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Back in 2014…
I had been working on word reordering models for five years
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CHAPTER 5. MODIFIED DISTORTION MATRICES
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(b) German broken verb chunk: three permutations
Chunk types: CC conjunction, VC verb (auxiliary/past participle), PC preposition, NC noun, Pct punct.

Figure 5.1: Chunk permutations generated by fuzzy chunk-based reordering rules for translation
into English.

vc and for each vc-punctuation sequence, at most 10 for each broken vc. Empirically,

this yields on average 22 reorderings per sentence in the NIST-MT Arabic benchmark

(dev06-nw) and 3 on the WMT German benchmark (test08).4 Arabic rules are indeed

more noisy, which is not surprising as all verb chunks can trigger some reordering.

5.3 Reordering selection

The number of chunk-based reorderings per sentence varies according to the rule set, the

size of chunks, and the context. A high degree of fuzziness can complicate the decoding

process, leaving too much work to the in-decoding reordering model. A solution to this

problem is using an external model to score the rule-generated reorderings and discard

the least likely. In such a way, a further part of reordering complexity is taken out of

decoding.

At this end, instead of using a Support Vector Machine classifier as was done in

Chapter 4, we apply reordered n-gram models that are lighter-weight and more suitable

4All benchmarks are described in detail in Section 5.5.
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Reordering models References
Model Reordering step

Features
type classification

Phrase orientation models (POM):
Example: P (orient=discontinuous-left | next-phrase-pair=[jdd]-[renewed])

Tillmann 2004;

gener.
lexicalized (hierarchical) Koehn & al. 2005; source/target phrases
phrase orientation model Nagata & al. 2006;

Galley & Manning 2008 monotonic, swap,
phrase orientation

Zens & Ney 2006 discr.
discontinuous

maxent classifier (left or right) source/target words
sparse phrase

Cherry 2013 discr.
or word clusters

orientation features
Jump models (JM):

Example: P (jump=�5 | from=AlsAds, to=jdd )

inbound/outbound/pairwise Al-Onaizan & Papineni
gener. jump length source words

lexicalized distortion 2006
inbound/outbound

Green & al. 2010 discr.
jump length based source words, POS,

length-bin classifier (9 length bins) position; sent. length
Source decoding sequence models (SDSM):

Example: P (next-word=jdd | prev-translated-words=AlEahil Almlk mHmd AlsAds)

reordered source n-gram Feng & al. 2010a gener. —
source words
(9-gram context)

source word-after-word
Bisazza & Federico 2013;

discr. —
source words, POS;

Goto & al. 2013 source context’s words
and POS

Operation sequence models (OSM):
Example: P ( next-operation=generate[jdd,renewed] | prev-operations=generate[AlsAds,VI] jumpBack[1] )

translation/reordering Durrani & al. 2011;
gener.

insertGap, source/target words,
operation n-gram Durrani & al. 2013; jumpBack, POS or word clusters;

Durrani & al. 2014 jumpForward prev. n –1 operations

Table 1: An overview of state-of-the-art reordering models for PSMT. Model type
indicates whether a model is trained in a generative or discriminative way. All examples
refer to the sentence pair shown in Figure 2.

Operation sequence models (OSM) (Durrani, Schmid, and Fraser 2011) are n-gram
models that include lexical translation operations and reordering operations (insertGap,
jumpBack or jumpForward ) in a single generative story, thereby combining elements
from the previous three model families. An operation sequence example is provided in
the lower part of Table 1. OSM are closely related to n-gram based SMT models (see
next section) but have been successfully applied as feature functions to PSMT (Durrani
et al. 2013). To overcome data sparseness, OSM can be successfully applied to POS-tags
and unsupervised word clusters (Durrani et al. 2014).

SDSM and OSM have been proven optimal for language pairs where high distortion
limits are required to capture long-range reordering phenomena (Durrani, Schmid, and
Fraser 2011; Bisazza and Federico 2013b; Goto et al. 2013). Nevertheless POM remains
the most widely used type of phrase-based reordering model and is considered a nec-
essary component of PSMT baselines in any language pair. In particular, two variants
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Bisazza and Federico A Survey of Word Reordering in Statistical Machine Translation

[jdd]3  [AlEAhl Almgrby]1  [Almlk mHmd AlsAds]2   [dEm -h]4  …!

[the Moroccan monarch]1 [King Mohamed VI]2 [renewed]3 [his support]4  …!

[jdd]3  [AlEAhl Almgrby]1  [Almlk mHmd AlsAds]2  [dEm -h]4  [l- m$rwE]5  [Alr}ys Alfrnsy]6!

[the Moroccan monarch]1 [King Mohamed VI]2 [renewed]3 [his support]4 [to the project of]5 [the French President]6!

hierarchical: swap!
standard: discontinuous!

Figure 3: Phrase orientation example for the phrase pair [jdd]-[renewed]: the standard
model detects a discontinuous orientation with respect to the last translated phrase (2)
whereas the hierarchical model detects a swap with respect to the block of phrases (1-2).

of POM deserve further attention because of their notable effect on translation quality:
hierarchical POM and sparse phrase orientation features.

Hierarchical phrase orientation models, or simply hierarchical reordering models
(HRM) (Galley and Manning 2008) improve the way in which the orientation of a new
phrase pair is determined: already translated adjacent blocks are merged together to
form longer phrases around the current one. For instance in Figure 3, HRM merges
phrases 1 and 2 into a large phrase pair [AlEahl ... AlsAds]-[The ... VI] and consequently
assigns a swap, instead of discontinuous orientation, to [jdd]-[renewed]. As a result, ori-
entation assignments become more consistent across hypotheses with different phrase
segmentations.

Rather than training a reordering model by relative frequency or maximum entropy
and using its score as one dense feature function, Cherry (2013) introduces sparse
phrase orientation features that are directly added to the model score during decoding
(cf. equation (1)) and optimized jointly with all other SMT feature weights. Effective
sparse reordering features can be obtained by simply coupling a phrase pair’s orienta-
tion with the first or last word (or word class) of its source and target side (Cherry 2013),
or even with the whole phrase pair identity (Auli, Galley, and Gao 2014).

2.2 N-gram based SMT

N-gram based SMT (Casacuberta and Vidal 2004; Mariño et al. 2006) is a string-based
alternative to PSMT. In this framework, smoothed n-gram models are learnt over se-
quences of minimal translation units (called tuples), which, like phrase pairs, are pairs
of word sequences extracted from word-aligned parallel sentences. Tuples, however, are
typically shorter than phrase pairs and are extracted from a unique, monotonic segmenta-
tion of the sentence pair. Thus, the problem of spurious phrase segmentation is avoided
but non-local reordering becomes an issue. For instance, in Figure 2, a monotonic
phrase segmentation could be achieved only by treating the large block [jdd ... AlsAds]-
[The ... renewed] as a single tuple. Reordering is then addressed by ‘tuple unfolding’
(Crego, Mariño, and de Gispert 2005): that is, during training the source words of each
translation unit are rearranged in a target-like order so that more, shorter tuples can be
extracted. At test time, input sentences have to be pre-ordered for translation. To this end,
Crego and Mariño (2006) propose to precompute a number of likely permutations of the
input using POS-based rewrite rules learned during tuple unfolding. The reorderings
thus obtained are used to extend the search graph of a monotonic decoder.8 Reordering

8 More pre-ordering techniques will be discussed in Section 2.4.
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I was integrating a neural component for word translation prediction into SMT



Back in 2014…

Montreal’s first NMT online demo:
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EN-DE | EN-FR 

Type text here:

The Budapest Prosecutor’s Office has initiated an investigation on the accident. 

