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Abstract

Out-of-vocabulary word translation is a major problem for the translation of low-resource lan-

guages that suffer from a lack of parallel training data. This paper evaluates the contributions

of target-language context models towards the translation of OOV words, specifically in those

cases where OOV translations are derived from external knowledge sources, such as dictio-

naries. We develop both neural and non-neural context models and evaluate them within both

phrase-based and self-attention based neural machine translation systems. Our results show

that neural language models that integrate additional context beyond the current sentence are

the most effective in disambiguating possible OOV word translations. We present an efficient

second-pass lattice-rescoring method for wide-context neural language models and demon-

strate performance improvements over state-of-the-art self-attention based neural MT systems

in five out of six low-resource language pairs.

1 Introduction

Translation of out-of-vocabulary (OOV) words (words occurring in the test data but not in the

training data) is of major importance in statistical machine translation (MT). It is a particularly

difficult problem in low-resource languages, i.e., languages for which parallel training data is

extremely sparse, requiring recourse to techniques that are complementary to standard statisti-

cal machine translation approaches. The approaches described in this paper were developed for

scenarios where the training data comprises at most 100k sentences pairs. Most previous stud-

ies in this area have focused on how to generate translation candidates for OOV words, either

by segmentation into subword units, projection from other languages, or by leveraging external

knowledge sources like dictionaries. Often, however, these methods generate multiple candi-

dates for each OOV word, and the MT system is insufficiently trained to choose the appropriate

translation according to the context.

In this paper we address this problem by utilizing more sophisticated context models based

on target-language information. In particular, we develop wide-context models that incorporate

information from context beyond current sentence boundaries to resolve translation ambiguity.
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We compare these against models incorporating information from the current sentence only, and

evaluate neural models vs. count-based sentence completion and graph reranking models. All

are evaluated within both phrase-based and attention-based neural machine translation models

for 6 low-resource language pairs. Our paper makes several contributions:

• We evaluate recently proposed neural machine translation (NMT) architectures (purely

attention-based neural MT) on low-resource languages and show that, contrary to previ-

ous results obtained with sequence-to-sequence models, neural MT performs similarly to

phrase-based machine translation (PBMT) in these scenarios, without modifications to the

basic model.

• We develop and compare several wide-context target-language based models for transla-

tion disambiguation and find that document-level neural language models are the most

effective at resolving translation ambiguities.

• We present an efficient lattice rescoring algorithm for wide-context neural language mod-

els.

• We compare our approach against directly adding external translation resources to the

training data and show that our approach provides small but consistent improvements on

five out of six language pairs.

The rest of the paper is organized as follows. Section 2 discusses prior work on OOV translation.

Section 3 describes our general approach and presents various context models for translation

disambiguation. Section 4 describes the datasets and baseline systems. Section 5 provides

experimental results followed by a final conclusion in Section 6.

2 Prior Work

Several techniques for OOV word translation have been developed in the past. The simplest

of these involves copying OOV words from the source sentence to the MT output. This is a

reasonable procedure if most OOV words can be assumed to be numbers or named entities that

do not require transliteration. In traditional PBMT systems, the unknown words can simply be

passed through to the output. NMT models typically map all OOVs (as well as rare words)

to a single unknown word token. Luong et al. (2014) trained an NMT system using external

word alignment information, which allowed the system to output positional information about

OOVs, which were then translated using a dictionary trained from parallel data. Working within

the context of neural sequence-to-sequence models with attention, Bahdanau et al. (2014) and

Jean et al. (2014) pursued the same strategy, with the exception that alignment information was

derived from the attention layer in the neural model rather than an external knowledge source. In

Gulcehre et al. (2016) a pointer model was used that can perform both copying and dictionary

lookup. None of these studies address the problem of translation ambiguities resulting from

added external knowledge sources. In truly low-resource languages, a dictionary obtained from

the parallel training data will not have sufficient information to translate OOVs in the test data,

as most of these will never have occurred in the training data. External dictionaries could be

used in this case, which however requires a principled method of choosing between different

translations.
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An alternative strategy to address the rare and unknown word problem is to use subword

units, i.e., the original text is segmented into chunks of characters, individual characters, or

byte sequences. In Chung et al. (2016), a pure character-level decoder is used while Luong and

