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Abstract
Superiority of neural machine translation (NMT) and phrase-based statistical machine transla-

tion (PBSMT) depends on the translation task. For some translation tasks, such as those involv-

ing low-resource language pairs or close languages, NMT may underperform PBSMT. In order

to have a translation system that performs consistently better regardless of the translation task,

recent work proposed to combine PBSMT and NMT approaches. In this paper, we propose

an empirical comparison of the most popular existing approaches that combine PBSMT and

NMT. Despite its simplicity, our simple reranking system using a smorgasbord of informative

features significantly and consistently outperforms other methods, even for translation tasks

where PBSMT and NMT produce translations of a very different quality.

1 Introduction

Neural machine translation (NMT) systems have been shown to outperform phrase-based statis-

tical machine translation (PBSMT) systems in many translation tasks. NMT systems perform

especially well with language pairs involving two distant languages or morphologically-rich

languages. Translations produced by NMT systems are usually more fluent than those produced

by state-of-the-art PBSMT systems. However, NMT systems are still far from producing perfect

translations. Many researchers have studied the weaknesses of the NMT approach and shown

that NMT systems perform poorly compared to PBSMT systems in relatively common sce-

narios, especially those involving low-resource language pairs (Bentivogli et al., 2016; Koehn

and Knowles, 2017). Several approaches have recently been proposed to combine PBSMT and

NMT in order to exploit their complementarity and to produce better translations.

In this paper, we study the most popular combination methods and empirically compare

them, aiming at drawing a better picture of their strengths and weaknesses. We demonstrate that

reranking the simple concatenation of n-best lists produced by each of the NMT and PBSMT

systems, with a set of well-motived features, performs consistently the best compared to the

more popular and complex methods proposed by previous work. We also show that, while

other approaches can perform worse than the best system, a simple reranking approach offers

some guarantee that the selected best translation will be rarely worse than the best one proposed

by the PBSMT or by the NMT system, even when one of the systems performs very poorly.

The remainder of this paper is organized as follows. In Section 2, we review the existing

methods used to combine PBSMT and NMT. Then, in Section 3, we make our assumption

that a reranking system using a large set of informative features can outperform other existing

methods. We evaluate our proposed reranking systems in Section 4 and analyze our results in

Section 5. In Section 6, we conclude and propose promising perspectives for this work.
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2 Current Approaches to Combine PBSMT and NMT

This section reviews four different methods able to combine PBSMT and NMT: confusion net-

work decoding (Section 2.1), pre-translation with a PBSMT system (Section 2.2) and rescoring

PBSMT or NMT translation hypotheses using different models (Section 2.3 and Section 2.4).

We do not include in our comparison the work of He et al. (2016), which uses SMT features

during NMT decoding, because their method cannot use phrase translation probability or more

complex models that cannot be used during decoding. Moreover, we leave for future work the

study of the more recent method proposed by Zhou et al. (2017), which combines MT system

outputs using neural networks. This method outperformed confusion network decoding, but has

been evaluated only on a Chinese-to-English translation task with PBSMT and NMT systems

that performed comparably on this task.

2.1 Confusion Network Decoding
The first application of machine translation (MT) system combination used a consensus decod-

ing strategy relying on a confusion network (Bangalore et al., 2001). Since this first work, this

approach has been improved and remains one of the most popular methods to combine many

translations produced by different MT systems (Freitag et al., 2014).

To generate the confusion network, alignments are required between the tokens of all the

translation hypotheses to combine. Previous work (Heafield and Lavie, 2011; Freitag et al.,

2014) on system combination used METEOR (Denkowski and Lavie, 2014) to perform an ac-

curate word alignment between translation hypotheses by making use of its ability to align syn-

onyms, stems, and paraphrases. After building the confusion network, decoding is performed

to find the most consensual path with additional models such as a large language model.

This approach finds usually a better translation hypothesis than the best translations pro-

duced by the individual systems. However, it becomes quickly prohibitive if one wants to

combine hundreds of hypotheses, such as the n-best hypotheses generated by different systems,

while using costly models to score the decoding paths. Moreover, we have no guarantee that

the output of the combination will be better than the best hypothesis generated by individual

systems. The confusion network may allow the generation of many hypotheses of very poor

quality, especially in cases where many of the translation systems perform much worse than the

best systems used in the combination.

2.2 Pre-translation with a PBSMT system
Pre-translation is a recent method dedicated to combine PBSMT and NMT in a simple pipeline

(Niehues et al., 2016). First, a PBSMT system is trained and used to decode the source side

of the training data of the NMT system. Then, a second-stage NMT system is trained, where

the concatenation of the source sentence and the PBSMT-decoded translation is regarded as the

new source side of training data, while the target side of the training data remains unchanged.

The main motivation behind this work is that a pre-translation generated by a PBSMT sys-

tem would be informative to better guide the training of NMT systems. However, as suggested

by Niehues et al. (2016), to improve an NMT system with a pre-translation, the PBSMT sys-

tem must produce translations of a quality comparable to (or better than) those produced by the

NMT system. In cases where the PBSMT system produces translation of poor quality, we can

expect that such pre-translation will significantly harm the training of the NMT system.