Translation:

Die Budapester Staatsanwaltschaft hat ihre Ermittlungen zum Vorfall eingeleitet. 



New research direction
• My interests suddenly switched to discovering the strengths and 

weaknesses of neural seq(-to-seq) models 
• In 2016 published first error analysis of NMT vs SMT output post-editing
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Auxiliary-main verb construction [aux:V]:
SRC in this experiment , individuals were shown hundreds of hours of YouTube videos

HPB in diesem Experiment , Individuen gezeigt wurden Hunderte von Stunden YouTube-Videos
(a) PE in diesem Experiment wurden Individuen Hunderte von Stunden Youtube-Videos gezeigt

NMT in diesem Experiment wurden Individuen hunderte Stunden YouTube Videos gezeigt
PE in diesem Experiment wurden Individuen hunderte Stunden YouTube Videos gezeigt

Verb in subordinate (adjunct) clause [neb:V]:
SRC ... when coaches and managers and owners look at this information streaming ...

PBSY ... wenn Trainer und Manager und Eigentümer betrachten diese Information Streaming ...
(b) PE ... wenn Trainer und Manager und Eigentümer dieses Informations-Streaming betrachten ...

NMT ... wenn Trainer und Manager und Besitzer sich diese Informationen anschauen ...
PE ... wenn Trainer und Manager und Besitzer sich diese Informationen anschauen ...

Prepositional phrase [pp:PREP det:ART pn:N] acting as temporal adjunct:
SRC so like many of us , I ’ve lived in a few closets in my life
SPB so wie viele von uns , ich habe in ein paar Schränke in meinem Leben gelebt

(c) PE so habe ich wie viele von uns während meines Lebens in einigen Verstecken gelebt

NMT wie viele von uns habe ich in ein paar Schränke in meinem Leben gelebt
PE wie viele von uns habe ich in meinem Leben in ein paar Schränken gelebt

Negation particle [adv:PTKNEG]:
SRC but I eventually came to the conclusion that that just did not work for systematic reasons

HPB aber ich kam schlielich zu dem Schluss , dass nur aus systematischen Gründen nicht funktionieren
(d) PE aber ich kam schlielich zu dem Schluss , dass es einfach aus systematischen Gründen nicht funktioniert

NMT aber letztendlich kam ich zu dem Schluss , dass das einfach nicht aus systematischen Gründen funktionierte
PE ich musste aber einsehen , dass das aus systematischen Gründen nicht funktioniert

Table 6: MT output and post-edit examples showing common types of reordering errors.

7 Conclusions

We analysed the output of four state-of-the-art MT
systems that participated in the English-to-German
task of the IWSLT 2015 evaluation campaign. Our
selected runs were produced by three phrase-based
MT systems and a neural MT system. The analysis
leveraged high quality post-edits of the MT outputs,
which allowed us to profile systems with respect to
reliable measures of post-editing effort and transla-
tion error types.

The outcomes of the analysis confirm that NMT
has significantly pushed ahead the state of the art,
especially in a language pair involving rich morphol-
ogy prediction and significant word reordering. To
summarize our findings: (i) NMT generates outputs
that considerably lower the overall post-edit effort
with respect to the best PBMT system (-26%); (ii)
NMT outperforms PBMT systems on all sentence
lengths, although its performance degrades faster
with the input length than its competitors; (iii) NMT
seems to have an edge especially on lexically rich
texts; (iv) NMT output contains less morphology er-

rors (-19%), less lexical errors (-17%), and substan-
tially less word order errors (-50%) than its closest
competitor for each error type; (v) concerning word
order, NMT shows an impressive improvement in
the placement of verbs (-70% errors).

While NMT proved superior to PBMT with re-
spect to all error types that were investigated, our
analysis also pointed out some aspects of NMT that
deserve further work, such as the handling of long
sentences and the reordering of particular linguistic
constituents requiring a deep semantic understand-
ing of text. Machine translation is definitely not a
solved problem, but the time is finally ripe to tackle
its most intricate aspects.
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History repeats itself
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SMT

ca.1990-2010

SMT+ 
ling. features

ca. 2005-2013

morph. segmentation 
morph. inflection prediction 
CCG target features 
feature-rich reordering models 
syntax-based preordering 
tree-based SMT (various flavors) 

SMT+ 
NN components

2014

neural LMs  
neural inflection prediction 
neural preordering 

NMT

2015

MT solved
?

NMT+ 
ling. features

2017-2018

morph. segmentation 
morph. inflection prediction 
morph/POS/dep. source features 
CCG target features 
tree-to-seq NMT 
seq-to-(linearized)tree NMT 
translation+parsing as multitask

not really

2016



Let’s take a step back
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Do we know where we are going? 
This time we’re dealing with a really black box

Research should aim at: 
• understanding the role played by linguistic structure in seq(-to-seq) 

models  
• more systematic ways to know which linguistic phenomena are(n’t) 

captured [ → model interpretability ]

• In pre-neural SMT we knew what could not 
work by model limitations (e.g. clearly flawed 
independence assumptions) 

• Neural models have the potential to learn 
anything, but do they in practice?



Today’s talk
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(1) What makes recurrent NNs work so well for language modeling?  

(2) How important is recurrency for capturing hierarchical structure?  

(3) Do NMT models learn to extract linguistic features from raw data 
and exploit them in any explicable way?



Part 1: 
What makes recurrent NNs work so well  

for language modeling? 



First Insights into the Workings of RNNs
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Our first hypothesis: a great command of language structure (grammar) 

How to find that out? 
• Augment an LSTM language model with a memory block (precursor to 

self-attention) 
• Read out the weights of attention over the last n words 
• Test on language modeling: essential subtask of machine translation 

and other seq-to-seq tasks

[Tran,Bisazza,Monz. NAACL’16]

Recurrent Memory Network

know where i am going from

LSTM

Memory 
Block

LSTM

ht
softmax

c1c2c3c4c5

p

g
P

pici

End-to-end Memory Network (Sukhbaatar et. al)

where z

t

is an update gate, r
t

is a reset gate.
The choice of the composition function g(·) is

crucial for the MB especially when one of its in-
put comes from the LSTM. The simple addition
function might overwrite the information within the
LSTM’s hidden state and therefore prevent the MB
from keeping track of information in the distant past.
The gating function, on the other hand, can control
the degree of information that flows from the LSTM
to the MB’s output.

3.2 RMN Architectures

As explained above, our proposed MB receives the
hidden state of the LSTM as one of its input. This
leads to an intuitive combination of the two units by
stacking the MB on top of the LSTM. We call this
architecture Recurrent-Memory (RM). The RM ar-
chitecture, however, does not allow interaction be-
tween Memory Blocks at different time steps. To
enable this interaction we can stack one more LSTM
layer on top of the RM. We call this architecture
Recurrent-Memory-Recurrent (RMR).

MB

LSTM

LSTMLSTMLSTM

MB

LSTM

LSTM

MBMB

LSTMLSTM

LSTM

LSTM

MB

Figure 2: A graphical illustration of an unfolded
RMR with memory size 4. Dashed line indicates
concatenation. The MB takes the output of the bot-
tom LSTM layer and the 4-word history as its input.
The output of the MB is then passed to the second
LSTM layer on top. There is no direct connection
between MBs of different time steps. The last LSTM
layer carries the MB’s outputs recurrently.

4 Language Model Experiments

Language models play a crucial role in many NLP
applications such as machine translation and speech
recognition. Language modeling also serves as
a standard test bed for newly proposed models
(Sukhbaatar et al., 2015; Kalchbrenner et al., 2015).
We conjecture that, by explicitly accessing history
words, RMNs will offer better predictive power than

the existing recurrent architectures. We therefore
evaluate our RMN architectures against state-of-the-
art LSTMs in terms of perplexity.