Manning (2016) use a mixed model where the word-level decoder can fall back on the character-

level decoder. The byte-pair encoding (BPE) approach of Sennrich et al. (2015) segments the

input text into subword units based on an iterative merging of frequent character n-grams and

a fixed upper size of the subword inventory. The main motivation given for the subword unit

approach is that often a transparent relationship exists between OOVs and other known words:

compound words and morphological variants can benefit from substantial overlap with other

words in the same language, and cognates and named entities benefit from cross-lingual overlap.

However, in resource-poor settings a substantial percentage of OOVs has no overt relationship

with other words; instead, genuinely novel translations must be produced for words that were

never seen and that are unrelated to other words.

A third class of approaches tries to leverage cognates and lexical borrowing. Tsvetkov and

Dyer (2015) show that OOV words in low-resource languages that are loan words from a high-

resource language can be translated via the high-resource language. However, the translation

of OOV words in that work uses a fixed lexicon, not taking possibly multiple candidates into

consideration. Finally, other studies have tried to exploit additional monolingual data in the

source and/or target language. In Irvine and Callison-Burch (2013) new translation pairs were

induced from monolingual corpora based on predictive features such as document timestamps,

topic features, word frequency, and orthographic features. Saluja et al. (2014) and Zhao et al.

(2015) explored the possibility of extracting features from extra monolingual corpora to help

cover untranslated phrases. Specifically, Saluja et al. (2014) induced new translation rules from

monolingual data with a semi-supervised algorithm. Zhao et al. (2015) obtained translation

rules for OOV words based on phrases with similar continuous representations for which a

translation is known.

Most of the studies described above have focused on neural MT for language pairs with

sufficient training data. Recent work on OOV translation for low-resource languages includes

Gujral et al. (2016), where a combination of approaches (surface and word-embedding based

word similarity, transliteration) is used to generate multiple translation candidates for each OOV

to improve phrase-based MT. The choice of a particular translation is then made either by a

target-side language model or by the translation model itself through a secondary phrase table

enriched with OOV-specific features.

3 OOV Disambiguation With Context Models

Our goal is to facilitate the integration of externally generated translation candidates, such as

translation dictionaries, by utilizing a larger amount of target-side context information. We

adopt a second-pass lattice rescoring approach that is compatible with both phrase-based and

neural MT systems (or their combination) and that can accommodate extra monolingual infor-

mation without increasing the number of parameters of the MT system itself. OOVs in the

MT system’s output are expanded to all translation options of that word found in our external

knowledge sources. Target-language context models, possibly including context from beyond

the current sentence boundaries, are then used to assign a score to each possible path in the ex-

tended lattice representing a particular combination of OOV translation hypotheses (see Figure

1).
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Figure 1: Compressed and expanded lattice representations of an MT hypothesis enriched with

candidate translations of OOV words.

3.1 Count-Based Models

We compare several different models for rescoring, the simplest of which is a sentence comple-
tion model. OOV word translation can be formulated as sentence completion problem, where

contextual information informs the filling of blanks in a sentence. Gubbins and Vlachos (2013)

proposed to use a language model over a dependency tree for this task, whereas Woods (2016)

and Röder et al. (2015) measure the degree of association between candidate words and other

parts of the sentence using mutual information. In the same spirit our model chooses one out

of several possible translation options for each OOV slot in the lattice based its average point-

wise mutual information (PMI) with surrounding content words in the sentence (stopwords are

ignored). PMI between words x and y is computed as:

PMI(x, y) = log
P (x, y)

P (x)P (y)
(1)

The algorithm chooses one word at a time, proceeding from left to right. The chosen translation

becomes part of the context used for computing PMI for the next set of OOV words. Therefore,

the entire space of possible combinations of OOV translations is never fully explored but only

searched greedily from left to right. Moreover, this method only focuses on content words and

ignores word order in the PMI computation.