2.3 Rescoring PBSMT hypotheses with NMT
Before the emergence of end-to-end NMT systems, it was a common practice to include neural

network models in PBSMT for reranking the n-best translation hypotheses produced by the

PBSMT system (Le et al., 2012) or to include them directly during decoding (Devlin et al.,
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2014; Junczys-Dowmunt et al., 2016). This strategy has been successfully exploited for PBSMT

systems. However, it is currently less attractive, because NMT systems are often able to produce

much better translations than PBSMT systems, even better than the best translations obtained

after reranking the PBSMT system’s n-best hypotheses with NMT system’s models.

2.4 Phrase-based Forced Decoding
Yet another recent method dedicated to combine PBSMT and NMT systems is called phrase-
based forced decoding (Zhang et al., 2017) (henceforth, PBFD). The idea is to use the phrase

table and its translation probabilities, which are commonly learned during the training of a

PBSMT system, to rescore translations produced by an NMT system.

This approach aims at alleviating the low adequacy of some of the translations produced by

an NMT system. Since this approach relies directly on the phrase table usually used in PBSMT,

it will promote hypotheses that matches phrase pairs associated with a high translation probabil-

ity from the phrase table. The forced decoding searches for the best phrase-based segmentation

and returns the corresponding phrase-based translation probability.

PBFD is extremely costly to perform during NMT decoding but rather feasible after it on

a selected set of diverse hypotheses. Then, given the PBFD score and the original score given

by the NMT system, the rescoring of the hypotheses is performed. Zhang et al. (2017) did

not rerank n-best lists but instead reranked a sample of hypotheses extracted from the NMT

decoder’s search space. This amplifies the diversity among the hypotheses to rescore, and the

increased diversity has been shown useful in training a reranking system (Gimpel et al., 2013).

However, as a potential drawback, hypotheses of very bad quality could be chosen.

3 n-best List Reranking

3.1 n-Best List Combination
Since the early age of PBSMT (Och et al., 2004), reranking the n-best lists of hypotheses

produced by a PBSMT system has been shown to be a simple and efficient way to use com-

plex features that could not be used during decoding. Furthermore, this approach offers some

good guarantee to find a better translation, because rescoring is applied to the best part of the

decoder’s search space, while making use of more, and potentially better, features than the de-

coder. However, unlike pre-translation or confusion network decoding approaches, a simple

reranking of the hypotheses produced by a single decoder, NMT or PBSMT, is limited in its

ability to take advantage of the complementarity of both approaches. For instance, if an NMT

system produces fluent but inadequate n-best translations, a simple reranking of this n-best list

with PBSMT models can only help to find an hypothesis which is less inadequate. Reranking

NMT n-best hypotheses does not give access to the PBSMT decoder’s search space and its

potentially more adequate translations.

Instead of a list of hypotheses produced by a single system or multiple but homogeneous

systems, we merge two lists respectively produced by PBSMT and NMT decoders, and rescore

all the hypotheses. Then, the reranking framework using a lot of features to better model the

fluency and the adequacy of the hypotheses can potentially find a better hypothesis than the one-

best hypotheses originated by either the PBSMT or NMT systems. This method is similar to the

one proposed by Hildebrand and Vogel (2008). However, their work aims at combining n-best

lists from any kind of MT systems, ignoring the specificities and models of the systems used

to produce them. In contrast, we focus on PBSMT and NMT system combination by making

use of their respective models. This method has never been evaluated in comparison with the

state-of-the-art methods presented in Section 2.

While this approach seems simple, mixing efficiently both kinds of hypotheses is actually

challenging. For instance, if we choose only the model scores from an NMT system as features,
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it is likely that all PBSMT hypotheses will be ignored by the reranking framework by giving a

high preference to the hypotheses with high NMT models score, which will be actually the ones

produced by the NMT system.

3.2 Reranking Framework and Features
Previous work on n-best list reranking has proposed many different training algorithms, includ-

ing those used to optimize PBSMT systems, such as MERT (Och, 2003) and KB-MIRA (Cherry

and Foster, 2012). We choose KB-MIRA since it is commonly used in reranking framework and

provides stable performances. It can also handle many features as opposed to MERT.

The features we used are commonly used for n-best list reranking, which are difficult

or impossible to use during NMT or PBSMT decoding. To the best of our knowledge, the

following features have never been exploited together in the same reranking framework.

3.2.1 NMT Features
NMT translation models can be used to score a translation produced by an arbitrary system.

We only need the source sentence and the corresponding translation hypothesis. These models

have been used to rerank n-best lists of hypotheses produced by PBSMT systems and can also

be used to rescore hypotheses produced by other NMT systems. Different NMT translation

models, generated at different training epochs, or by independent training runs, can be combined

to make an ensemble of models to better score translation hypotheses.

right-to-left NMT translation models, trained on parallel data in which the target side se-

quences of tokens are reversed, are also useful. Such right-to-left models have shown good

performance in reranking n-best lists of hypotheses (Sennrich et al., 2017a).