4.1 Data

We evaluate our models on three languages: En-
glish, German, and Italian. We are especially inter-
ested in German and Italian because of their larger
vocabularies and complex agreement patterns. Ta-
ble 1 summarizes the data used in our experiments.

Lang Train Dev Test |s| |V |
En 26M 223K 228K 26 77K
De 22M 202K 203K 22 111K
It 29M 207K 214K 29 104K

Table 1: Data statistics. |s| denotes the average sen-
tence length and |V | the vocabulary size.

The training data correspond to approximately
1M sentences in each language. For English, we
use all the News Commentary data (8M tokens)
and 18M tokens from News Crawl 2014 for train-
ing. Development and test data are randomly drawn
from the concatenation of the WMT 2009-2014 test
sets (Bojar et al., 2015). For German, we use the
first 6M tokens from the News Commentary data
and 16M tokens from News Crawl 2014 for train-
ing. For development and test data we use the re-
maining part of the News Commentary data con-
catenated with the WMT 2009-2014 test sets. Fi-
nally, for Italian, we use a selection of 29M tokens
from the PAISÀ corpus (Lyding et al., 2014), mainly
including Wikipedia pages and, to a minor extent,
Wikibooks and Wikinews documents. For develop-
ment and test we randomly draw documents from
the same corpus.

4.2 Setup

Our baselines are a 5-gram language model
with Kneser-Ney smoothing, a Memory Network
(MemN) (Sukhbaatar et al., 2015), a vanilla single-
layer LSTM, and two stacked LSTMs with two and
three layers respectively. N-gram models have been
used intensively in many applications for their ex-
cellent performance and fast training. Chen et al.
(2015) show that n-gram model outperforms a pop-
ular feed-forward language model (Bengio et al.,

324
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A"en%on	visualiza%on	on	
100	word	samples	(DE):			

Average	a"en%on	per	posi%on	of	RMN	history:

Figure 3: Average attention per position of RMN
history. Top: RMR(–tM-g), bottom: RM(+tM-g).
Rightmost positions represent most recent history.

word) and decreases when moving further to the
left (less recent words). This is not surprising since
the success of n-gram language models has demon-
strated that the most recent words provide important
information for predicting the next word. Between
the two variants, the RM average attention mass is
less concentrated to the right. This can be explained
by the absence of an LSTM layer on top, meaning
that the MB in the RM architecture has to pay more
attention to the more distant words in the past. The
remaining analyses described below are performed
on the RM(+tM-g) architecture as this yields the best
perplexity results overall.

Beyond average attention weights, we are inter-
ested in those cases where attention focuses on dis-
tant positions. To this end, we randomly sample 100
words from test data and visualize attention distri-
butions over the last 15 words. Figure 4 shows the
attention distributions for random samples of Ger-
man and Italian. Again, in many cases attention
weights concentrate around the last word (bottom
row). However, we observe that many long distance
words also receive noticeable attention mass. Inter-
estingly, for many predicted words, attention is dis-
tributed evenly over memory positions, possibly in-

de

it

en

Figure 4: Attention visualization of 100 word sam-
ples. Bottom positions in each plot represent most
recent history. Darker color means higher weight.

dicating cases where the LSTM state already con-
tains enough information to predict the next word.

To explain the long-distance dependencies, we
first hypothesize that our RMN mostly memorizes
frequent co-occurrences. We run the RM(+tM-g)
model on the German development and test sen-
tences, and select those pairs of (most-attended-
word, word-to-predict) where the MB’s attention
concentrates on a word more than six positions to
the left. Then, for each set of pairs with equal dis-
tance, we compute the mean frequency of corre-
sponding co-occurrences seen in the training data
(Table 3). The lack of correlation between frequency
and memory location suggests that RMN does more
than simply memorizing frequent co-occurrences.

d 7 8 9 10 11 12 13 14 15

µ 54 63 42 67 87 47 67 44 24

Table 3: Mean frequency (µ) of (most-attended-
word, word-to-predict) pairs grouped by relative dis-
tance (d).

Previous work (Hermans and Schrauwen, 2013;
Karpathy et al., 2015) studied this property of
LSTMs by analyzing simple cases of closing brack-
ets. By contrast RMN allows us to discover more
interesting dependencies in the data. We manually
inspect those high-frequency pairs to see whether
they display certain linguistic phenomena. We ob-
serve that RMN captures, for example, separable
verbs and fixed expressions in German. Separable
verbs are frequent in German: they typically consist
of preposition+verb constructions, such ab+hängen
(‘to depend’) or aus+schließen (‘to exclude’), and
can be spelled together (abhängen) or apart as in
‘hängen von der Situation ab’ (‘depend on the sit-
uation’), depending on the grammatical construc-
tion. Figure 5a shows a long-dependency exam-
ple for the separable verb abhängen (to depend).
When predicting the verb’s particle ab, the model
correctly attends to the verb’s core hängt occurring
seven words to the left. Figure 5b and 5c show fixed
expression examples from German and Italian, re-
spectively: schlüsselrolle ... spielen (play a key role)
and insignito ... titolo (awarded title). Here too, the
model correctly attends to the key word despite its
long distance from the word to predict.
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dicating cases where the LSTM state already con-
tains enough information to predict the next word.

To explain the long-distance dependencies, we
first hypothesize that our RMN mostly memorizes
frequent co-occurrences. We run the RM(+tM-g)
model on the German development and test sen-
tences, and select those pairs of (most-attended-
word, word-to-predict) where the MB’s attention
concentrates on a word more than six positions to
the left. Then, for each set of pairs with equal dis-
tance, we compute the mean frequency of corre-
sponding co-occurrences seen in the training data
(Table 3). The lack of correlation between frequency
and memory location suggests that RMN does more
than simply memorizing frequent co-occurrences.

d 7 8 9 10 11 12 13 14 15

µ 54 63 42 67 87 47 67 44 24

Table 3: Mean frequency (µ) of (most-attended-
word, word-to-predict) pairs grouped by relative dis-
tance (d).

Previous work (Hermans and Schrauwen, 2013;
Karpathy et al., 2015) studied this property of
LSTMs by analyzing simple cases of closing brack-
ets. By contrast RMN allows us to discover more
interesting dependencies in the data. We manually
inspect those high-frequency pairs to see whether
they display certain linguistic phenomena. We ob-
serve that RMN captures, for example, separable
verbs and fixed expressions in German. Separable
verbs are frequent in German: they typically consist
of preposition+verb constructions, such ab+hängen
(‘to depend’) or aus+schließen (‘to exclude’), and
can be spelled together (abhängen) or apart as in
‘hängen von der Situation ab’ (‘depend on the sit-
uation’), depending on the grammatical construc-
tion. Figure 5a shows a long-dependency exam-
ple for the separable verb abhängen (to depend).
When predicting the verb’s particle ab, the model
correctly attends to the verb’s core hängt occurring
seven words to the left. Figure 5b and 5c show fixed
expression examples from German and Italian, re-
spectively: schlüsselrolle ... spielen (play a key role)
and insignito ... titolo (awarded title). Here too, the
model correctly attends to the key word despite its
long distance from the word to predict.
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ab (-1.8)
und (-2.1)
, (-2.5)
. (-2.7)
von (-2.8)

(a)            wie wirksam die daraus resultierende strategie sein wird , hängt daher von der genauigkeit dieser annahmen

Gloss:  how effective   the  from-that   resulting        strategy     be     will,  depends therefore on the    accuracy     of-these measures

Translation: how effective the resulting strategy will be, therefore, depends on the accuracy of these measures

spielen (-1.9)
gewinnen (-3.0)
finden (-3.4)
haben (-3.4)
schaffen (-3.4)

         … die lage versetzen werden , eine schlüsselrolle bei der eindämmung der regionalen ambitionen chinas zu

Gloss: … the position place         will,            a       key-role            in   the       curbing      of-the   regional      ambitions     China’s  to 
Translation:  …which will put him in a position to play a key role in curbing the regional ambitions of China

(b)

sacro (-1.5)
titolo (-2.9)
re (-3.0)
<unk> (-3.1)
leone (-3.6)

        ...  che fu insignito  nel 1692  dall' Imperatore Leopoldo I del

Gloss: … who was  awarded   in 1692  by-the   Emperor   Leopold   I  of-the

Translation:  … who was awarded the title  by Emperor Leopold I in 1692 

(c)

Figure 5: Examples of distant memory positions attended by RMN. The resulting top five word predictions
are shown with the respective log-probabilities. The correct choice (in bold) was ranked first in sentences
(a,b) and second in (c).

