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Abstract

Spectral clustering has received a lot of at-
tention due to its ability to separate non-
convex, non-intersecting manifolds, but its
high computational complexity has signifi-
cantly limited its applicability. Motivated by
the document-term co-clustering framework
by Dhillon (2001), we propose a landmark-
based scalable spectral clustering approach in
which we first use the selected landmark set
and the given data to form a bipartite graph
and then run a diffusion process on it to obtain
a family of diffusion coordinates for cluster-
ing. We show that our proposed algorithm can
be implemented based on very efficient opera-
tions on the affinity matrix between the given
data and selected landmarks, thus capable of
handling large data. Finally, we demonstrate
the excellent performance of our method by
comparing with the state-of-the-art scalable al-
gorithms on several benchmark data sets.

1 Introduction

Given a data set X = {x1, . . . , xn} ⊂ Rd and a
similarity function δ(·, ·) such as the Gaussian ra-
dial basis function (RBF), spectral clustering (von
Luxburg, 2007) first constructs a pairwise similar-
ity matrix

W = (wij) ∈ Rn×n, wij = δ(xi, xj) (1)

and then uses the top eigenvectors of W (after
certain kind of normalization) to embed X into
a low-dimensional space where k-means is em-
ployed to group the data into k clusters. Though
mathematically quite simple, spectral clustering
can easily adapt to nonconvex geometries and ac-
curately separate various non-intersecting shapes.
As a result, it has been successfully applied to
many practical tasks, e.g., image segmentation
(Shi and Malik, 2000) and document clustering
(Dhillon, 2001), often significantly outperforming

traditional methods (such as k-means). Further-
more, spectral clustering has a very rich theory
(von Luxburg, 2007), with interesting connections
to kernel k-means (Dhillon et al., 2004), random
walk (Meila and Shi, 2001), graph cut (Shi and
Malik, 2000) (and the underlying spectral graph
theory (Chung, 1996)), and matrix perturbation
analysis (Ng et al., 2001).

However, spectral clustering is known to suf-
fer from a high computational cost associated with
the n × n matrix W , especially when n is large.
Consequently, there has been considerable effort
to develop fast, approximate algorithms that can
handle large data sets (Fowlkes et al., 2004; Yan
et al., 2009; Sakai and Imiya, 2009; Wang et al.,
2009; Chen and Cai, 2011; Wang et al., 2011; Tas-
demir, 2012; Choromanska et al., 2013; Cai and
Chen, 2015; Moazzen and Tasdemir, 2016; Chen,
2018). Interestingly, a considerable fraction of
them use a landmark set to help reduce the compu-
tational complexity of spectral clustering. Specifi-
cally, they first find a small set of data representa-
tives (called landmarks), Y = {y1, . . . , ym} ⊂ Rd
(with m � n), from the given data in X and
then form an affinity matrix betweenX and Y (see
Fig. 1):

A = (aij) ∈ Rn×m, aij = δ(xi, yj). (2)

Afterwards, different scalable methods use the
matrix A in different ways to cluster the given
data. For example, the column-sampling spec-
tral clustering (cSPEC) algorithm (Wang et al.,
2009) regards A as a column-reduced version of
W and correspondingly use the left singular vec-
tors of A to approximate the eigenvectors of W .
However, they seem to consider only unnormal-
ized spectral clustering, and it is unclear how they
extend their technique to normalized spectral clus-
tering (Shi and Malik, 2000; Ng et al., 2001).
Another example is the landmark-based spectral
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Figure 1: Illustration of landmark-based spectral clus-
tering. Left: given data (in black color) and selected
landmarks (in red); right: the affinity matrixA between
the two sets of points with the blue squares indicating
the largest entries in each row of A. Here, we assume
that both the given data and the landmarks have been
sorted according to the true clusters, so as to reveal the
approximately block diagonal structure of A).

clustering (LSC) algorithm (Cai and Chen, 2015)
which uses a row-sparsified version of the matrix
A as approximate sparse representations of the in-
put data while bypassing the expensive dictionary
learning and sparse coding tasks. It then applies
the L1 normalization to each row of A, followed
by a square-root L1 column normalization. This
method empirically works quite well but clearly
there is a gap between its sparse coding motivation
and the actual implementation. A third example
is the k-means-based approximate spectral clus-
tering (KASP) algorithm (Yan et al., 2009) which
first applies the k-means algorithm to partition the
given data intom small clusters and then performs
spectral clustering to divide their centroids (which
are the landmark points) into k groups. Next, they
extend the clustering of the landmarks to the orig-
inal data by performing 1 nearest neighbor (1NN)
classification. This algorithm runs very fast, but is
sensitive to the k-means clusters as it aggressively
reduces the given data to a small set of centroids.