3.2.2 PBSMT Features
A state-of-the-art PBSMT system uses the log-linear combination of several models:

• a phrase table containing phrase pairs associated with a set of translation probabilities,

which controls the adequacy of the translation

• a language model controlling the fluency of the translation

• a distortion score that controls how much the target phrases in the translation hypothesis

have been reordered given their corresponding source phrases

• a lexical reordering table to control three kinds of phrase-based reordering: monotonous,

swap, or discontinuous (henceforth, MSD models)

• a word penalty to penalize short translations

• a phrase penalty to count the number of phrase pairs used to compose the translation

While translation models (Zhang et al., 2017) and language models (Wang et al., 2017) are

useful to rescore NMT hypotheses, this may not be the case for the reordering models. A state-

of-the-art PBSMT decoder limits its search within a pre-determined distortion limit. This limit

can be seen as a safeguard to prevent the decoder to generate very ungrammatical translations,

since it does not have the ability to model long dependencies between tokens. In contrast,

NMT decoders are free to perform long-distance reorderings. For language pairs that need

long-distance reordering, this means that an NMT hypothesis of a good quality will have a high

distortion score and many source phrases translated discontinuously. The PBSMT reordering

models seem then inadequate to score NMT hypotheses in our reranking framework, especially

since we will keep using NMT models that already model the fluency.

We perform PBFD on the NMT hypotheses (Section 2.4) using a PBSMT system’s phrase

table, and use the score produced by PBFD as a feature. For the PBSMT hypotheses, we use

directly the phrase segmentation produced by the PBSMT system and compute the same score.
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It is also possible to use the full PBSMT system’s scoring function to score NMT hypothe-

ses. Indeed, PBFD splits the NMT hypothesis into phrase pairs. Then, we can further exploit

this segmentation to compute all PBSMT features and combine them log-linearly using the same

model weights found during the tuning of the PBSMT system. Nonetheless, PBFD generates

a phrase segmentation that may be unreliable to compute all PBSMT model scores, especially

because most of the NMT hypotheses may be unreachable by a PBSMT system, leaving some

source and target tokens out of a phrase pair.

3.2.3 Sentence-Level Translation Probability
While the PBFD uses only phrase translation probabilities, it is often a good idea to use also

lexical translation probabilities in order to get a smoothed score. Since an NMT system does not

produce word alignments, we consider to take the average of the lexical translation probabilities

over all possible word pairs between the source sentence f and the translation hypothesis e,

according to the following formula:1

Pavg(e|f) =
1

I

I∑
i=1

log
( 1

J

J∑
j=1

p(ei|fj)
)

(1)

where I and J are the lengths of e and f , respectively, and p(ei|fj) the lexical translation

probability of the i-th target word ei of e given the j-th source word fj of f . Since Equation (1)

is dominated by the highest lexical translation probability, Hildebrand and Vogel (2008) also

proposed to compute the translation probability given by the following equation:

Plmax (e|f) =
1

I

I∑
i=1

log
(
max

j
p(ei|fj)

)
(2)

As the features for rescoring, we compute the scores given by Equations (1) and (2) for

both translation directions using the lexical translation probabilities trained on the same parallel

data used to train the MT systems.

3.2.4 Word Posterior Probability
Word posterior probability (WPP) is another feature that is commonly used in PBSMT to rerank

lists of translation hypotheses. For all target tokens appearing in the list, it computes the proba-

bility for the token to appear in a translation hypothesis. Then, we can score an entire hypothesis

by averaging the posterior probability of the tokens it contains. We use the count-based WPP

as defined by Ueffing and Ney (2007). WPP is computed given the decoder’s score of the hy-

potheses in which the word appears. Since our list of hypotheses to rerank contains hypotheses

produced by two different decoders, we compute two different WPP: one based on the score

computed by Equation (1), with direct translation probabilities, and the other based on the score

computed by the NMT decoder.

3.2.5 Consensus Score
The so-called minimum Bayes risk (MBR) decoding for n-best list is a popular method used in

SMT to find in an n-best list of hypotheses the one that is on average the most similar to the

other hypotheses. Sentence-level BLEU (Papineni et al., 2002) (sBLEU) is usually considered

as the metric used to measure the similarity between hypotheses (Ehling et al., 2007).

This method has a common objective with confusion network decoding and WPP (Sec-

tion 3.2.4), since we search for the hypothesis containing the most popular tokens or n-grams

used by the decoder to construct its n-best hypotheses.

1Applying forced word alignment on the NMT hypotheses would be an alternative, but we did not observe any

significant differences in our preliminary experiments.
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We gauge how each hypothesis is similar to all the other hypotheses, using two scores

respectively based on sBLEU and chrF++ (Popović, 2017).