Other interesting examples found by the RMN in
the test data include:

German: findet statt (takes place), kehrte zurück
(came back), fragen antworten (questions
answers), kämpfen gegen (fight against),
bleibt erhalten (remains intact), verantwortung
übernimmt (takes responsibility);

Italian: sinistra destra (left right), latitudine lon-
gitudine (latitude longitude), collegata tramite
(connected through), sposò figli (got-married
children), insignito titolo (awarded title).

5.2 Syntactic analysis

It has been conjectured that RNNs, and LSTMs in
particular, model text so well because they capture
syntactic structure implicitly. Unfortunately this has
been hard to prove, but with our RMN model we can
get closer to answering this important question.

We produce dependency parses for our test sets
using (Sennrich et al., 2013) for German and (At-
tardi et al., 2009) for Italian. Next we look at
how much attention mass is concentrated by the
RM(+tM-g) model on different dependency types.
Figure 6 shows, for each language, a selection of
ten dependency types that are often long-distance.2

Dependency direction is marked by an arrow: e.g.
!mod means that the word to predict is a modifier
of the attended word, while mod means that the

2The full plots are available at https://github.com/
ketranm/RMN. The German and Italian tag sets are explained
in (Simi et al., 2014) and (Foth, 2006) respectively.

attended word is a modifier of the word to predict.3

White cells denote combinations of position and de-
pendency type that were not present in the test data.

While in most of the cases closest positions are
attended the most, we can see that some dependency
types also receive noticeably more attention than
the average (ALL) on the long-distance positions.
In German, this is mostly visible for the head of
separable verb particles (!avz), which nicely sup-
ports our observations in the lexical analysis (Sec-
tion 5.1). Other attended dependencies include: aux-
iliary verbs (!aux) when predicting the second el-
ement of a complex tense (hat . . . gesagt / has said);
subordinating conjunctions (konj ) when predict-
ing the clause-final inflected verb (dass sie sagen
sollten / that they should say); control verbs (!obji)
when predicting the infinitive verb (versucht ihr
zu helfen / tries to help her). Out of the Italian
dependency types selected for their frequent long-
distance occurrences (bottom of Figure 6), the most
attended are argument heads (!arg), complement
heads (!comp), object heads (!obj) and subjects
(subj ). This suggests that RMN is mainly captur-
ing predicate argument structure in Italian. Notice
that syntactic annotation is never used to train the
model, but only to analyze its predictions.

We can also use RMN to discover which complex
dependency paths are important for word prediction.
To mention just a few examples, high attention on

3Some dependency directions, like obj in Italian, are al-
most never observed due to order constraints of the language.
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Lexical co-occurrences

Lexical analysis 

61"61" Neural"language"modeling"meets"linguis1c"intui1on"

Lexical Analysis

German English Trans

findet statt takes place

kehrte zuruck came back

fragen antworten questions answers

kämpfen gegen fight against

bleibt erhalten remains intact

verantwortung übernimmt takes responsibility

Lexical Analysis

Italian English Trans

sinistra destra left right

latitudine longitudine latitude longitude

collegata tramite connected through

sposò figli got-married children

insignito titolo awarded title

Frequent"pairs"of"(most_aRended_word,(predicted_word)"with"
distance">6"words:"

RMN"can"capture"relevant"coQoccurrences"regardless"of"distance"

Frequent pairs of mostAttendedWord-predictedWord with distance >6 words:

Syntactic dependencies 
• only to a limited extent 
• mostly separable verbs 

(in German)

?

Later work [Linzen & al. 2016] confirmed and explained our findings: 
LSTM captures long syntactic dependencies iff explicit supervision is used

[-15, -12] [-11, -8] [-7, -4] -3 -2 -1
[ALL]

subj 
!rel
!obji
!objc
obja 
konj 
!kon
!avz
!aux
adv 

0.0

0.1

0.�

0.�

0.�

0.5

Figure 6: Average attention weights per position,
broken down by dependency relation type+direction
between the attended word and the word to predict.
Top: German. Bottom: Italian. More distant posi-
tions are binned.

the German path [subj ,!kon,!cj] indicates that
the model captures morphological agreement be-
tween coordinate clauses in non-trivial constructions
of the kind: spielen die Kinder im Garten und singen
/ the children play in the garden and sing. In Italian,
high attention on the path [!obj,!comp,!prep]
denotes cases where the semantic relatedness be-
tween a verb and its object does not stop at the ob-
ject’s head, but percolates down to a prepositional
phrase attached to it (passò buona parte della sua
vita / spent a large part of his life). Interestingly,
both local n-gram context and immediate depen-
dency context would have missed these relations.

While much remains to be explored, our analysis
shows that RMN discovers patterns far more com-
plex than pairs of opening and closing brackets, and
suggests that the network’s hidden state captures to
a large extent the underlying structure of text.

6 Sentence Completion Challenge

The Microsoft Research Sentence Completion Chal-
lenge (Zweig and Burges, 2012) has recently be-

come a test bed for advancing statistical language
modeling. We choose this task to demonstrate the
effectiveness of our RMN in capturing sentence co-
herence. The test set consists of 1,040 sentences se-
lected from five Sherlock Holmes novels by Conan
Doyle. For each sentence, a content word is removed
and the task is to identify the correct missing word
among five given candidates. The task is carefully
designed to be non-solvable for local language mod-
els such as n-gram models. The best reported re-
sult is 58.9% accuracy (Mikolov et al., 2013)4 which
is far below human accuracy of 91% (Zweig and
Burges, 2012).

As baseline we use a stacked three-layer LSTM.
Our models are two variants of RM(+tM-g), each
consisting of three LSTM layers followed by a
MB. The first variant (unidirectional-RM) uses n

words preceding the word to predict, the second
(bidirectional-RM) uses the n words preceding and
the n words following the word to predict, as MB
input. We include bidirectional-RM in the experi-
ments to show the flexibility of utilizing future con-
text in RMN.

We train all models on the standard training data
of the challenge, which consists of 522 novels from
Project Gutenberg, preprocessed similarly to (Mnih
and Kavukcuoglu, 2013). After sentence splitting,
tokenization and lowercasing, we randomly select
19,000 sentences for validation. Training and val-
idation sets include 47M and 190K tokens respec-
tively. The vocabulary size is about 64,000.

We initialize and train all the networks as de-
scribed in Section 4.2. Moreover, for regularization,
we place dropout (Srivastava et al., 2014) after each
LSTM layer as suggested in (Pham et al., 2014). The
dropout rate is set to 0.3 in all the experiments.