The second model is a graph-based reranking model (Mihalcea (2005); Yang and Kirchhoff

(2012)), where an undirected graph is built over all OOV translation options and content words

in a sentence. Graph edges are weighted with the same PMI values as in the sentence completion

approach. PageRank (Page et al. (1999)) is then used to score each option based on ’votes’ from

connected words, and for each OOV slot, the options with the highest score is chosen. The

PageRank score is computed as

R(vi) = (1− d) + d ·
∑

j∈IN(vi)

R(vj)

|OUT (vj)|
(2)

where v is a vertex in the graph, d is a damping factor, and IN() and OUT () are in-degree and
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out-degree of the vertex, respectively. The difference to the sentence completion approach is

that the entire space of translation combinations is explored globally rather than greedily. The

reason we use the two above methods as baselines is that they can be trained cheaply and readily

allow the integration of a larger document context by simply extending the list of content words

with words from the previous or following sentences.

3.2 Neural Models

We next turn to neural models. At the sentence-level we utilize a recurrent neural language

model, specifically a two-layer long-short term memory (LSTM) model. In order to extend

the sentence-level LSTM to include information from previous sentences we follow the ap-

proach in Ji et al. (2015), which proposed several variants of document-context language models

(DCLMs). Here, we use an attentional DCLM, which enriches a standard recurrent neural net-

work with a context vector aggregating the hidden vectors in the previous sentence. A standard

RNN computes the probability over output classes as

ys,n = softmax(Wohs,n + b) (3)

where s is the current sentence, n is the current time step in the sentence, h is a hidden vector,

b is a bias vector, and W is a weight matrix. The hidden vector hs,n is computed as

hs,n = g(hs,n−1,xs,n) (4)

where g is a non-linear function (in this case, representing a two-layer LSTM) and x is an input

vector (current word embedding). The attentional DCLM adds a context vector cs,n to both the

hidden and the output layer as follows:

hs,n = g(hs,n−1, [x
T
s,n, c

T
s−1,n]

T ) (5)

ys,n = softmax(Wotanh(Whhs,n +Wccs−1,n + b)) (6)

The context vector c is a position-dependent weighted linear combination of all hidden states

1, ...,M in the previous sentence.

cs−1,n =
M∑

m=1

αm,nhs−1,m (7)

The attention weights are computed as

an,m = wT
a tanh(Wa1hs,n +Wa2hs−1,m) (8)

αn = softmax(an) (9)

The attention weights an,m encode the importance of each word in the previous sentence for the

current word. DCLMs were shown to obtain reductions in perplexity compared to standard and

hierarchical recurrent language models (Ji et al. (2015)); however, they were also observed to

have a tendency towards overfitting when training data is sparse (Kirchhoff and Turner (2016)).

A different issue in applying neural language models to lattice rescoring is that each path in

the lattice defines a different context; however, it is computationally infeasible to exhaustively

rescore all paths. The number of OOV words per sentence is typically 3-5 in our tasks, and

the number of translation candidates per word may go up to 30. In standard back-off n-gram
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models, lattice paths are merged based on identical truncated word histories, but this options is

not available to us in neural language models where each hidden state encodes the cumulative

untruncated history. Inspired by sentence-level lattice rescoring techniques explored in speech

recognition (Liu et al. (2016)), we utilize a document-level lattice rescoring procedure that

merges lattice paths based on the similarity of hidden state vectors in the model. The main steps

are:

1. Start depth-first lattice traversal from the initial node < s >.

2. Use the context matrix cs−1 from the previous sentence initialize the hidden representation

of the first word < s >.

3. At each lattice node, compute the hidden representation and the posterior probability of

the word on the incoming arc according to a DCLM.

4. If there is another lattice path that shares the last word with the current lattice path, and in

addition, if the hidden representations of these words fall below some distance threshold

γ, then merge the two paths and update the probability and the hidden representation of

the frontier word in the merged lattice path.