3.2.6 Other Features
Depending on the origin of the hypothesis, generated either by PBSMT or NMT systems, some

features can give significantly different scores. To help our reranking system to weight these

differences, we introduce a binary feature that only indicates whether the hypothesis has been

produced by a PBSMT or an NMT system. Regular attention-based NMT systems have no

direct mechanism to control the length of the hypotheses produced, but information about the

hypothesis length can help to improve the performance (Zhang et al., 2017). In addition to the

word penalty used by the PBSMT system, we also add the difference between the number of

tokens in the source sentence and that for the translation hypothesis, and its absolute value.

4 Experiments

4.1 Data

We conducted experiments on two significantly different language pairs: Japanese–English (Ja-

En) and French–English (Fr-En). Ja-En involves two distant languages for which an NMT

decoder is expected to perform much better than a PBSMT decoder, especially due to the long-

distance reordering to perform to get a good translation. In contrast, Fr-En involves much closer

languages with usually only local reorderings to perform. We thus expect PBSMT and NMT to

provide more similar results given a large set of parallel data.

For Ja-En, we used the NTCIR Patent Translation Task (Goto et al., 2013). We used the

parallel data provided for the task to train PBSMT and NMT systems. The language models for

Japanese and English were trained on the target side of the parallel data and the entire NTCIR

monolingual data. The NTCIR development data were used as a validation dataset during the

training of the NMT system and to tune the PBSMT system. We used the NTCIR-9 test (T09)

and NTCIR-10 test (T10) for evaluation. For Fr-En, we used data provided for the WMT’15

News Translation Task.2 Our parallel data used to train the systems comprise Europarl v7,

109 French–English, and news-commentary v10. The language models for French and English

were trained on the target side of the parallel data and the entire News Crawl corpora. We used

newstest2012 as a validation dataset during the training of the NMT system and to tune the

model weights of the PBSMT system, and newstest2013 (N13) and newstest2014 (N14) for

evaluation. The statistics of the data are presented in Table 1.

4.2 Baseline Systems

To train and test our PBSMT systems and attention-based NMT systems, we respectively used

Moses (Koehn et al., 2007) and Nematus (Sennrich et al., 2017b) frameworks.

For our baseline PBSMT systems, word alignments were trained with mgiza and

fast align (Dyer et al., 2013) respectively for Ja-En and Fr-En.3 After their training for both

translation directions, word alignments are symmetrized using the grow-diag-final-and
heuristic. We trained two 4-gram language models with lmplz (Heafield et al., 2013) for each

translation direction, one trained on the target side of the parallel data, and the other on the

monolingual data concatenated to the target side of the parallel data. We pruned all singletons

for the Japanese and English second language models used for the NTCIR translation tasks,

because the monolingual data are very large. The reordering models are MSD lexicalized and

2http://www.statmt.org/wmt15/translation-task.html
3We did not use mgiza to train the word alignments for the Fr-En pair, since fast align is much more efficient

on large training data, while it has been shown to perform as well as mgiza for this language pair.
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Datasets #sentences
#tokens #token types

Ja Fr En Ja Fr En

NTCIR

parallel 3M 110M 102M 169k 275k

development 2,000 73k 67k 4k 5k

T09Ja→En 2,000 74k 68k 5k 6k

T09En→Ja 2,000 74k 70k 5k 6k

T10Ja→En 2,300 99k 92k 6k 7k

T10En→Ja 2,300 87k 80k 6k 6k

monolingual - 27B 15B 9M 22M

WMT

parallel 24M 726M 614M 2M 2M

development 3,003 82k 73k 11k 10k

N13 3,000 74k 70k 11k 9k

N14 3,003 81k 71k 11k 10k

monolingual - 2B 3B 4M 6M

Table 1: Statistics on train, development, and test data.

bidirectional models. PBSMT systems are tuned with KB-MIRA using development data. The

distortion limit was tuned and set to 16 for Ja-En.4

Our baseline NMT systems used the default training parameters of Nematus, with layer

normalization, and performed BPE (Sennrich et al., 2016) to fix the source and target vocabulary

sizes at 50k. The BPE segmentation was jointly learned for French and English since they share

the same alphabet. During Nematus training, we saved the model after every 5k mini-batch

iterations. The 4-best models according to their performance on the development data were

selected to perform ensemble decoding. The decoding were performed using a beam size of 100

to produce 100-best hypotheses. As suggested by Koehn and Knowles (2017), we normalized

the hypothesis score by their length during decoding to prevent a drop of the NMT system

performance when using such a large beam size.

For system combination with confusion network decoding (Section 2.1), we used the Jane
framework (Freitag et al., 2014). We evaluated two systems: one combining only the one-

best hypotheses produced by Moses and Nematus (n = 1), and the other combining all the

hypotheses in the 100-best lists (n = 100). During decoding, we used all the default models in

addition to the large language models that were used by our PBSMT baseline systems.5

For pre-translation (Section 2.2), we decoded our entire training data with our PBSMT

system and concatenated each of the results to its source side to train a second-phase NMT sys-

tem (henceforth, Pre-Nematus), exactly as described in (Niehues et al., 2016). To evaluate

Pre-Nematus, we performed ensemble decoding using the 4-best models.