In this work we propose a novel landmark-based
scalable spectral clustering approach by adapting
the co-clustering framework by Dhillon (Dhillon,
2001) for landmark-based clustering and combin-
ing it with diffusion maps (Coifman and Lafon,
2006). Specifically, with the given data X = {xi}
and a selected landmark set Y = {yj}, we first
construct a bipartite graph G2 with X and Y be-
ing the two parts, and form edges between each xi
and its s nearest neighbors yj in the landmark set
with weights aij = δ(xi, yj). We then compute
the transition probabilities for all the vertices of
G2 and use them to define a random walk on the
bipartite graph, which (when being iterated for-
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Figure 2: A bipartite graph whose two components are
the given data (in black) and a landmark set learned
from it (in red). Here, we form edges between each
given data point and its two closest landmark points.
Initially, no landmark point is connected to the two
points a and b. However, if one simulates a random
walk on the bipartite graph, then through a sequence of
steps between the two components, a, b will be identi-
fied as belonging to the same cluster.

ward) further generates a diffusion process on G2.
We expect the resulting diffusion coordinates to be
able to capture the global geometry of the clusters
at different scales and, as a result, the connectivity
of each cluster will be significantly strengthened
(see Fig. 2). We will show that the diffusion coor-
dinates may be computed directly from the n×m
matrix A = (aij). Lastly, we propose three differ-
ent ways to use the diffusion coordinates for clus-
tering the data in X (depending on the length of
the random walk).

The rest of the paper is organized as follows.
First, in Section 2, we review some necessary
background. We then present our methodology in
Section 3. Experiments are conducted in Section
4 to test our proposed algorithms. Finally, we con-
clude the paper in Section 5.

2 Background

In this section, we first review the Normalized Cut
(Ncut) algorithm (Shi and Malik, 2000) and its
connections to random walk (Meila and Shi, 2001)
and diffusion maps (Coifman and Lafon, 2006).
Next, we will review the co-clustering framework
in the setting of documents data by Dhillon (2001).

2.1 The Ncut algorithm

Given a data set X = {x1, x2, ..., xn} ⊂ Rd
and a notion of similarity δ, we may construct
a weighted graph G by using the data points in
X as vertices and assigning an edge between any
two points xi, xj with associated weight wij =
δ(xi, xj). Let W = (wij) ∈ Rn×n, which is the
weight matrix of G. The degree of xi is the total
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edge weight at that vertex: di =
∑

j wij , which
measures the connectivity of xi. The diagonal ma-
trixD = diag(d1, . . . , dn) is called the degree ma-
trix. The Laplacian of the graph G is defined as
L = D −W , which is a positive semidefinite ma-
trix. One way to normalize L is the following

Lrw = D−1L = I −D−1W. (3)

For any subset of vertices S ⊂ X , we define the
cut between S and its complement S̄ as

cut(S, S̄) =
∑

xi∈S

∑

xj∈S̄
wij . (4)

The volume of S is defined as the total connectiv-
ity of the vertices in S:

vol(S) =
∑

xi∈S
di. (5)

The Ncut algorithm (Shi and Malik, 2000) finds
k clusters from the given data X by minimizing
the following objective function:

Ncut(S1, . . . , Sk) =
k∑

`=1

cut(S`, S̄`)

vol(S`)
(6)

over all possible partitions X = S1 ∪ · · · ∪ Sk.
Such a formulation of clustering is very conve-
nient, however, the resulting optimization prob-
lem is intractable due to its combinatorial nature.
Fortunately, by using a continuous relaxation, the
above problem is reduced to finding the bottom
k− 1 eigenvectors of the normalized graph Lapla-
cian Lrw (corresponding to its smallest positive
eigenvalues)1:

V = [v1 | · · · | vk−1] ∈ Rn×(k−1). (7)

One then regards the rows of V as a low-
dimensional embedding of the original data and
clusters them by using k-means.

2.2 Random walk and diffusion maps
Let P = D−1W, whose row sums are all one. We
can then write Lrw = I − P . Algebraically, the
bottom eigenvectors of Lrw are just the top eigen-
vectors of P . However, since P is row-stochastic,
it can be used as a transition probability matrix to

1It can be easily shown that, for any weighted graph, the
smallest eigenvalue of Lrw is λ0 = 0, with associated eigen-
vector v0 = (1, . . . , 1)t. This eigenpair is skipped by the
Ncut algorithm.

define a random walk on the graph G (Meila and
Shi, 2001). Under such a model, clustering can be
interpreted as a way of finding a partition of the
graph such that the random walk stays long inside
the clusters and rarely moves between them.

