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Abstract
We investigate the usefulness of document information as side constraints for machine trans-

lation. We adapt two approaches to encoding this information as features for neural patent

translation: As special tokens which are attached to the source sentence, and as tags which are

attached to the source words. We found that sentence-attached features produced the same or

better results as word-attached features. Both approaches produced significant gains of over

1% BLEU over the baseline on a German-English translation task, while sentence-attached

features also produced significant gains of 0.7% BLEU on a Japanese-English task. We also

describe a method to encode document information as additional phrase features for phrase-

based translation, but did not find any improvements.

1 Introduction

Document information beyond the text is readily available in many data sets, but is rarely used

when building translation systems. Such information could comprise the document’s origin

(time, place, author), its topic, or its connections to other documents. It exists, for example, in

patents, textual content on the web, or e-commerce data. We aim to investigate the usefulness

of document information as side constraints for translation. We use the term side constraints as

it is used in Sennrich et al. (2016a) to mean information that is not present in a source string,

but can influence translation choice in the target string.1 For example, patents are assigned to

a hierarchical classification system indicating their topic(s) in various degrees of granularity.

Depending on the topic, different translation choices may be required. The correct choice will

not always be apparent from the sentence context. By providing the classification information to

the translation model, we enable the model to select the correct translation, given the constraints.

In this paper, we focus on patent translation. Patent translation lends itself particularly

well to our endeavor since patent documents are annotated with different types of information,

from hierarchical categorization to information about individual inventors. We are interested in

seeing whether patent translation can be improved by this information and if so, which kind of

information and which model integration is most useful.

Since 2014, neural machine translation (NMT) has become the state of the art in ma-

chine translation (Luong and Manning, 2015; Jean et al., 2015). We hypothesize that NMT is

well-suited to the integration of document information. Since the model works on sentence rep-

resentations, it can decide whether or not to pay attention to this information for each particular

1Sennrich et al. (2016a) explore politeness as a side constraint for translation.
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translation in context. What is more, annotations could be highly correlated. For example, a

patent document’s subclass label contains its class label. Deep models are capable of learning

these correlations.

Based on work by Kobus et al. (2016), this paper explores two ways of integrating patent

document annotations as features into a neural machine translation system: (1) by attaching

the annotations as special tokens to the source sentence, and (2) by attaching annotations as

tags to each source word. Unlike our predecessors, we consider a setting where we have mul-

tiple annotation categories, and where each category can have more than one value at the same

time. To our knowledge, our work is also the first to apply these methods to patent translation.

We show that these features can positively influence translation choice of ambiguous words or

phrases in a neural patent translation system. We also describe a method of integrating patent

annotations into phrase-based machine translation (PBMT) as additional phrase features, but

found that these features were unable to improve the model.

Related work is reviewed in Section 2. Section 3 describes the details of our approach. Us-

ing the experimental setup described in Section 4, we found that the simple approach of attach-

ing annotations as additional tokens to the source sentence produced significant improvements

– 0.7% BLEU for Japanese-English translation and 1% BLEU for German-English translation –

in the right configuration. For German-English, similar improvements were gained by attaching

the same information as tags to the source words. Detailed results are discussed in Section 5.

2 Related Work

2.1 Side Constraints
Our work is inspired by the work of Kobus et al. (2016) on multi-domain adaptation. This work

uses the domain label as a side constraint for translation in a multi-domain setup: A combined

NMT model is trained on subcorpora from different domains, and each training sentence is

marked with its subcorpus information. Test data come from one of the known domains and are

marked in the same way. We take the idea of using sentence-attached and word-attached source

side features to represent side constraints from this paper and modify it to fit our scenario of

multi-category, multi-valued patent annotations. Kobus et al. (2016) observed no improvements

for sentence-attached features, but saw an improvement of 0.8% BLEU when testing on all but

the largest subdomain.