We also evaluated two baseline reranking systems: one using NMT models to rerank the

PBSMT system’s n-best list (Section 2.3), denoted Rnmt , and the other using the PBFD features

(Section 2.4), denoted Rpbsmt . Rnmt uses all the features used by the Moses scoring function,

the Moses score, the 4 translation models used by the Nematus baseline system, and the 4-

best right-to-left translation models (Section 3.2.1). For Rpbsmt , we used the same features as

described by Zhang et al. (2017): the scores given by Nematus and the 4 best left-to-right

models, the score given by the PBFD, and the word penalty (as defined in Moses).

Rnmt reranks the n-best list of distinct hypotheses (M) produced by Moses, and Rpbsmt

reranks the n-best list of hypotheses (N) produced by Nematus.

4The default value in Moses is not appropriate for distant languages.
5We could have also reranked the n-best lists produced by Jane. However, we found out that Jane’s n-best lists

produced for system combination are of a very poor quality and not diverse enough to train a reranking system.
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Feature Description

L2R (5) The scores given by each of the 4-best left-to-right Nematus models and their geometric mean

R2L (5) The scores given by each of the 4-best right-to-left Nematus models and their geometric mean

PBFD (1) The PBFD score (Section 2.4)

LEX (4) The sentence-level translation probabilities (Section 3.2.3), computed using Equations (1) and (2),

for both translation directions

LM (2) Scores given by the two language models used by the Moses baseline systems

WP (1) Word penalty

TM (4) PBSMT translation model scores computed according to the probabilities given by the Moses

phrase table on the phrase segmentation produced by Moses for the hypotheses in M, or by the

PBFD for the hypotheses in N (same segmentations were used to compute scores with MSD models

(MSD), the distoration score (DIS), the phrase penalty (PP), and the Moses score (MOSES))

MSD (6) Scores computed using the Moses MSD lexical reordering table

DIS (1) Distortion score

PP (1) Phrase penalty

MOSES (1) Score given by Moses for the hypotheses in M. For the hypotheses in N, we compute this score

using all the Moses models and their weights

WPP (2) Word posterior probability (Section 3.2.4)

MBR (2) MBR decoding applied on M+N (Section 3.2.5), using sBLEU and chrF++

LEN (2) The difference between the length of the source sentence and the length of the translation hypoth-

esis, and its absolute value

SYS (1) System flag, 1 if the hypothesis is in M or 0 if it is in N

Table 2: Set of features used by Rfull . Rsub uses only the features in bold. The numbers between

parentheses indicate the number of scores in each feature set.

4.3 Reranking Systems

We trained and evaluated our reranking systems using two different sets of features to rerank

the concatenation of M and N (henceforth, M+N). Our first system, denoted Rfull , used the full

set of 38 features described in Section 3.2 and listed in Table 2. Our second reranking system,

denoted Rsub , used only a subset of the features. We excluded most of the phrase-based features,

considering that they are unreliable to score NMT hypotheses. The impact of each feature is

analyzed in Section 5.1. All our reranking systems were trained with KB-MIRA on n-best

lists produced for the development data.6 For a comparison, we also evaluated both reranking

systems with M and N reranked separately. For each reranking experiments, both training and

testing n-best lists were generated by the same system.

4.4 Results

As shown in the first two rows of Table 3, the superiority of NMT and PBSMT depends on

the language pair. As expected, for the Ja-En pair, NMT performed much better than PBSMT.

For both test sets, T09 and T10, the large difference between Moses and Nematus reached

approximately 10 BLEU points. In contrast, for the Fr-En pair, PBSMT performed better than

NMT, slightly on N13 and significantly on N14. The difference in translation quality between

both systems makes it challenging for a system combination to perform consistently better than

the best single system, regardless of the translation task.

Jane did not improve the translation quality over Nematus for Ja→En. We observed

improvements for the other three tasks when combining the one-best hypotheses produced by

Moses and Nematus. However, when we combined the 100-best hypotheses for the Ja-En

6We used the rescoring implementation provided by Moses.
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Configuration
Ja→En En→Ja Fr→En En→Fr