If the random walk is moved forward for many
iterations, then a diffusion process is generated on
the graph G. For every integer α ≥ 1, Pα is
the α-step transition matrix. Different values of
α integrate the local connectivity information of
the graph at different scales, with larger α yield-
ing more global descriptions. The rows of Pα de-
fine a family of discrete distributions, one at each
vertex of G, and are called the α-step diffusion
coordinates (Coifman and Lafon, 2006). For prac-
tical purposes, it suffices to use low-dimensional
approximations of them (by exploiting the fast de-
cay of the α-th power of the spectrum of P ):

V (α) = [λα1 v1 | · · · | λαp vp] ∈ Rn×p, (8)

where p ∈ Z+ and λi, vi are the largest eigenval-
ues and eigenvectors of P (excluding the eigen-
value 1 and associated eigenvector). In this work,
we use the rows of V (α) as an embedding of the
data for clustering purposes.

2.3 Dhillon’s co-clustering framework
Dhillon (2001) proposed a spectral clustering
based co-clustering framework in the setting
of documents clustering. Specifically, given a
document-term frequency matrixA ∈ Rn×m, they
first construct a bipartite graphG2 whose two parts
are the documents and terms, respectively, and
then use A to define a weight matrix for G2 as
follows:

W =

(
A

At

)
∈ R(n+m)×(n+m). (9)

The two empty blocks of W are zero matrices
of appropriate sizes (which have been omitted for
simplicity), indicating no connection among doc-
uments or terms. Afterwards, they apply the Ncut
algorithm (along with the above weight matrixW )
to co-cluster documents and terms, and they de-
rived an efficient way to implement Ncut solely
based on operations on the n ×m matrix A (thus
effectively avoiding the larger matrix W in all cal-
culations). We review their derivation below.

We start with some definitions. First, letD1, D2

be two diagonal matrices consisting (resp.) of the
row and column sums of A:

D1 = diag(A 1), D2 = diag(At 1). (10)
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Here, and in what follows, we abuse notation to
use 1 to denote the column vector (with appropri-
ate dimension) with all entries equal to one. Next,
we define three different normalized version of A:

Ã1 = D−1
1 A, Ã2 = AD−1

2 , (11)

Ã = D
−1/2
1 AD

−1/2
2 . (12)

It is easy to see that Ã1, Ã2 are respectively row-
and column-stochastic, while Ã is closely related
to both of them in the following ways:

Ã1 = D
−1/2
1 ÃD

1/2
2 , (13)

Ã2 = D
1/2
1 ÃD

−1/2
2 . (14)

The degree matrix of the bipartite graph is

D = diag(W 1) =

(
D1

D2

)
, (15)

from which we may obtain the following transition
probability matrix for the bipartite graph:

P = D−1W =

(
Ã1

Ã t
2

)
. (16)

The following result, first proved by Dhillon
(2001), indicates the close connection between the
eigenvalue decomposition of P and the SVD of Ã.

Lemma 1. Let v1 ∈ Rn, v2 ∈ Rm and v =
(v1; v2) ∈ Rn+m. Then v is an eigenvector of P if
and only if ṽ1 = D

1/2
1 v1 and ṽ2 = D

1/2
2 v2 are a

pair of left/right singular vectors of Ã.

Proof. Suppose v is an eigenvector of P corre-
sponding to some eigenvalue λ, that is, Pv = λv,
or equivalently,

[
Ã1

Ã t
2

][
v1

v2

]
= λ

[
v1

v2

]
, (17)

From this we obtain

Ã1 v2 = λ v1, Ã t
2 v1 = λ v2 (18)

and also (after plugging in (13) and (14))

ÃD
1/2
2 v2 = λD

1/2
1 v1, (19)

Ã tD
1/2
1 v1 = λD

1/2
2 v2. (20)

This shows that D1/2
1 v1 and D

1/2
2 v2 are the left

and right singular vectors of Ã (corresponding to
the same singular value λ). It is easy to verify that
the converse is also true.

Therefore, to obtain an eigenvector of P , we
just need to first perform the SVD of Ã to find a
pair of its left and right singular vectors

ṽ1 = D
1/2
1 v1, ṽ2 = D

1/2
2 v2, (21)

and then apply the following formula

v =

(
v1

v2

)
=

(
D
−1/2
1 ṽ1

D
−1/2
2 ṽ2

)
= D−1/2ṽ, (22)

where ṽ = (ṽ1; ṽ2) ∈ Rn+m.
Lastly, to complete the co-clustering task, one

just stacks the top k − 1 eigenvectors of P as
columns to form an embedding matrix V ∈
R(n+m)×(k−1) and applies k-means to its rows to
group the documents and terms simultaneously.