A detailed description of the algorithm is provided below in Algorithm 1. As a distance measure

Algorithm 1 Document-level lattice rescoring

1: for each sentence S in document D do
2: L ← len(S)
3: for each node ni in the lattice do
4: initialize its expanded node list Ni = []
5: initialize its expanded outgoing arc list Ai = []

6: N0 ← [n′0
0 ]

7: A0 ← [a′001, a
′1
01, ...]

8: for each expanded node n′j
i ∈ Ni do

9: create outgoing arcs a′0i,i+1, a
′1
i,i+1, ... according to translation candidates at node

ni+1

10: for each outgoing arc a′ki,i+1 ∈ Ai do
11: create expanded node n′k

i+1

12: hk
i,i+1 ← hidden representation of the DCLM at a′ki,i+1

13: Pr(a′ki,i+1|a′ki−1,i, ...) ← posterior probability of the lattice path at a′ki,i+1

14: if ∃a′li−1,i ∈ Ai−1 and a′ki−1,i = a′li−1,i and d(hk
i,i+1, h

l
i,i+1) < γ then

15: if Pr(a′ki,i+1|a′ki−1,i, ...) > Pr(a′li,i+1|a′li−1,i, ...) then
16: delete n′l

i+1

17: prune the lattice branch that leads to n′l
i+1

18: else
19: delete n′k

i+1

20: prune the lattice branch that leads to n′k
i+1

21: Backtrack from the expanded node n′j
L ∈ NL lattice path that has the highest probability

to obtain the decoded sentence.

we use Euclidean distance between the hidden state vectors. The merging step is illustrated in
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Figure 2: Lattice path merging. Paths ending in states whose associated hidden vectors are

within a threshold distance of each other are merged.

Figure. 2. In practice, the procedure can be made computationally efficient by using a cache

that maps each explored word to its (possibly multiple) hidden representations and posterior

probabilities. In order to find the best path at the end of the traversal, the algorithm looks at all

the remaining paths in the cache, finds the one that has the highest log-probability according to

the context model, and traces back to the beginning of the path for the entire translation of this

sentence. Also, the context matrix for this best path is propagated from the cache to the next

sentence in the document for rescoring.

4 Data and Systems

4.1 MT Training Data

Our experiments are conducted on corpora for six different source languages (Amharic (amh),

Uighur (uig), Somali (som), Yoruba (yor), Vietnamese (vie) and Hausa (hau)), with English

as the target language. The corpora were provided as part of the DARPA LORELEI project

on low-resource human language technology. Details of the training, development and test set

sizes are provided in Table 1. Vocabulary sizes and OOV rates are shown in Table 3.

4.2 Context Model Training Data

The training data for the PMI-based context models consists of 4,264,684 Wikipedia articles1.

PMI was computed based on the method and implementation described in Röder et al. (2015)2.

The training data for each DCLM was selected from the Wiki-103 data set (Merity et al. (2016)),

a collection of 28,475 Wikipedia articles (103M tokens) specifically curated for document-level

language modeling. Data was selected separately for each language pair. For each article, a

measure of overlap (Jaccard index) was computed between the article’s vocabulary and the com-

bined vocabulary extracted from the dev set target references and the one-best MT hypotheses

on the test set. All articles with an index higher than 0.1 were included in the language model

1Wikipedia dump of 07/30/2014
2 https://github.com/dice-group/Palmetto
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amh uig som yor hau vie

train

63,181 / 99,005 / 52,288 / 41,525 / 43,370 / 28,686 /

5,941 / 18 / 8,872 / 7,538 / 3,554 / 439 /

1,237,172 2,587,335 1,097,616 933,932 423,935 423,069

dev

992 / 686 / 1,054 / 1,060 / 957 / 1,802 /

158 / 3 / 252 / 228 / 135 / 24 /

23,085 5,156 23,113 23,080 25,782 25,730

test

511 / 347 / 552 / 594 / 443 / 196 /

90 / 3 / 135 / 139 / 80 / 7 /

11,484 2,570 11,504 11,560 4,263 4,227

Table 1: Number of sentence pairs/documents/target language words in the training, develop-

ment and test sets for each language.

training data. The same data was used for training the sentence-level LSTMs, to be able to di-

rectly compare the effect of document-level vs. sentence-level context on OOV disambiguation.