Table 4 summarizes the results. It is worth to
mention that our LSTM baseline outperforms a de-
pendency RNN making explicit use of syntactic in-
formation (Mirowski and Vlachos, 2015) and per-
forms on par with the best published result (Mikolov
et al., 2013). Our unidirectional-RM sets a new state
of the art for the Sentence Completion Challenge
with 69.2% accuracy. Under the same setting of d

we observe that using bidirectional context does not

4The authors use a weighted combination of skip-ngram and
RNN without giving any technical details.
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Part 2: 
How important is recurrency  

for capturing hierarchical structure? 



Recently a family of non-recurrent models show competitive performance 
on seq-to-seq modeling, esp. machine translation:  
• CNNs (Convolutional Neural Networks) [Gehring & al. 2017] 
• FANs (Fully Attentional Networks) [Vaswani & al. 2017]
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But does this kind of models capture hierarchical structure?
Capturing hierarchical structure is necessary to truly understand, process 
and translate language
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(a) LSTM (b) FAN

Figure 1: Diagram of the main difference between
an LSTM and a FAN. The purple box indicates the
summarized vector at current time step t which is
used to make prediction. Orange arrows indicate
the information flow from a previous input to that
vector.

For the details of self-attention mechanics in
FANs, we refer to the work of Vaswani et al. (2017).
We now proceed to measure both models’ ability to
learn hierarchical structure with a set of controlled
experiments.

3 Tasks

We choose two tasks to study in this work: (1)
subject-verb agreement, and (2) logical inference.
The first task was proposed by Linzen et al. (2016)
to test the ability of recurrent neural networks to
capture syntactic dependencies in natural language.
The second task was introduced by Bowman et al.
(2015b) to compare tree-based recursive neural net-
works against sequence-based recurrent networks
with respect to their ability to exploit hierarchical
structures to make accurate inferences. The choice
of tasks here is important to ensure that both mod-
els have to exploit hierarchical structural features
(Jia and Liang, 2017).

4 Subject-Verb Agreement

Linzen et al. (2016) propose the task of predict-
ing number agreement between subject and verb in
naturally occurring English sentences as a proxy
for the ability of LSTMs to capture hierarchical
structure in natural language. We use the dataset
provided by Linzen et al. (2016) and follow their
experimental protocol of training each model us-
ing either (a) a general language model, i.e., next
word prediction objective, and (b) an explicit super-
vision objective, i.e., predicting the number of the
verb given its sentence history. Table 1 illustrates
the training and testing conditions of the task.
Data: Following the original setting, we take 10%
of the data for training, 1% for validation, and the
rest for testing. The vocabulary consists of the 10k

Table 1: Examples of training and test conditions
for the two subject-verb agreement subtasks. The
full input sentence is “The keys to the cabinet are
on the table” where verb and subject are bold and
distractor words are underlined.

Input Train Test

(a) the keys to the cabinet are p(are) > p(is)?
(b) the keys to the cabinet plural plural/singular?

most frequent words, while the remaining words
are replaced by their part-of-speech.
Hyperparameters: In this experiment, both the
LSTM and the FAN have 4 layers, the dropout
rate is 0.2, and word-embeddings and hidden sizes
are set to 128. The weights of the word embed-
dings and output layer are shared as suggested by
Inan et al. (2017); Press and Wolf (2017). The
FAN has 2 attention heads. LSTMs are trained
with the Adam optimizer with a learning rate of
0.001. The FAN is trained with Adam for the
language model objective and the YellowFin op-
timizer (Zhang et al., 2017)1 for the number pre-
diction objective. The initial learning rate is set to
0.001.

We first assess whether the LSTM and FAN
models trained with respect to the language model
objective assign higher probabilities to the cor-
rectly inflected verbs. As shown by Figures 2a
and 2b, both models achieve high accuracies for
this task, but LSTMs consistently outperform
FANs. Moreover, LSTMs are clearly more ro-
bust than FANs with respect to task difficulty, mea-
sured both in terms of word distance and number
of agreement attractors2 between subject and verb.
Interestingly, Christiansen and Chater (2016); Cor-
nish et al. (2017) have argued that human memory
limitations give rise to important characteristics of
natural language, including its hierarchical struc-
ture. Similarly, our experiments suggest that, by
compressing the history into a single vector before
making predictions, LSTMs are forced to better
learn the input structure. On the other hand, de-
spite having direct access to all words in their his-
tory, FANs are less capable of detecting the verb’s
subject. We note that the validation perplexities of
the LSTM and FAN are 75.17 and 71.39, respec-

1We found that YellowFin gives better results than Adam
for FANs.

2Agreement attractors are intervening nouns with the op-
posite number from the subject.

Recurrent Non-Recurrent

Lower complexity 
Much more parallelizable 
Shorter path among input 
positions



We choose two tasks where capturing hierarchical structure is strictly 
required: 

• subject-verb agreement [Linzen & al. 2016]:
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(2) The keys to the cabinet are on the table.

Given a syntactic parse of the sentence and a verb, it
is straightforward to identify the head of the subject
that corresponds to that verb, and use that information
to determine the number of the verb (Figure 1).

The keys to the cabinet are on the table

det

nsubj

prep det
pobj

prep det
pobj

root

Figure 1: The form of the verb is determined by
the head of the subject, which is directly connected
to it via an nsubj edge. Other nouns that intervene
between the head of the subject and the verb (here
cabinet is such a noun) are irrelevant for determining
the form of the verb and need to be ignored.

By contrast, models that are insensitive to structure
may run into substantial difficulties capturing this de-
pendency. One potential issue is that there is no limit
to the complexity of the subject NP, and any number
of sentence-level modifiers and parentheticals—and
therefore an arbitrary number of words—can appear
between the subject and the verb:

(3) The building on the far right that’s quite old
and run down is the Kilgore Bank Building.

This property of the dependency entails that it can-
not be captured by an n-gram model with a fixed n.
RNNs are in principle able to capture dependencies
of an unbounded length; however, it is an empirical
question whether or not they will learn to do so in
practice when trained on a natural corpus.

A more fundamental challenge that the depen-
dency poses for structure-insensitive models is the
possibility of agreement attraction errors (Bock and
Miller, 1991). The correct form in (3) could be se-
lected using simple heuristics such as “agree with
the most recent noun”, which are readily available to
sequence models. In general, however, such heuris-
tics are unreliable, since other nouns can intervene
between the subject and the verb in the linear se-
quence of the sentence. Those intervening nouns can
have the same number as the subject, as in (4), or the
opposite number as in (5)-(7):

(4) Alluvial soils carried in the floodwaters add
nutrients to the floodplains.

(5) The only championship banners that are cur-
rently displayed within the building are for
national or NCAA Championships.

(6) The length of the forewings is 12-13.

(7) Yet the ratio of men who survive to the
women and children who survive is not clear
in this story.

Intervening nouns with the opposite number from the
subject are called agreement attractors. The potential
presence of agreement attractor entails that the model
must identify the head of the syntactic subject that
corresponds to a given verb in order to choose the
correct inflected form of that verb.

Given the difficulty in identifying the subject from
the linear sequence of the sentence, dependencies
such as subject-verb agreement serve as an argument
for structured syntactic representations in humans
(Everaert et al., 2015); they may challenge models
such as RNNs that do not have pre-wired syntac-
tic representations. We note that subject-verb num-
ber agreement is only one of a number of structure-
sensitive dependencies; other examples include nega-
tive polarity items (e.g., any) and reflexive pronouns
(herself ). Nonetheless, a model’s success in learning
subject-verb agreement would be highly suggestive
of its ability to master hierarchical structure.