Incorporating side constraints via sentence-attached features has also been applied in other

work: Originally, this method was proposed by Sennrich et al. (2016a) to model politeness as

a side constraint. Johnson et al. (2016) have used it to indicate the desired target language

for multilingual NMT. Chu et al. (2017) apply it to neural domain adaptation in combination

with fine tuning methods (Luong and Manning, 2015). Passing additional information to a

neural network via word-attached features was first introduced by Collobert et al. (2011) as a

way to add linguistic annotation for various NLP tasks using feed-forward and convolutional

networks. Sennrich and Haddow (2016) transferred this idea to neural translation models. The

word-attached features used by Kobus et al. (2016) were first presented by Crego et al. (2016),

where they were used to encode case information.

The idea of leveraging document information as a side constraint for translation was re-

cently investigated by Chen et al. (2016). They focus on integrating product category infor-

mation for translation of product descriptions in e-commerce, and also apply their method to

online lecture translation (Cettolo et al., 2012), where the lectures are annotated with topic key-

words. They also experimented with attaching document information as an artificial token to

the source sentence, but found no gains for this method. They then propose to integrate topic

information on the target side by including it as an additional read-out layer in the decoder

before the softmax layer. This method improved e-commerce data translation by 1.4% BLEU,
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lecture translation by 0.3% BLEU. For e-commerce translation, only product titles are used,

for which it is likely that there is less context information available than would be for product

descriptions.

We do not know of any prior work on using document information as side constraints for

phrase-based machine translation. Niehues and Waibel (2010) and Bisazza et al. (2011) both

modify the phrase table to include corpus (or in-domain/out-of-domain) identifiers, which they

find beneficial for domain adaptation. However, they do not use more fine-grained information.

For phrase-based patent translation, Wäschle and Riezler (2012b) use patent section labels to

partition training data for multi-task learning, but do not look into the more fine-grained classi-

fication information.

2.2 Relation to Domain Adaptation

This work is related to the problem of domain adaptation in machine translation, which has

been researched extensively for phrase-based translation, among others by Foster and Kuhn

(2007); Axelrod et al. (2011); Matsoukas et al. (2009); Chen et al. (2013); Eidelman et al.

(2012); Hewavitharana et al. (2013); Hasler et al. (2014), and is currently also being explored

for neural machine translation (see Freitag and Al-Onaizan (2016); Zhang et al. (2016); Chen

and Huang (2016); Chu et al. (2017); Wang et al. (2017); Chen et al. (2017) inter alia). There

are two main scenarios for domain adaptation in the literature: In the first scenario, a translation

model is adapted to a known, fixed target domain. A sample from the target domain is usually

available. The aim of adaptation in this scenario is to make use of the in-domain sample to

shift the model parameters to better match the target distribution. In a second scenario, called

dynamic adaptation, the target domain is unknown and possibly shifting. No in-domain sample

is available. Data from the target domain are only provided at test time, and their domain may

change with each document. In this scenario, unsupervised methods have been used to infer a

soft domain or topic attribution of the test context (document or sentence).

Our scenario is similar to dynamic adaptation, as we do not restrict our test data to one

subdomain, but allow test data from any patent section or class. This setup precludes us from

using the methods proposed for the first scenario, because they would require us to re-train

the model for each document. However, unlike dynamic adaptation, in our case document

information is provided as side constraints. As we are specifically interested in ways to utilize

this information, we do not consider the unsupervised approaches to dynamic adaptation in

this work. In future work, it could be informative to compare using human-assigned document

information to inferred topic distributions, or to combine both sources of information.

3 Side Constraints for Patent Translation

We extract five types of side constraints from patent document annotations. The first three con-

straints reflect a patent’s classification according to the hierarchical international patent classifi-

cation system (IPC).2 Patents are classified by their subject matter as belonging to one or more

of 8 different sections (A-H). The sections are divided into 130 classes and 639 subclasses.

The hierarchy branches out further, but we only use the top three hierarchy levels, which we

call IPC1 to IPC3. We also treat the name of the filing company (COMP) and the names of

the inventors (INV) as side constraints. In this section, we describe how we integrate these

side constraints into PBMT and NMT as phrase-, sentence-, and word-attached features. Since

each patent can be assigned to more than one section, class and subclass, and be filed by more

than one company or inventor, we are dealing with multiple feature categories which can have

multiple values for each document.