4.3 Baseline MT Systems

Baseline MT systems were developed for these tasks using phrase-based MT and attention-

based neural MT (the Transformer model of Vaswani et al. (2017))3. The PBMT system was

trained using Moses (Koehn et al. (2007)) and uses a flat phrase-based model with a maximum

phrase length of 7, a backoff 4-gram language model trained on the target side of the parallel

training data, and a bidirectional reordering model. The log-linear weights were trained using

minimum error rate training on the dev set. The Transformer model was trained using a shared

byte-pair encoding, resulting in a subword vocabulary of 8,000 word pieces. The hyperparame-

ters of the Transformer models were tuned on the development sets with respect to the number

of layers, layer dimensionality, learning rate, and regularization (dropout). The best parameters

turned out to be: dropout rate of 0.1 at all layers, a learning rate of 0.2, 2 layers in the encoder

and 2 layers in the decoder, and a hidden layer dimensionality of 512. The beam size during

decoding is 4. Baseline results are shown in Table 2. Scoring was done in a case-insensitive

fashion against a single reference translation.

Previous studies of neural sequence-to-sequence models for resource-poor scenarios (e.g.,

Koehn and Knowles (2017)) have found that PBMT models performed significantly better on

low-resource languages unless the NMT models were enriched with additional components,

such as a lexical memory (Nguyen and Chiang (2017)). By contrast, we find that self-attention

based neural MT model performs comparably to PBMT, without any modifications to the basic

model. A major contributor to the performance of the NMT models is the segmentation induced

by byte-pair encoding, which results in system that outperform PBMT systems in 4 out of 6

language pairs. With a word-based vocabulary, NMT underperforms PBMT in most cases. Not

surprisingly, languages with rich concatenative morphology (Amharic, Uighur) seem to benefit

most from the subword approach.4

3We used the implementation provided at https://github.com/tensorflow/tensor2tensor
4PBMT models trained on the segmented text yielded worse scores than either word-based PBMT or Transformer
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Language PBMT Transformer Transformer w/ BPE

amh 16.93/49.6 13.15/46.0 17.41/51.3
uig 7.27/37.8 11.33/41.9 17.22/46.7
som 23.22/57.9 20.56/54.9 25.36/59.9
yor 18.22/50.8 15.68/49.1 19.22/51.4
hau 21.86/57.8 18.61/54.7 21.06/56.4

vie 25.17/55.6 22.83/53.1 23.00/54.2

Table 2: BLEU/unigram precision on test sets for phrase-based MT (PBMT), Transformer

model, and Transformer model with byte-pair encoding (BPE).

amh uig som yor hau vie

Vocab 149,797 25,875 102,539 54,072 44,834 17,267

OOV rate 18.4%/ 32.4%/ 14.5%/ 13.4%/ 8.5%/ 10.5%/

(type)/(token) 8.8% 17.2% 4.2% 3.1% 1.7% 6.9%

Coverage 99.8% 47.6% 85.0% 83.7% 80.1% 86.4%

(type)/(token) 91.2% 82.8% 95.8% 96.9% 98.3% 90.3%

Accuracy 5.6% 10.5% 15.9% 8.3% 8.8% 22.7%

# Candidates 8.0 22.0 15.4 18.4 20.6 28.6

Table 3: Vocabulary sizes, OOV rates, coverage, accuracy of external translation sources, and

average number of translation candidates per OOV word.

4.4 Translation Candidate Generation

We obtain translation candidates for OOV words from (a) a large collection of web-crawled

bilingual lexicons (Rolston and Kirchhoff (2016)) and (b) translations projected from related

languages through Levenshtein distance based retrieval of words similar in their orthographic

form. While the former is a reliable source, the latter method may introduce noise. Table 3

shows the number of OOVs, the coverage obtained by our external sources, accuracy (i.e., per-

centage of OOVs that have a translation matching the reference translation), and the average

number of translation candidates per OOV. For all language pairs except for Uighur (which is

morphologically highly complex), at least 80% of all OOV words receive a translation; how-

ever, the accuracy is at most 26% (note, however, that only a single reference translation was

available; thus, synonyms are not counted).