T09 T10 T09 T10 N13 N14 N13 N14

Moses 31.3 32.7 34.7 35.9 31.4 39.9 30.6 39.1

Nematus 41.9 41.6 44.8 45.4 30.8 34.0 30.6 35.8

Jane M+N (n=1) 41.5 41.6 44.9 45.8 32.0 40.0 30.8 39.5

Jane M+N (n=100) 39.0 40.2 41.6 42.7 32.1 40.0 31.0 39.9

Pre-Nematus 31.4 29.7 33.5 33.8 30.0 37.2 29.5 37.4

Rnmt M 33.3 34.1 36.8 38.3 33.6 41.4 32.4 40.5

Rpbsmt N 42.5 43.1 46.1 46.7 32.5 34.7 31.4 36.1

Rfull M 33.4 34.2 36.7 38.4 33.6 41.4 32.4 40.5

Rfull N 42.5 43.6 46.3 47.1 33.5 37.6 32.4 38.8

Rfull M+N 42.3 43.7 46.3 47.0 33.8 41.4 32.5 40.6

Rsub M 33.5 34.2 36.7 38.5 33.6 41.4 32.4 40.4

Rsub N 43.0 43.8 46.9 47.5 33.9 38.0 32.3 38.8

Rsub M+N 43.0 43.9 47.1 47.7 34.2 41.6 32.6 40.8

Table 3: Results (BLEU) produced by the baseline systems and our reranking systems respec-

tively presented in Section 4.2 and Section 4.3.

pair, the performance dropped significantly, probably due to the low quality of the hypotheses

produced by Moses. As for Pre-Nematus, for all tasks we did not manage to obtain im-

provement over the best single system. The produced translations were much worse for Ja-En,

especially on T10 compared to Nematus with a drop of 11.9 and 11.6 BLEU points respec-

tively for the Ja→En and En→Ja tasks. Nematus was potentially more disturbed than helped

by the very low quality of the translations provided by Moses. For Fr-En, we did not observe

such a drop, probably due to the much better quality of the PBSMT translations, but neither

got any improvements over Moses. However, we could observe significant improvements over

Nematus on N14, of up to 3.2 BLEU points for Fr→En, showing that a pre-translation of a

good quality can significantly help the NMT system. Both Jane and Pre-Nematus provided

inconsistent results in our translation tasks and underperformed when the difference between the

PBSMT and NMT system translation quality was very large.

Rnmt and Rpbsmt performed significantly better than the system that produced the n-best

list they reranked. The reranking system Rnmt M gave the best results for the tasks where

PBSMT performed the best, with up to 2.2 BLEU points of improvements on Fr→En N13.

In contrast, Rpbsmt N performed the best for Ja-En, with for instance a surprising 1.5 BLEU

points improvement on Ja→En T10. Despite the large difference in translation quality be-

tween Moses and Nematus, the PBSMT models seem to be helpful to rerank the n-best lists

produced by Nematus. These reranking systems produced better results than the best single

system. However, they can be improved by combining n-best lists and by using more features

to perform a more informed reranking.

Indeed, Rfull M+N consistently performed similarly or better in all the four translation tasks.

Reranking the concatenation of Moses and Nematus n-best lists with a set of features derived

from NMT and PBSMT models significantly helped to obtain consistent results across our trans-

lation tasks, even for Ja-En for which the n-best lists produced by Moses and Nematus were

of a very different quality (Section 5.3). However, as forecasted in Section 3.2, using all the

features did not give the best results. Removing the phrase-based features, except for the PBFD

score, gave better results, especially for the Ja-En pair, with for instance 0.8 BLEU points of

improvement on En→Ja T09 obtained by Rsub over Rfull . Over the best single system (Moses
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Feature set removed
Ja→En T09 En→Ja T09 Fr→En N13 En→Fr N13 Computational

Rfull Rsub Rfull Rsub Rfull Rsub Rfull Rsub time (ms)

none 42.3 43.0 46.3 47.1 33.8 34.2 32.5 32.6 -

L2R 42.6 43.0 46.3 47.1 33.6 34.1 32.2 32.5 1,560

R2L 42.4 42.6 46.4 46.6 33.5 33.7 31.9 32.1 1,890

PBFD 42.6 43.2 46.5 47.0 33.8 34.3 32.4 32.3 240,502

LEX 42.5 43.0 46.2 47.1 33.8 34.1 32.5 32.4 213

LM 42.5 43.1 46.7 47.1 33.5 34.0 32.1 32.2 98

WP 42.5 43.1 46.3 47.1 33.8 34.1 32.6 32.6 < 1

TM 42.8 - 46.3 - 33.8 - 32.5 - 240,504

MSD 42.5 - 46.5 - 33.5 - 32.7 - 240,532

DIS 42.4 - 46.4 - 33.9 - 32.5 - 240,503

PP 42.4 - 46.3 - 33.8 - 32.3 - 240,502

MOSES 42.4 - 46.2 - 33.7 - 32.5 - 240,503

WPP 42.4 43.1 46.3 47.1 33.8 34.1 32.4 32.4 20

MBR 42.8 43.1 46.4 46.9 33.6 33.9 32.3 32.4 111,232

LEN 42.6 43.1 46.4 47.1 32.6 32.7 31.9 32.0 < 1

SYS 42.5 43.1 46.4 47.1 33.8 34.1 32.6 32.6 < 1

L2R+R2L 42.4 42.5 46.2 46.7 33.4 33.7 32.0 32.0 3,450

PBFD+LEX 42.6 43.1 46.3 47.0 33.6 34.3 32.4 32.5 240,715

WPP+MBR 42.7 43.2 46.3 46.9 33.6 34.0 32.2 32.4 111,252

WP+LEN 42.7 43.0 46.8 46.7 32.6 32.8 32.0 31.9 1

L2R+R2L+
42.4 42.4 46.1 46.2 33.4 33.6 31.9 31.8 244,165

PBFD+LEX

Table 4: Results (BLEU) of the reranking systems Rfull and Rsub obtained after removal of

