k)
where d(i, j) represents the distance between cluster medians i and j and d′(k) represents

the maximal distance between any two points in cluster k. A higher Dunn Index corresponds to

clusters that are dense and well-separated.

The Davies-Bouldin (DB) Index is defined as:

DB = 1
n

∑n
i=1 maxj �=i (

σi+σj

d(ci,cj)
)

where n is the number of clusters, cx is the median of cluster x, σx is the average distance

of all points in cluster x to cx, and d(ci, cj) is the distance between the medians of clusters i
and j. A lower DB Index corresponds to clusters that are dense and well-separated.

We hope to find that the Dunn Index increases and the DB Index decreases as we compute

these scores for deeper layers of the NMT encoder. This would signify that our word senses

were becoming more separated, which would likely correlate with disambiguation performance.

3 Experimental Design

We trained all of our NMT systems using the OpenNMT-py toolkit (Klein et al., 2017), which

trains an attentional encoder-decoder model with the attention from Luong et al. (2015). We

tokenized, cleaned, and truecased our data using the standard tools from the Moses toolkit

(Koehn et al., 2007). We did not use byte-pair encoding in order to more easily do manual

annotation of the data later. We used the default parameters of the OpenNMT-py toolkit for

training, with the exception of the number of encoder layers, which we varied from 1 to 4.

For the current study, we extensively analyzed WSD performance on sentences contain-

ing four possible ambiguous words: right, like, last, or case. We manually annotated English

sentences with their most appropriate sense (these were our “gold” sense labels), and fed the

(un-annotated) sentences into our English-French NMT system. After feeding in the source

sentence, we extracted the hidden activations of the NMT encoder and labeled them with their

corresponding “gold” sense. We will refer to these hidden activations as the “extracted embed-

dings,” since they are thought to represent a kind of word-and-context embedding.

We performed principle component analysis (PCA) on all of the extracted embeddings

and plotted the first two components, where we marked these points based on their “gold” sense

label. We then computed internal cluster evaluation scores for all of our embedding “clusters.”

Data
The data we used to train our NMT systems comes from the Europarl Corpus (Koehn,
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2005) and News Commentary corpus available through the WMT 2014 website. After removing

sentences with more than 80 words, this amounted to slightly more than 2.1 million sentences

of training data.1 We used the 2013 news test dataset and the 2014 news test dataset from the

WMT 2014 website to validate and to test our trained models, respectively. This amounted to

3000 validation sentences and 3003 test sentences. The 1 layer, 2 layer, 3 layer and 4 layer NMT

systems achieved BLEU scores of 23.84, 23.71, 23.77, and 23.94 respectively when tested on

the news test 2014 dataset from the WMT 2014 website.

For these initial experiments, we tested our systems on sentences containing one of four

ambiguous words: right, like, last, or case. Test sentences containing any of these words were

manually annotated with their associated sense, and labeled as “unclear” if the sense could not

be easily determined from the sentential context. Some examples of sentences containing five

different senses of the word like can be seen in the introduction.

There were 426 total test sentences that we examined. The number of sentences per each

sense of a word is shown in Table 1.

Word Sense 1 Sense 2 Sense 3 Sense 4 Sense 5 Sense 6 Unclear from context

Right 8 21 12 21 12 1 6

Like 130 1 21 16 n/a n/a 6

Last 91 6 n/a n/a n/a n/a 1

Case 46 4 16 3 1 n/a 3

Table 1: Number of sentences for each sense of our ambiguous words. If “n/a” appears in a

cell, the word did not have that many distinct senses.

Experiment 1 After removing sentences for which a sense label could not be easily deter-

mined from context, we used our manually annotated 410 sentences containing the word right,
like, last, or case for our gold sense labels. Each sentence was translated by all four of our

trained models, and we computed the first two principal components of the extracted embed-

dings, which were used to compute our internal cluster scores.

Experiment 2 In Experiment 1, we did cluster analysis on the extracted embeddings for all
sentences containing different senses of our ambiguous words. However, we would expect that

senses would be better clustered when the model correctly translates the word, since in that case

the model would have had to first choose the correct meaning of the word in context and then

translate it. In this experiment, we only looked at the extracted embeddings for sentences where

the word like or right was correctly translated.