2see www.wipo.int/classifications/ipc/en/

Proceedings of AMTA 2018, vol. 1: MT Research Track Boston, March 17 - 21, 2018   |  Page 3



3.1 Phrase-based Machine Translation

In PBMT, side constraints can influence phrase selection. Given an annotated input document,

it is our intuition that the model should prefer translations that have been extracted from doc-

uments with the same annotations. For example, the German-English phrase table contained

both impact plates and deflector plates as translation candidates for the word Prallplatten (see

Table 5, EXAMPLE 2, for the context). The German input document had been assigned to IPC

section A. Of the two translation candidates, only impact plates had been seen in a document

from IPC section A. This points to impact plates being the more suitable translation. We capture

the degree of overlapping annotations between training and test document via additional phrase

table features. At training time, the annotations of all documents containing a phrase pair are

extracted. At test time, the intersection between the phrase pair annotations and the test docu-

ment annotations is computed for each phrase. The actual features are computed by counting

the overlapping annotations for each feature category (IPC section, class, and subclass; filing

company and inventor). In total, five count-based features for the five patent specific feature

categories were added to the standard PBMT model features.

3.2 Neural Machine Translation

Sentence-attached features Despite poor performance in previous work on domain adapta-

tion, our first approach takes up the idea of integrating side constraints by attaching them as

special tokens to the source sentence. On the one hand, this approach is simple and efficient, as

it does not increase the number of model parameters. On the other hand, it allows the model to

learn to pay attention to the beginning or end of sentence as needed. Since we are dealing with

multiple values per category, we append each value to the sentence in alphabetical order. For

example, if a patent document has been assigned to IPC sections B and C, the marked up input

will look as follows:

<IPC1:B> <IPC1:C> in die Matrix sind Verstärkungsfasern ( 5 , 6 , 7 ) eingebettet .

Previous work has differed on where to attach the tag(s), leading us to run experiments for

attaching at the front, back, or both front and back of a sentence.

Word-attached features Our second approach attaches side constraints as features to each

input word, e.g.:

in|IPC1:B die|IPC1:B Matrix|IPC1:B . . .

Note that in our case, the same annotations will be attached to every word in one source doc-

ument. In the sequence-to-sequence model without word-attached side constraints, the hidden

encoder state h(t) at time t is computed recursively as:

h(t) = tanh(W (E0x
(t)
0 ) + Uh(t−1))

where E0 is the word embedding matrix, and x
(t)
0 is the t-th source word, represented as a

one-hot vector. The model with word-attached features computes h(t) from a concatenation of

the source word embedding and a vector representation rf of each word-attached feature f as

follows:

h(t) = tanh(W ([E0x
(t)
0 , r1, . . . , rF ]) + Uh(t−1))

where [ ] signifies vector concatenation and r1, . . . , rF are representations of each word-

attached feature f .
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There are different ways of computing rf : In Kobus et al. (2016), the representation rf of

feature f for input x
(t)
f at time t is constructed as follows:

r
(t)
f [i] =

{
1
|f | if x

(t)
f has the i-th value of f

0 otherwise

where |f | is the number of possible values of f and rf ∈ R
|f |. Hence, they use a normal-

ized sparse vector representation. This is unproblematic if f only takes few values, but would

become unwieldy for large |f |.
As we want to be able to handle features with many possible values, we would like to

use a dense representation rf . Following Sennrich and Haddow (2016)’s approach for adding

linguistic features to the NMT input, we want to construct feature representations using separate

embedding matrices for each feature. The matrices are learned during training and feature

representations are computed via a lookup layer. The hidden state h(t) of the encoder RNN at

time t is then computed as:

h(t) = tanh(W ([E0x
(t)
0 , E1x

(t)
1 , . . . , EFx

(t)
F ]) + Uh(t−1))

where [ ] signifies vector concatenation, E0x
(t)
0 computes the source word embedding, and

E1 . . . EF are separate embedding matrices for each feature type, with x1 . . . xF encoding each

feature’s value as a one-hot vector.