5 Experimental Results

As an additional baseline we integrate the externally derived translations by simply adding

them to the parallel training data, i.e., each translation pair is treated as an additional ’sentence’.

Results are shown in Table 4. In this scenario, each of the new translation pairs is seen only

once and without context; the final translation choice is still made by the MT system that has

models, even when using a larger maximum phrase length.
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PBMT Transformer

amh 17.01 / 50.9 17.32 / 50.5

uig 7.84 / 42.2 20.66 / 51.4
som 23.91 / 58.6 25.45 / 59.6

yor 18.35/ 50.6 19.87 / 51.9
hau 21.94 / 57.8 21.55 / 56.7

vie 25.15 / 55.4 22.54 / 52.4

Table 4: Results (BLEU/unigram precision) of adding external translations to parallel training

data. Boldface numbers are improvements over the best baseline system from Table 2.

Model amh uig som yor hau vie

LSTM 115.0 111.7 110.4 122.5 116.4 103.4

DCLM 101.7 103.1 100.3 98.6 97.3 95.4

Table 5: Perplexities obtained by LSTM vs. DCLM on dev sets.

been trained on the parallel data only. Compared to the baseline results in Table 2, we observe

only mild improvements, except for Uighur, where the improvement is more pronounced.

We next conduct a diagnostic experiment designed to evaluate the different context models.

To this end we enrich the list of translation candidates for each OOV word with the reference

translation, in order to determine to what extent the different models are able to recover the

correct translation if it is present in the candidate list. For simplicity we run these experiments

on the output of the PBMT system, which, unlike the NMT output, contains the location of

OOV words. Translation lattices were constructed from the one-best MT hypothesis and OOV

translation candidates. The PMI and Pagerank systems were trained as described in Section

3. For PageRank, both sentence-level and document-level versions were trained, where the

document context was defined to include the previous 4 sentences. We compare these against

a sentence-level LSTM and the attentional DCLM described in Section 3. The sentence-level

LSTM is a unidirectional model with two hidden layers of dimensionality 48. The DCLMs

have a hidden layer size of 48 and also utilize a context size of 4 sentences. Word embedding

vectors in both types of language models are initialized randomly. Both LSTMs and DCLMs

were trained with DyNet (Neubig et al. (2017)).5 The vocabulary for the language models

consists of the OOV translation candidates and the words from the one-best MT hypotheses. A

comparison between sentence-level and document-level model perplexities on the dev sets for

each language pair is shown in Table 5.

The lattice rescoring results from the diagnostic experiment (Table 6) show that the atten-

tional DCLM generally works best. The remaining experiments therefore use this model only.

We next apply the DCLM based rescoring method to our best baseline system, i.e., the

Transformer system with BPE. Since this system decomposes all words into word pieces, it is

not obvious which part of the output corresponds to an original OOV. We therefore align the

PBMT and Transformer outputs, retain only the Transformer output and the aligned OOV slots,

and replace OOV slots with their external translation options. We used fastAlign (Dyer et al.

5https://github.com/clab/dynet/tree/v1.1
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amh uig som yor hau vie

PMI 16.68 / 7.82 / 22.56 / 17.91 / 20.89 / 25.87 /

sent 49.3 37.8 57.4 49.6 57.3 55.8

PageRank 17.00 / 7.81 / 23.11 / 18.14 / 21.55 / 25.93 /

sent 50.7 38.2 58.5 50.2 57.9 55.8

PageRank 16.97 / 8.04 / 23.13 / 18.17 / 21.55 / 25.95

doc 50.8 38.9 58.6 50.2 57.9 55.9

LSTM
17.01 / 9.91 / 22.98 / 17.87 / 21.21 / 25.97 /

50.7 49.0 59.1 50.2 57.7 56.0

DCLM
17.39 / 9.96 / 23.03 / 18.60 / 22.21 26.19 /

52.9 50.4 59.4 50.8 57.9 56.9

Table 6: BLEU/unigram precision for lattice rescoring of PBMT output with reference transla-

tion included (diagnostic experiment).