each feature set, independently. Reranking is performed using M+N lists of hypotheses. Bold

indicates a deteriorated BLEU score when removing the feature set. The last column indicates

the approximate average computational time, needed to compute the feature set, per source

sentence (200 hypotheses) for Ja→En T09, using one CPU thread (Xeon E5-2670 2.6 GHz)

or one GPU (GeForce GTX 1080), for the features L2R and R2L. Note that for computing a

phrase-based feature, we need to first perform PBFD.

or Nematus), our best system, Rsub , achieved improvements ranging from 1.1 BLEU points

on Ja→En T09 to 2.8 BLEU points on Fr→En N13.

5 Analysis

5.1 Impact of the Features

We evaluated the impact of the features used by our reranking systems, Rfull and Rsub , by

removing them, individually or in a subset, during training and testing. The results are presented

in Table 4 for the Ja↔En T09 and Fr↔En N13 tasks.

These experiments show that removing features individually has a limited impact on the

performance, and many of the features are correlated. Surprisingly, removing all the features

based on NMT models and translation probabilities (L2R+R2L+PBFD+LEX) had a relatively

limited impact on the performance, with at most a drop of 0.9 BLEU points for En→Ja, while

this set of features is also very costly to compute.

Furthermore, we can see that the importance of the features depends on the language pair

(and potentially the domain). Removing the language model scores had no impact for Ja↔En
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Ja→En T09 Fr→En N13

avg. sBLEU avg. chrF++ #token types avg. sBLEU avg. chrF++ #token types

M 66.1 81.3 6,607 59.5 74.2 13,016

N 65.9 79.8 7,903 58.7 73.4 16,481

M+N 52.5 72.9 8,810 50.7 67.8 18,756

Table 5: Diversity of the hypotheses in the list M, N and M+N.

but consistently decreased the BLEU scores for Fr↔En. Removing LEN led to a significant

drop of the BLEU scores for Fr↔En (up to -1.5 BLEU points), while it had no impact on the

results for Ja↔En. Left-to-right Nematusmodels seems to have a limited impact on the results

compared to the right-to-left models.

Moreover, as expected, removing the phrase-based features, such as TM and MSD, from

Rfull often improved the performance, due to the unreliability of the phrase segmentation pro-

duced by the PBFD on Nematus hypotheses.

5.2 Diversity of n-Best Hypotheses
As pointed out by Gimpel et al. (2013), a high diversity in the lists of hypotheses to rerank,

especially in the list used to train the reranking system, is an important criterion to obtain a

good performance. We evaluated the diversity of the hypotheses in M, N and M+N, using three

indicators: average sBLEU, average chrF++, and the number of token types in the lists. The

average sBLEU and the average chrF++ were computed from the MBR feature set, i.e., the

average of the MBR scores given all the hypotheses in the list. A lower average sBLEU or

chrF++ means that the list contains more diverse hypotheses. These indicators for the Ja→En

T09 and Fr→En N13 translation tasks are presented in Table 5.

According to sBLEU and chrF++, N seems slightly more diverse than M for both language

pairs. N also involved more diverse token types. For instance, within the 100-best hypotheses

for the Ja→En T09 translation task, it used 1,296 more types of tokens than Moses. While M
and N had almost a similar diversity, their concatenation, M+N, was much more diverse for both

language pairs. For the Ja→En T09 translation task, the average sBLEU decreased from 66.1

and 65.9 points, respectively for M and N, to 52.5 points for M+N. This means that the PBSMT

and NMT systems tend to produce different sets of translation hypotheses from each other.

As for the origin of the best hypotheses selected from M+N by our best ranking system,

Rsub , for instance for the Ja→En T09 translation task, 53.5% and 46.6% were respectively

those produced by Nematus and Moses. The high ratio of Moses hypotheses may seem

surprising given their poor quality for this task. Actually, most of the Moses hypotheses chosen

by Rsub are similar, or as poor as, the hypotheses produced by Nematus. We will show in the

next section that for the Ja→En T09 task, given the low quality of M, this is a very safe choice

and that we cannot hope to obtain large improvements by selecting hypotheses from M that are

very different from the hypotheses in N.

5.3 Quality of n-Best Hypotheses
In the previous section, we highlighted a high diversity in the list of hypotheses, especially in

M+N, which is advantageous to train a reranking system. However, to improve the translation

quality with a reranking system, we also need lists of hypotheses of good quality that contain

better hypotheses than the best output of the PBSMT and NMT systems.