3 The Number Prediction Task

To what extent can a sequence model learn to be sensi-
tive to the hierarchical structure of natural language?
To study this question, we propose the number pre-
diction task. In this task, the model sees the sentence
up to but not including a present-tense verb, e.g.:

(8) The keys to the cabinet

It then needs to guess the number of the following
verb (a binary choice, either PLURAL or SINGULAR).
We examine variations on this task in Section 5.

In order to perform well on this task, the model
needs to encode the concepts of syntactic number
and syntactic subjecthood: it needs to learn that some
words are singular and others are plural, and to be
able to identify the correct subject. As we have illus-
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( d ( or f ) ) A ( f ( and a ) )
( d ( and ( c ( or d ) ) ) ) # ( not f )

( not ( d ( or ( f ( or c ) ) ) ) ) @ ( not ( c ( and ( not d ) ) ) )

Why artificial data? Despite the simplicity of the
language, this task is not trivial. To correctly clas-
sify logical relations, the model must learn nested
structures as well as the scope of logical oper-
ations. We verify the difficulty of the task by
training three bag-of-words models followed by
sum/average/max-pooling. The best of the three
models achieve less than 59% accuracy on the log-
ical inference versus 77% on the Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015a). This shows that the SNLI task can be
largely solved by exploiting shallow features with-
out understanding the underlying linguistic struc-
tures.

5.1 Models

We follow the general architecture proposed in
(Bowman et al., 2015b): Premise and hypothesis
sentences are encoded by fixed-size vectors. These
two vectors are then concatenated and fed to a 3-
layer feed-forward neural network with ReLU non-
linearities to perform 7-way classification.

The LSTM architecture used in this experiment
is similar to that of Bowman et al. (2015b). We
simply take the last hidden state of the top LSTM
layer as a fixed-size vector representation of the
sentence. Here we use a 2-layer LSTM with skip
connections. The FAN maps a sentence x of length
n to H = [h1, . . . ,hn] 2 Rd⇥n. To obtain a fixed-
size representation z, we use a self-attention layer
with two trainable queries q1,q2 2 R1⇥d:

zi = softmax
✓
qiHp

d

◆
H>

i 2 {1, 2}

z = [z1, z2]

5.2 Results

Following the experimental protocol of Bowman
et al. (2015b), the data is divided into 13 bins based
on the number of logical operations. Both FANs
and LSTMs are trained on samples with at most n
logical operations and tested on all bins. Figure 4
shows the result of the experiments with n  6 and
n  12. We see that FANs and LSTMs perform
similarly when trained on the whole dataset (Fig-
ure 4b). However when trained on a subset of the

(a) n  6

(b) n  12

Figure 4: Results of logical inference

data (Figure 4a), LSTMs obtain better accuracies
on similar examples (n  6) and LSTMs general-
ize better on longer examples (6 < n  12).

6 Discussion and Conclusion

We have compared a recurrent architecture (LSTM)
to a non-recurrent one (FAN) with respect to the
ability of capturing hierarchical structure. Our ex-
periments show that LSTMs slightly but consis-
tently outperform FANs. We found that LSTMs
are notably more robust with respect to the pres-
ence of misleading features in the agreement task,
whether trained with explicit supervision or with
a general language model objective. Finally, we
found that LSTMs generalize better to longer se-
quences for the logical inference task. These find-
ings suggest that recurrency is a key model prop-
erty which should not be sacrificed for efficiency
when hierarchical structure matters for the task.

This does not imply that LSTMs should al-
ways be preferred over non-recurrent architectures.
In fact, both FAN- and CNN-based networks
have proved to perform comparably or better than
LSTM-based ones on a very complex task like ma-
chine translation (Gehring et al., 2017; Vaswani
et al., 2017). Nevertheless, we believe that the abil-
ity of capturing hierarchical information in sequen-
tial data remains a fundamental need for building
intelligent systems that can understand and process
language. Thus we hope that our insights will be
useful towards building the next generation of neu-
ral networks.

• Predict 1 of 7 logical relations  
• Artificial data

• logical inference [Bowman & al. 2015]:

  [Tran,Bisazza,Monz. arXiv 2018]

• Predict verb number: are/is ?
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• Both models achieve high performance 
• LSTM slightly but consistently better and more robust to task difficulty 
• (FAN has lower perplexity though)

  [Tran,Bisazza,Monz. arXiv 2018]
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(a) Language model, breakdown by distance (b) Language model, breakdown by # attractors

(c) Number prediction, breakdown by distance (d) Number prediction, breakdown by # attractors

Figure 2: Results of subject-verb agreement with different training objectives.

tively. The lack of correlation between perplex-
ity and agreement accuracy indicates that FANs
might capture other aspects of language better than
LSTMs. We leave this question to future work.

Second, we evaluate FAN and LSTM models
explicitly trained to predict the verb number (Fig-
ures 2c and 2d) Again, we observe that LSTMs
consistently outperform FANs. This is a partic-
ularly interesting result since the self-attention
mechanism in FANs connects two words in any po-
sition with a O(1) number of executed operations,
whereas RNNs require more recurrent operations.
Despite this apparent advantage of FANs, the per-
formance gap between FANs and LSTMs increases
with the distance and number of attractors.3

To gain further insights into our results, we ex-
amine the attention weights computed by FANs
during verb-number prediction (supervised objec-
tive). Specifically, for each attention head at each
layer of the FAN, we compute the percentage of
times the subject is the most attended word among
all words in the history. Figure 3 shows the results
for all cases where the model made the correct pre-
diction. While it is hard to interpret the exact role
of attention for different heads and at different lay-
ers, we find that some of the attention heads at
the higher layers (l3-h1, l2-h0) frequently point to
the subject with an accuracy that decreases linearly

3We note that our LSTM results are better than those in
(Linzen et al., 2016). Also surprising is that the language
model objective yields higher accuracies than the number pre-
diction objective. We believe this may be due to better model
optimization and to the embedding-output layer weight shar-
ing, but we leave a thorough investigation to future work.

Figure 3: Proportion of times the subject is the
most attended word by different heads at different
layers (l3 is the highest layer). Only cases where
the model made a correct prediction are shown.

with the distance between subject and verb.

5 Logical inference

In this task, we choose the artificial language in-
troduced by Bowman et al. (2015b). This lan-
guage has six word types {a, b, c, d, e, f } and
three logical operations {or, and, not}. There are
seven mutually exclusive logical relations that de-
scribe the relationship between two sentences: en-
tailment (@, A), equivalence (⌘), exhaustive and
non-exhaustive contradiction (^, |), and two types
of semantic independence (#, `). We generate
60,000 samples4 with the number of logical op-
erations ranging from 1 to 12. The train/dev/test
dataset ratios are set to 0.8/0.1/0.1. In the follow-
ing, we show some samples of the training data.

4
https://github.com/sleepinyourhat/

vecrtor-entailment

LSTM
FAN

LSTM
FAN



Results(2) Logical Inference
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• Similar performance when trained on whole data  
• LSTM much better than FAN when only trained on short sequences 

(generalization power)

  [Tran,Bisazza,Monz. arXiv 2018]
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( d ( or f ) ) A ( f ( and a ) )
( d ( and ( c ( or d ) ) ) ) # ( not f )

( not ( d ( or ( f ( or c ) ) ) ) ) @ ( not ( c ( and ( not d ) ) ) )

Why artificial data? Despite the simplicity of the
language, this task is not trivial. To correctly clas-
sify logical relations, the model must learn nested
structures as well as the scope of logical oper-
ations. We verify the difficulty of the task by
training three bag-of-words models followed by
sum/average/max-pooling. The best of the three
models achieve less than 59% accuracy on the log-
ical inference versus 77% on the Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015a). This shows that the SNLI task can be
largely solved by exploiting shallow features with-
out understanding the underlying linguistic struc-
tures.