This approach assumes that each feature only takes one value and representations can be

computed efficiently by embedding lookup. Since patent documents can have more than one

value for the same annotation category, our setup does not meet this assumption. We solve

the problem by looking up the embeddings for all values of the same feature f in the same

embedding matrix Ef , and then summing over embeddings belonging to the same feature. The

representation rf for feature f is then computed as:

rf =

Kf∑
i=1

Efx
(t)
f,i

where x
(t)
f,i is a one-hot vector encoding the i-th value of feature f at source position t, and Kf

is a hyperparameter to be set by the user, which determines the maximum number of values

each feature can take. We pick this value by looking at the distribution of the number of values

for each feature in the training documents, and select a cutoff value if less than 5% of training

documents have more values for the same feature. For documents with more than Kf annota-

tions, a subset of the annotations is sampled. For documents with fewer than Kf annotations

for feature f , empty values are marked by an extra token.

We select this approach for comparison with the sentence-attached features, because it also

operates on the source-side and does not necessarily require increasing the model parameters.

See our system description in Section 4 for details. The advantage of word-attached features

is that this method makes combining multiple side constraints easier, as we cannot attach very

long sequences of special tokens to the beginning and end of the sentence. The concatenated

embeddings will also allow the model to learn correlations between annotations.

4 Experiment Setup

4.1 Data
We ran experiments on Japanese-English and German-English patent translation. We trained

Japanese-English models on the NTCIR-7 Patent Translation training set (Utiyama and Isahara,
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DATA SET ORIGIN # SENTENCE PAIRS # DOCUMENTS

train NTCIR-7 train 1,798,571 51,040

dev NTCIR-8 pat-dev-2006-2007 2,000 115

devtest NTCIR-8 Test Intrinsic 1,251 114

test NTCIR-9 Test Intrinsic 2,001 417

Table 1: Data sets used in Japanese-English translation

DATA SET ORIGIN # SENTENCE PAIRS # DOCUMENTS

train PatTR abstracts before 2008 694,609 280,009

dev PatTR abstracts since 2008 2,000 899

devtest PatTR abstracts since 2008 2,001 864

test (filtered) PatTR abstracts since 2008 1,716 724

Table 2: Data sets used in German-English translation

2007). We used the NTCIR-8 development and test sets for development, and the NTCIR-

9 intrinsic evaluation set for testing. For German-English, we used the abstracts section of

the PatTR corpus (Wäschle and Riezler, 2012a). Patents published before 2008 were used for

training. Development, devtest and test data of about 2,000 sentences each were randomly

selected from the remaining patents. Sentences from the same document were always assigned

to the same set. We applied a length-ratio based filter to the test set prior to evaluation to filter

out noise from automatic sentence alignment. Tables 1 and 2 contain information about the

data sets. Japanese data was segmented using MeCab3. All English data was tokenized and

true-cased using the Moses toolkit4. German data was tokenized, lowercased, and compounds

were split, also using Moses tools.

4.2 Translation Systems

We used the Nematus NMT system5 (Sennrich et al., 2017) to train an attentional encoder-

decoder network (Bahdanau et al., 2015). The model parameters were optimized with

ADADELTA (Zeiler, 2012), using a maximum sentence length of 80 and a minibatch size of

80. We trained a subword model using BPE (Sennrich et al., 2016b) with 29,500 merge oper-

ations. We used 500-dimensional word embeddings and set hidden layer size to 1024. For the

sentence-attached features, we experiment with IPC section (IPC1) and class (IPC2) labels, ap-

pending them at the front, back, or front and back of the source sentence. For the word-attached

features we used IPC section and class labels (IPC1/IPC2) together. The maximum number of

values per feature for IPC1 and IPC2 were set to 2 and 3, the embedding sizes were set to 5

and 20. In order to avoid improvements from merely increasing the number of parameters, we

used 475-dimensional source word embeddings when adding word-attached features. The con-

catenated embedding vectors then have the same length (500) as the original word embedding

vectors. We trained all NMT models using early stopping based on training cost on heldout data

with a patience of 10. Results are reported on the final model.