(2013)) for this procedure, treating the Transformer output as source and the PBMT output as

target for amh, uig, som, and yor. For vie and hau, we use the PBMT system’s output as source

since it outperforms the Transformer model. The results are shown in Row 3 in Table 7.

With the exception of Uighur, we find that our method slightly but consistently outper-

forms systems that utilize the external translations as additional training data (Row 2), indicat-

ing that contextual information is useful. For further calibration of the results we also provide

topline results from an oracle experiment where the correct reference translation was substituted

for every OOV slot (Row 4) – these numbers indicate the maximum possible improvement in

BLEU/unigram precision that can be obtained from OOV translation on these tasks. For com-

pleteness we also provide the original baseline system scores (Row 1) and results obtained from

full system combination (e.g., both the PBMT and the NMT’s outputs are represented in the

rescoring lattice, in addition to OOV translation options). Not surprisingly, system combination

adds further improvements (except for Uighur), in some cases bringing the overall performance

close to the topline. An example of the different system outputs is shown below:

Method amh uig som yor hau vie

1 No OOV 17.41/ 17.22/ 25.36/ 19.22/ 21.86/ 25.17/

rescoring 51.3 46.7 59.9 51.4 57.8 55.6

2 Add’l 17.32/ 20.66/ 25.45/ 19.87/ 21.94/ 25.15/

train data 50.5 51.4 59.6 51.9 57.8 55.4

3 OOV 17.76 / 17.33 / 25.50 / 19.97 / 22.42 / 27.25 /

rescoring 53.8 47.1 60.2 52.8 59.9 57.7

4 OOV 18.62 / 21.48 / 27.57 / 21.40 / 22.77 / 28.61 /

topline 58.4 60.5 64.4 56.8 61.5 59.4

5 sys. 18.24 / 18.10 / 27.00 / 20.82 / 22.65 / 28.19 /

comb. 56.1 50.9 63.0 55.5 60.7 58.5

Table 7: BLEU/unigram precision of (1) baseline system without OOV handling; (2) systems

trained with external translations as additional training data; (3) lattice rescoring with context

models; (4) oracle; (5) full system combination of PBMT and Transformer outputs plus OOV

translation.

Proceedings of AMTA 2018, vol. 1: MT Research Track Boston, March 17 - 21, 2018   |  Page 64



Source sentence (with OOVs in italics):
saraakiisha ayaa sheegaya in qaraxu ka dhacay meel u dhow albaadka aqalka baarlamaanka ,

kaddib markii ilaaladu ay rasaas ku furtay baabuurkaasi
No oov rescoring:
officials said that the explosion took place near the parliament albaadka, after they opened fire

on baabuurkaasi

Transformer output:
officials say that the explosion occurred near the house of the parliament after the guards opened

fire on that vehicle

After rescoring with context model (our method):
officials said that the explosion took place near the parliament entrance, after they opened fire

on kondoo

System combination:
officials said that the explosion occurred near the entrance of the parliament after the guards

opened fire on that vehicle

Reference:
officials said the explosion took place near the entrance of the parliament building when guards

opened fire on the vehicle

The best baseline system (Transformer with BPE) was able to correctly handle baabuurkaasi
(vehicle) but not albaddka (entrance), which the rescoring procedure corrected. While this pro-

cedure also introduces an incorrect word (kondoo), rescoring of the lattice representing both the

PBMT and Transformer output (system combination) in addition to OOV translations results in

the correct output.

6 Conclusion

We have presented an approach towards the resolution of ambiguous translations of OOV words

that arise when adding word translation pairs from external knowledge sources to an MT sys-

tem. Of the different context models proposed, document-context language models with a con-

text including previous sentences were shown to be most effective at identifying the correct

translations. Our method showed substantial gains over baseline systems without special OOV

handling and small but consistent gains over adding external translations directly to the training

data, in five out of six language pairs. Future work will be concerned with integrating external

resources and contextual information directly into neural MT architectures.
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