We analyzed the quality of n-best lists using two indicators: an oracle best and an oracle
average. For each source sentence, the former finds the translation hypothesis in the list that has

the highest sBLEU score, given the reference translation, and then a standard BLEU score over
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Figure 1: The oracle BLEU scores computed on M, N and M+N. The k-best hypotheses of the

100-best lists are used to compute the oracle.

such hypotheses in the test set is computed. To compute the oracle average scores, we used the

same strategy, but selected hypotheses that had the closest sBLEU score to the average sBLEU

score given the hypotheses in the list. We performed these oracle experiments on the Ja→En

T09 and Fr→En N13 translation tasks. The results are presented in Figure 1.

As expected, we faced two very different situations. For Ja→En, the oracle best for k=100

computed on the list M generated by Moses did not even reach the BLEU score of the Nematus
translation at k=1. Moreover, concatenating the entire M and N improved the oracle best scores

only slightly, with less than one BLEU points of improvement for k=100 compared to using

only N. Despite this large difference in quality, as we saw in Section 4.4, the concatenation was

not harmful and the features were informative enough to help the reranking system. In contrast,

for Fr→En M and N seemed much more complementary, as their concatenation improved the

oracle best score of more than two BLEU points at k=100. We also observed that M and N for

this translation task had very similar oracle average scores, while the concatenation of them did

not decrease the oracle average score of the list.

6 Conclusion

We presented a simple reranking system guided by a smorgasbord of diverse features and

showed that it can significantly outperform the state-of-the-art methods that combine PBSMT

and NMT. Our reranking system managed to put at the first rank better translation hypothe-

ses than the one-best hypotheses found by each of the PBSMT and NMT systems, relying on

the diversity and quality of their respective n-best lists. Moreover, we demonstrated that our

reranking system has the ability to perform consistently in two different configurations, even

when the component systems produced translations of a very different quality.

As future work, we plan to study whether a reranking system can also improve the transla-

tion quality in low-resource conditions. Indeed, in this situation, PBSMT performs much better

than NMT. It will thus be worth seeing whether our framework can help to identify some NMT

hypotheses that are better than PBSMT hypotheses.
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Denkowski, M. and Lavie, A. (2014). Meteor universal: Language specific translation evalua-

tion for any target language. In Proceedings of WMT, pages 376–380, Baltimore, USA.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J. (2014). Fast and robust

neural network joint models for statistical machine translation. In Proceedings of ACL, pages

1370–1380, Baltimore, USA.

Dyer, C., Chahuneau, V., and Smith, N. A. (2013). A simple, fast, and effective reparameteri-

zation of IBM model 2. In Proceedings of ACL, pages 644–648, Atlanta, USA.

Ehling, N., Zens, R., and Ney, H. (2007). Minimum Bayes risk decoding for BLEU. In Pro-
ceedings of ACL, pages 101–104, Prague, Czech Republic.

Freitag, M., Huck, M., and Ney, H. (2014). Jane: Open source machine translation system

combination. In Proceedings of EACL, pages 29–32, Gothenburg, Sweden.

Gimpel, K., Batra, D., Dyer, C., and Shakhnarovich, G. (2013). A systematic exploration of

diversity in machine translation. In Proceedings of EMNLP, pages 1100–1111, Seattle, USA.

Goto, I., Chow, K. P., Lu, B., Sumita, E., and Tsou, B. K. (2013). Overview of the patent ma-

chine translation task at the NTCIR-10 workshop. In Proceedings of the 10th NTCIR Con-
ference on Evaluation of Information Access Technologies, pages 260–286, Tokyo, Japan.

He, W., He, Z., Wu, H., and Wang, H. (2016). Improved neural machine translation with SMT

features. In Proceedings of AAAI, pages 151–157.

Heafield, K. and Lavie, A. (2011). CMU system combination in WMT 2011. In Proceedings
of WMT, pages 145–151, Edinburgh, Scotland.

Heafield, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P. (2013). Scalable modified Kneser-Ney

language model estimation. In Proceedings of ACL, pages 690–696, Sofia, Bulgaria.

Hildebrand, A. S. and Vogel, S. (2008). Combination of machine translation systems via hy-

pothesis selection from combined n-best lists. In Proceedings of AMTA, pages 254–261.

Junczys-Dowmunt, M., Dwojak, T., and Sennrich, R. (2016). The AMU-UEDIN submission

to the WMT16 news translation task: Attention-based NMT models as feature functions in

phrase-based SMT. In Proceedings of WMT, pages 319–325, Berlin, Germany.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,

Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007).

Moses: Open source toolkit for statistical machine translation. In Proceedings of ACL, pages

177–180, Prague, Czech Republic.

Proceedings of AMTA 2018, vol. 1: MT Research Track Boston, March 17 - 21, 2018   |  Page 123



Koehn, P. and Knowles, R. (2017). Six challenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine Translation, pages 28–39, Vancouver,

Canada.

Le, H.-S., Allauzen, A., and Yvon, F. (2012). Continuous space translation models with neural

networks. In Proceedings of NAACL-HLT, pages 39–48, Montréal, Canada.
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