Experiment 3 It is possible that the first two principal components of the hidden activations

of an NMT encoder might not best represent the amount of word sense information the NMT

system is able to learn. That is, the first two components could represent information about

the source sentence that has nothing to do with word senses. To examine the extent to which

sense information was encoded in the full extracted embeddings, we trained a linear SVM to

predict the sense of a word from hidden activations. We trained the SVM on 80% of the test

extracted embeddings, and tested it on the remaining 20% of examples. We hope to achieve

a high accuracy at this task if sense information was easily accessible from the hidden state

vectors.

12 million sentences is enough data for an NMT system to come close to or even outperform an SMT system,

according to Koehn and Knowles (2017).
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(a) 1 layer embeddings. (b) 4 layer embeddings.

Figure 1: The embeddings of different senses of the word like, extracted from the 1 layer and 4 layer

models.

(a) Dunn Index results. (b) DB Index results.

Figure 2: The cluster metrics as we look at

different numbers of encoder layers.

(a) Like accuracies. (b) Right accuracies.

Figure 3: The translation accuracies for distinct

senses for all four models.

4 Results

The plots of the extracted embeddings of different senses of like from two of our models can be

seen in Figure 1.2 Visually, the plots seem to show some separation between different senses.

The Dunn and DB Index scores for all four models in Experiment 1 are shown in Figure 2.

The different colors represent the numbers of layers, with 1 layer being the leftmost bar and 4

layers being the rightmost within each bar cluster. There does not seem to be a general trend in

either index as we look at deeper models.

For Experiment 2, we looked at how the translation accuracy for sentences containing

instances of a particular sense varies with the number of layers in the NMT encoder. Figure 3

examines this for the words right and like.3 Here again, we would hope to see a general increase

in translation accuracy as we increased the number of encoder layers. However, these results

and the lack of a general trend in either the Dunn or Davies-Bouldin Index suggest that standard

NMT systems still struggle with the issue of word sense disambiguation.

The results for our classifier in Experiment 3 are shown in Table 2. The SVM gets above

2The plots for the 2 and 3 layer models looked very similar to these two plots.
3We excluded the senses which only had one training example. For right, all four models were unable to correctly

translate the 90 degrees sense. For like, all four models were able to correctly translate the speech sense.
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word 1layer 2layer 3layer 4layer

right 0.44 0.63 0.56 0.44

last 0.84 1 0.95 0.84

like 0.88 0.91 0.94 0.94

case 0.79 0.86 0.79 0.57

average 0.76 0.88 0.85 0.74

Table 2: The SVM classifier accuracy at predicting sense from hidden activations.

84% accuracy for the extracted embeddings from all four models for both last and like, both of

which had one sense which was significantly more dominant than the others. The accuracy of

the SVM is much lower on right and case, which have slightly more equal sense distributions.

5 Limitations

Our results hint that standard NMT encoder layers are not encoding enough sentential context

to do well at word sense disambiguation. However, we would like to treat these results as a

starting point for future evaluations. In particular, we discuss a few limitations of this work:

Manual annotation. It is well-known that obtaining manually annotated data is expensive,

sometimes prohibitively so. In this study, we hand-annotated 426 sentences for just four am-

biguous words. In the future, we would like to get much more sense-labeled data, either through

crowdsourcing to obtain more hand-labeled data, or by using other annotation strategies.

Small test data size. We presented a preliminary study using the ambiguous words right,
like, last, and case. Perhaps the mixed results could be explained though some particular feature

of right, and including other words in an evaluation could cancel out that noise. Future work

should use more words with multiple senses and more sentences per sense of each word, in

order to draw stronger conclusions about word sense disambiguation.

Encoder states. It could be that the NMT system learns how to disambiguate word senses

at a different point in the architecture than the encoder. For example, perhaps the NMT sys-

tem performs the disambiguation step during decoding, thus removing some of the burden of

capturing sense information from the encoder. While we believe the NMT encoder should have

access to enough sentence context to be able to disambiguate sense, future work could explore

whether different components of the NMT architecture more efficiently store sense information.

6 Conclusion & Future Work

Despite these limitations, our preliminary results do suggest that NMT systems still need much

improvement in the area of word sense disambiguation. The PCA embedding plots of extracted

embeddings at varying levels of the encoder showed some evidence of distinct clusters, but the

internal cluster scores varied when we looked at deeper layers of the encoder or considered only

sentences that produced correct translations of right or like.

The results we see are limited by the small sample size we use in our experiments, but we

have presented a methodology for examining the word sense disambiguation abilities of NMT

systems. These kinds of visualizations and internal cluster evaluation metrics can be used in

future research on improving word sense disambiguation in neural machine translation.
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