5.1 Models

We follow the general architecture proposed in
(Bowman et al., 2015b): Premise and hypothesis
sentences are encoded by fixed-size vectors. These
two vectors are then concatenated and fed to a 3-
layer feed-forward neural network with ReLU non-
linearities to perform 7-way classification.

The LSTM architecture used in this experiment
is similar to that of Bowman et al. (2015b). We
simply take the last hidden state of the top LSTM
layer as a fixed-size vector representation of the
sentence. Here we use a 2-layer LSTM with skip
connections. The FAN maps a sentence x of length
n to H = [h1, . . . ,hn] 2 Rd⇥n. To obtain a fixed-
size representation z, we use a self-attention layer
with two trainable queries q1,q2 2 R1⇥d:

zi = softmax
✓
qiHp

d

◆
H>

i 2 {1, 2}

z = [z1, z2]

5.2 Results

Following the experimental protocol of Bowman
et al. (2015b), the data is divided into 13 bins based
on the number of logical operations. Both FANs
and LSTMs are trained on samples with at most n
logical operations and tested on all bins. Figure 4
shows the result of the experiments with n  6 and
n  12. We see that FANs and LSTMs perform
similarly when trained on the whole dataset (Fig-
ure 4b). However when trained on a subset of the

(a) n  6

(b) n  12

Figure 4: Results of logical inference

data (Figure 4a), LSTMs obtain better accuracies
on similar examples (n  6) and LSTMs general-
ize better on longer examples (6 < n  12).

6 Discussion and Conclusion

We have compared a recurrent architecture (LSTM)
to a non-recurrent one (FAN) with respect to the
ability of capturing hierarchical structure. Our ex-
periments show that LSTMs slightly but consis-
tently outperform FANs. We found that LSTMs
are notably more robust with respect to the pres-
ence of misleading features in the agreement task,
whether trained with explicit supervision or with
a general language model objective. Finally, we
found that LSTMs generalize better to longer se-
quences for the logical inference task. These find-
ings suggest that recurrency is a key model prop-
erty which should not be sacrificed for efficiency
when hierarchical structure matters for the task.

This does not imply that LSTMs should al-
ways be preferred over non-recurrent architectures.
In fact, both FAN- and CNN-based networks
have proved to perform comparably or better than
LSTM-based ones on a very complex task like ma-
chine translation (Gehring et al., 2017; Vaswani
et al., 2017). Nevertheless, we believe that the abil-
ity of capturing hierarchical information in sequen-
tial data remains a fundamental need for building
intelligent systems that can understand and process
language. Thus we hope that our insights will be
useful towards building the next generation of neu-
ral networks.
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( d ( or f ) ) A ( f ( and a ) )
( d ( and ( c ( or d ) ) ) ) # ( not f )

( not ( d ( or ( f ( or c ) ) ) ) ) @ ( not ( c ( and ( not d ) ) ) )

Why artificial data? Despite the simplicity of the
language, this task is not trivial. To correctly clas-
sify logical relations, the model must learn nested
structures as well as the scope of logical oper-
ations. We verify the difficulty of the task by
training three bag-of-words models followed by
sum/average/max-pooling. The best of the three
models achieve less than 59% accuracy on the log-
ical inference versus 77% on the Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015a). This shows that the SNLI task can be
largely solved by exploiting shallow features with-
out understanding the underlying linguistic struc-
tures.

5.1 Models

We follow the general architecture proposed in
(Bowman et al., 2015b): Premise and hypothesis
sentences are encoded by fixed-size vectors. These
two vectors are then concatenated and fed to a 3-
layer feed-forward neural network with ReLU non-
linearities to perform 7-way classification.

The LSTM architecture used in this experiment
is similar to that of Bowman et al. (2015b). We
simply take the last hidden state of the top LSTM
layer as a fixed-size vector representation of the
sentence. Here we use a 2-layer LSTM with skip
connections. The FAN maps a sentence x of length
n to H = [h1, . . . ,hn] 2 Rd⇥n. To obtain a fixed-
size representation z, we use a self-attention layer
with two trainable queries q1,q2 2 R1⇥d:

zi = softmax
✓
qiHp

d

◆
H>

i 2 {1, 2}

z = [z1, z2]

5.2 Results

Following the experimental protocol of Bowman
et al. (2015b), the data is divided into 13 bins based
on the number of logical operations. Both FANs
and LSTMs are trained on samples with at most n
logical operations and tested on all bins. Figure 4
shows the result of the experiments with n  6 and
n  12. We see that FANs and LSTMs perform
similarly when trained on the whole dataset (Fig-
ure 4b). However when trained on a subset of the

(a) n  6

(b) n  12

Figure 4: Results of logical inference

data (Figure 4a), LSTMs obtain better accuracies
on similar examples (n  6) and LSTMs general-
ize better on longer examples (6 < n  12).

6 Discussion and Conclusion

We have compared a recurrent architecture (LSTM)
to a non-recurrent one (FAN) with respect to the
ability of capturing hierarchical structure. Our ex-
periments show that LSTMs slightly but consis-
tently outperform FANs. We found that LSTMs
are notably more robust with respect to the pres-
ence of misleading features in the agreement task,
whether trained with explicit supervision or with
a general language model objective. Finally, we
found that LSTMs generalize better to longer se-
quences for the logical inference task. These find-
ings suggest that recurrency is a key model prop-
erty which should not be sacrificed for efficiency
when hierarchical structure matters for the task.

This does not imply that LSTMs should al-
ways be preferred over non-recurrent architectures.
In fact, both FAN- and CNN-based networks
have proved to perform comparably or better than
LSTM-based ones on a very complex task like ma-
chine translation (Gehring et al., 2017; Vaswani
et al., 2017). Nevertheless, we believe that the abil-
ity of capturing hierarchical information in sequen-
tial data remains a fundamental need for building
intelligent systems that can understand and process
language. Thus we hope that our insights will be
useful towards building the next generation of neu-
ral networks.
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Part 3: 
Do NMT models extract linguistic features from 
raw data and exploit them in explicable ways?



Morphological features in NMT embeddings 
Potential: understand if injecting linguistic knowledge into machine translation 
(e.g. via supervised annotation) is a promising direction 
• Specifically, we look at morphology on the source side 
• Build on and extend first analysis by [Belinkov & al. 2017]  
• Method: Train linguistic classifiers on word representations produced by 

NMT encoders

19
[Bisazza,Tump. In Preparation]

Classifier 
(lstm-state)

singular?

plural?

Classifier 
(embedding)

singular?

plural?

https://aws.amazon.com/blogs/machine-learning

“… messieurs …”



Experimental Setup

20

NMT: 
• Language pairs: French→Italian/German/English 
• Always analyze source-side (French) vectors 
• NMT model: word-level, 3-layer LSTM, |h|=1000, |dict| = 30K 
• BLEU: 32.6 (FR-IT), 25.4 (FR-DE), 39.4 (FR-EN)

[Bisazza,Tump. In Preparation]

Classifiers: 
• Linear classifiers 
• Labels from morphological lexicon 
• No vocabulary overlap between training and test (essential to avoid 

overfitting)



Results for All Target Languages

• Source morphological features only encoded in-context, not as word type 
properties (→ morph. information not stored in the lexicon!) 

• Semantic features (number, tense) encoded much better than purely 
grammatical features (gender)

21
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the Lefff French morphological lexicon3 (Sagot,
2010). To ensure a fair comparison between
context-independent and context-dependent em-
bedding classification, words that are ambiguous
with respect to a given feature are excluded from
the respective classifier’s data.