For the PBMT experiments, we trained and tested a hierarchical PBMT model using cdec
(Dyer et al., 2010). The baseline used 21 built-in dense features. A 5-gram target-side language

3taku910.github.io/mecab/
4github.com/moses-smt/mosesdecoder
5github.com/EdinburghNLP/nematus
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BLEU↑ TER↓
PBMT Baseline 27.2 57.8

5 phrase features 27.2 58.3

NMT Baseline 36.9 49.3

sentence, IPC1, front 37.4 49.1

sentence, IPC1, back 37.5∗ 48.5∗

sentence, IPC1, front/back 37.6∗ 48.3∗

sentence, IPC2, front 37.2 49

sentence, COMP, front 37 48.9

word, IPC1/IPC2 37.2 49.2

Table 3: Japanese-English translation results.

BLEU↑ TER↓
PBMT Baseline 41.7 45

5 phrase features 41.7 45.2

NMT Baseline 42.5 47.2

sentence, IPC1, front 43.5∗ 45.6∗

sentence, IPC1, back 43.2∗ 46.3∗

sentence, IPC1, front/back 42.7 46.9

sentence, IPC2, front/back 43.9∗ 45.3∗

word, IPC1/IPC2 43.5∗ 46.3∗

Table 4: German-English translation results.

model was built with lmplz (Heafield et al., 2013). Feature weights were trained with dtrain
(Simianer et al., 2012) for 15 epochs. Results are reported on the final epoch. All five anno-

tations categories (IPC section, class, and subclass, company, inventor) are used to compute 5

phrase level features.

We report BLEU (Papineni et al., 2002) and TER (Snover et al., 2006) on tokenized output,

as computed by multeval (Clark et al., 2011).

5 Results

Table 3 shows results for Japanese-English patent translation, German-English results are shown

in Table 4. For both language pairs, adding side constraints to PBMT did not improve the

baseline. Results which improve significantly over the NMT baseline at p ≤ 0.05 are marked

with an asterisk∗.

For Japanese-English, switching to NMT improved scores strikingly (+9.7% BLEU, -8.4%

TER), probably due to NMT’s superiority at handling word order differences in long patent

sentences. Attaching IPC section labels (IPC1) as special tokens at the front and back of the

sentence produced a small, significant, improvement over the NMT baseline (+0.7% BLEU,

-1% TER), as did attaching them at the back of the sentence. Attaching IPC section labels

(IPC1), class labels (IPC2) or company names (COMP) at the front of the source sentence did

not significantly improve the baseline, nor did the word-attached features.

For German-English, the performance gap between PBMT and NMT was much narrower

at 0.9% BLEU, probably due to more similar word order. We even see a reversed ranking for
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TER (+2.2%). Unlike Japanese-English, attaching IPC section labels (IPC1) as special tokens

at the front of the sentence improved significantly over the NMT baseline (+1% BLEU, -1.6%

TER), while attaching them at the front and back did not produce a significant improvement.

Interestingly, attaching IPC class labels (IPC2) at the front and back also produced a significant

improvement (+1.4% BLEU, -1.9% TER). Word-attached features also produced a significant

improvement (+1% BLEU, -0.9% TER), but did not outperform sentence-level features. These

results differ from previous work, where sentence-attached domain or topic labels produced no

gains. We also tried to combine word-attached and sentence-attached features, but did not see

additional gains.