Classifiers’ training/test data. The classifiers
are trained on a 50K-sentence subset of the NMT
training data and tested on the NMT test sets
(2.5K). For each experiment, we extract one vec-

tor per token from the NMT encoder. While this is
the only possible setup for context-dependent rep-
resentations, it leads to a problematic training/test
overlap in the word embedding experiment be-
cause all occurrences of the same word are asso-
ciated to exactly the same vector. We find that,
due to this overlap, a dummy binary feature as-
signed to a random half of the vocabulary can be
predicted from the word embeddings with very
high accuracy (86% for linear, 98% for non-linear)
leading to over-optimistic conclusions on the lin-
guistic regularities of these representations. To
avoid this, we split the vocabulary in two parts of
15K types: the first is used to filter the training
samples and the second to filter the test samples.
We repeat each experiment 5 times using 5 differ-
ent random splits and report mean accuracies.

3 Results and Discussion

This section presents our experimental results
along three dimensions: context-dependency of
the word representations (§3.1), different morpho-
logical features (§3.2), and target language impact
(§3.3). Statistical significance was computed us-
ing a t-test for a one-tailed hypothesis and inde-
pendent means. All the discussed results are sta-
tistically significant, unless explicitly stated.

3.1 Word embeddings vs recurrent states

Our first goal was to discover whether morpholog-
ical features are captured as a word type property
or in context. Figure 2 shows the extent to which
the NMT encoder captures different features at the
word level (word embeddings) compared to the
recurrent state level (LSTM state), averaged over
all target languages. We can see that each fea-
ture is clearly captured at the recurrent state level,
confirming that source-side morphology is indeed
successfully exploited by NMT models. However,

3
http://alpage.inria.fr/

˜

sagot/

lefff-en.html

at the word embedding level, accuracies are com-
parable to the majority class baseline (these differ-
ences are not significant), which implies that the
source-side lexicon of our NMT systems does not
encode morphology in a systematic way.4

This result is surprising, considering that our
morphological features are usually easy to in-
fer from the immediate context of French words
(see examples in Fig.1) and that morphology was
shown to be well captured by monolingual word
embeddings in various European languages in-
cluding French (Köhn, 2015). By contrast, our
NMT encoders choose not to store morphology at
the word type level, perhaps in order to allocate
more capacity to semantic information.

Figure 2: Comparison of different morphological
features (∗ nominal, � verbal). Results are aver-
aged over all three target languages.

3.2 Different morphological features

Secondly, we asked whether the NMT encoder
captured different morphological features to dif-
ferent extents. For this question, we disregard the
results at word embedding level because none of
the features are significantly captured at this level.

Figure 2 shows that the mean accuracy of num-

ber is the highest, followed by tense, and the re-
sults of gender are the lowest. However, it should
be noted that the majority class baseline of gen-
der and number are much higher than the one for
gender. In both absolute and relative terms, the
best performing feature is number. This can be ex-
plained by the fact that number remains most of-
ten unchanged through translation, and is marked
in all target languages – albeit to different extents.
On the other hand, tense is determined by the se-

4Additional experiments showed that this finding is con-
sistent across different word frequency bins.

[Bisazza,Tump. In Preparation]



Impact of Target Language

• Morphology is not learned better when translating into morphologically 
poorer English (diff. from previous findings)  

• Impact of target language only visible on gender 
• FR-IT*: much lower gender accuracy when removing target gender marking 

All suggest that morphological features are only learned when directly 
transferrable to target

22
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Figure 3: Classifier accuracy results for each morphological feature in the three different language pairs.
IT* denotes a modified Italian language where all gender marking was removed.

mantics but also by language-specific usage, while
gender has little semantic value and is mostly as-
signed to nouns arbitrarily.

The fact that the results of different morpholog-
ical features are so variable confirms the setup of
examining each feature independently.

3.3 Source-target language relatedness

Figure 3 shows the impact of the target language
on the encoded morphology accuracy.

Differently from Belinkov et al. (2017a) we do
not find that source-side morphology is captured
better when translating into an ‘easier’ language,
which in our case is English, both in terms of mor-
phological complexity and BLEU performance.

Our experiments show that the target language
impact is only visible for one of the three mor-
phological features, namely gender. This feature
differs from the others because it varies largely
among languages and, when present, is semanti-
cally determined only to a very limited extent. At
a closer look, we see that the FRIT encoder is
by far the best at capturing gender. This is fol-
lowed by FRDE , while FREN encoder performs
the worst. This is the case for both word embed-
dings and recurrent states, but differences are only
statistically significant at the recurrent state level.

Possible explanations for these differences are
language relatedness and the level of gender mark-
ing in the target languages. To examine the con-
tribution of these factors, we set up another ex-
periment with a modied Italian target language
where all gender marking is removed, i.e. all
gender-marked words are replaced by their mascu-
line form (FRIT ∗). This language pair achieves a
BLEU score of 33.2, slightly higher than the 32.6

achieved by French-Italian. However, as shown
in Figure 3, the gender classifier in FRIT ∗ per-
forms remarkably worse than in FRIT , worse

than in FRDE , and almost on a par with FREN

(the difference between FRIT ∗ and FREN is not
statistically significant). This indicates that the
high performance of the FRIT encoder is mostly
due to the ubiquitous gender marking in the tar-
get language, rather than to the language relat-
edness. Nevertheless, gender accuracy is signif-
icantly higher than the baseline in all language
pairs, including FRIT ∗ . All this suggests that
morphological features contribute to the source
sentence understanding to some degree. However,
the incentive to learn source-side morphological
features mostly depends on how directly they can
be transferred to the target sentence.

4 Conclusion

We have confirmed previous findings that mor-
phological features are significantly captured by
word-level NMT encoders. However, the features
are not captured at the word type level but only
at the recurrent state level where word representa-
tions are context-dependent. Secondly, there is a
visible difference in the extent to which different
morphological features are learned: Semantic cat-
egories like number and verb tense are well cap-
tured in all language pairs, whereas grammatical
gender with its only agreement-triggering func-
tion, is dramatically affected by the target lan-
guage. Source-side gender is encoded well only
when it is a good predictor of target gender and
when target-side marking is extensive, i.e. when
translating from French to Italian.

Our findings indicate that the importance of lin-
guistic structure for the neural translation process
is very variable and language-dependent. They
also suggest that the NMT encoder is rather lazy
when it comes to learning grammatical features of
the source words, unless these are directly trans-
ferable to their target equivalents.

[Bisazza,Tump. In Preparation]



to conclude



Summary

24

• RNNs clearly capture lexical co-occurrences, but syntax only to a 
limited extent (unless provided with explicit supervision) 

• Recurrency is important to properly capture hierarchical structure 

• NMT models learn and exploit linguistic features only when directly 
transferable to target language

RNNs are powerful models of language and have no rivals when it comes 
to capturing implicit structure.  
Still, their command of syntax remains imperfect and poorly interpretable.



What’s next
We need more interpretable models: 
• to deliver reliable technology 
• to detect limitations and address them 
Mainly a responsibility of the Machine 
Learning community …?

25

… NLP’ers also need to ask the right questions: 
• what makes a model interpretable in the language domain? 
• less quantitative, more qualitative evaluation: an age shift 
→ design challenge sets requiring specific language competence to be 
solved [Linzen & al. ’16][Sennrich’17][Burlot & Yvon ’17] 

• many more phenomena and languages remain to be covered 
→ (semi-)automate challenge set creation, e.g. using existing parsers 
→ explore general benefits of combining specific supervision objectives 



Thanks for your attention

Arianna Bisazza @ Leiden University
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