Due to time constraints we were only able to evaluate all sentence-attachment variations

for both language pairs for the IPC1 feature. For Japanese-English, attaching features at the

back and front/back was more successful than attaching them at the front of the sentence. For

German-English, attachment at the front produced better BLEU and TER scores then attach-

ment at the back, and front/back was worst. This observation invites speculation that there

could be a connection between the more beneficial attachment location and the word order of

the source language leading the model to pay more attention to the front or back of the sen-

tence, but further experiments would be necessary to confirm or dismiss this speculation. For

now, we can conclude from our experiments that there is no general recommendation on which

attachment location is best.

Table 5 shows example sentences from the German-English test set and their translations

by different models. In EXAMPLE 1, the NMT model with side constraints correctly translated

the German word “Kupplung” as clutch, which was incorrectly translated as coupling by the

PBMT and NMT baseline. The correct phrase translation for “elektrischen Maschine”, electric
machine, was also only selected by the model with side constraints. In EXAMPLE 2, the correct

translation impact plates for German “Prallplatten” was produced by all NMT models. How-

ever, the word “Wasserschleiers” was only translated correctly as water curtain by the model

with side constraints. It was passed through the decoder in PBMT and omitted entirely by

the NMT baseline. The NMT model with side constraints also selected the correct translation

steam cabin for German “Dampfkabine”, where PBMT produced cubicle and the NMT baseline

produced steam booth.

6 Conclusion

In this paper, we have investigated methods for using document information as side constraints

for phrase-based and neural translation models for patent translation. Document information

was incorporated into the model as phrase-, word-, or sentence-attached features. Contrary

to previous work, we have looked at incorporating multiple annotation categories with multiple

values. For phrase-based machine translation, our features based on annotation overlap between

test documents and phrase context were not helpful. For neural machine translation, attaching

patent annotations as special tokens to the source sentence – a method which was unsuccessful

in previous work – improved German-English translation by over 1% BLEU, and Japanese-

English translation by 0.7% BLEU. Word-attached features also produced improvements of 1%

BLEU for German-English patent translation, but did not improve Japanese-English translation

significantly. Overall, the results indicate that document information can improve patent trans-

lation and that neural machine translation is well-suited to integrating this kind of information.

However, choosing the right configuration requires some experimentation.
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EXAMPLE 1

Source (. . . ) mit einer Kupplung ( 8 ) , die den Verbrennungsmotor ( 2 ) auswählbar

vollständig mit der elektrischen Maschine ( 10 ) selektiv verbindet (. . . )

PBMT baseline (. . . ) with a coupling ( 8 ) , the internal combustion engine ( 2 ) can be com-

pletely selectively connects with the electrical machine ( 10 ) (. . . )

NMT baseline (. . . ) comprising a coupling ( 8 ) which can be selectively connected to the

electric motor ( 10 ) (. . . )

+IPC1 front (. . . ) comprising a clutch ( 8 ) which selectively connects the internal combus-

tion engine ( 2 ) to the electric machine ( 10 ) (. . . )

Reference (. . . ) having a clutch ( 8 ) which selectively connects the internal combustion

engine ( 2 ) completely to the electric machine ( 10 ) (. . . )

EXAMPLE 2

Source Sie weist (. . . ) Prallplatten ( 531 ) auf zur Erzeugung eines flächigen Wasser-
schleiers ( 25 ) zumindest im oberen Bereich der Dampfkabine (. . . )

PBMT baseline it has (. . . ) deflector plates ( 531 ) for generating a flat wasserschleiers ( 25 ) at least

in the upper region of the cubicle (. . . )

NMT baseline (. . . ) impact plates ( 531 ) , at least in the upper region of the steam booth (. . . )

+IPC1 front (. . . ) it has (. . . ) impact plates ( 531 ) for producing a flat water curtain ( 25 ) at

least in the upper region of the steam cabin (. . . )

Reference (. . . ) said steam cabin comprises (. . . ) impact plates ( 531 ) for producing a flat

water curtain ( 25 ) at least in the upper area of the steam cabin . (. . . )

Table 5: Examples for German-English translation: We compare output from PBMT and NMT

baselines to the NMT model with sentence-attached IPC section features (+IPC1 front). Bold-
faced portions highlight correct translations. Incorrect translations are underlined.
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