3 Methodology

In the previous section we reviewed the co-
clustering framework by Dhillon (2001) which
employs the Ncut algorithm (Shi and Malik, 2000)
to partition a bipartite graph consisting of doc-
uments and terms by directly working on the
document-term matrix. In this section, we extend
their work in two ways. First, we adapt their bipar-
tite graph model for landmark-based clustering by
using instead the given data and a selected land-
mark set as its two parts. Second, we simulate a
diffusion process on the bipartite graph to gather
global information about the graph, however, our
focus is still on clustering the given data for which
we will introduce several ways of using such a bi-
partite graph model.

3.1 Derivation of diffusion coordinates on a
bipartite graph

Given a data set, X = {x1, . . . , xn} ⊂ Rd, to
be partitioned into k clusters, we select from X a
set of landmark points, Y = {y1, . . . , ym} ⊂ Rd
(with m � n), by some sampling method, such
as uniform sampling or k-means clustering. Let
A ∈ Rn×m be the affinity matrix between X and
Y , computed by using a pre-specified similarity
function δ as in (2). Like LSC (Cai and Chen,
2015), we preserve only the largest s (s � m)
entries in each row of A, but our motivation is
to focus on the most similar landmark points for
each given data point. We then construct a bipar-
tite graph GX,Y with X,Y as its two parts and a
weight matrix W of the form in (9) but based on
the affinity matrix A defined above. Again, the
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two empty blocks of W indicate no connection in-
side each component of GX,Y . Also, the s-sparse
rows of A imply that each point in X is only con-
nected to its s nearest neighbors in Y on the bi-
partite graph. See Fig. 2 for an illustration of our
bipartite graph model.

Using the computational framework laid out in
Subsec. 2.3, we may easily obtain various quanti-
ties like Ã1, Ã2, Ã,D, P . In particular, we may
use the transition matrix P to define a random
walk on the bipartite graph and run it forward con-
tinuously to generate a diffusion process. The α-
step transition matrix, Pα has the following form.

Lemma 2. Let α ≥ 1 be any integer.
(1) If α = 2q is even, then

Pα =



(
Ã1Ã

t
2

)q
(
Ã t

2Ã1

)q


 (23)

(2) If α = 2q + 1 is odd, then

Pα =




(
Ã1Ã

t
2

)q
Ã1(

Ã t
2Ã1

)q
Ã t

2


 (24)

This result indicates that after an even number
of steps, the random walk (no matter in which
component of the bipartite graph it is initiated) is
always back to the original component, so that the
original bipartite graph becomes two disconnected
subgraphs, while after an odd number of steps, the
random walk always ends in the other component,
and hence the graph remains bipartite. See Fig. 3
for an illustration. Also, when α = 2q, the α-step
random walk on the bipartite graphGX,Y is equiv-
alent to a q-step random walk within each com-
ponent of GX,Y with the transition matrix Ã1Ã

t
2

or Ã t
2 Ã1. This implies that for even integers α,

one should focus on the two components X,Y of
the bipartite graph separately and in principle may
use the corresponding blocks of Pα as new tran-
sition matrices for clustering the two sets of data
individually. In contrast, for odd integers α, one
still needs to consider the two components X,Y
together as a bipartite graph and simultaneously
cluster the original data and the landmark set.

The actual algorithm we will propose uses a
family of diffusion coordinates (corresponding to
different time steps of the diffusion process) to
embed the input data and/or the landmark points
into low-dimensional spaces for clustering by k-
means. The next result shows that one may obtain
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Figure 3: Simulation of a diffusion process on a bi-
partite graph. Left: initial bipartite graph; middle: the
resulting graph after an even number of random walk
iterations; right: the resulting graph after an odd num-
ber of iterations.

such diffusion coordinates directly from the matrix
Ã (defined in (12)).

Theorem 1. Let α, p ≥ 1 be two integers. The
p-dimensional diffusion coordinates for GX,Y at
time step α are

V(α) = D−1/2Ṽ Λα ∈ R(n+m)×p, (25)

where Λ = diag(λ1, . . . , λp) ∈ Rp×p contains
the largest p singular values of Ã (excluding the
singular value 1), and Ṽ ∈ R(n+m)×p the corre-
sponding pairs of left and right singular vectors of
Ã (one pair in each column).

Proof. This is a direct consequence of Lemma 1
combined with the formula in (8).

Remark. We fix p = k− 1 (where k is the num-
ber of clusters) in the rest of the paper (so as to be
consistent with the Ncut algorithm (Shi and Ma-
lik, 2000)), but other values of p could be used too
(e.g. those determined based on the actual power
decay of the eigenvalues of P ).

Remark. If we extend α to zero in (25), then we
can obtain the embedding used by Dhillon (2001).
This shows that our work extends (Dhillon, 2001).

Remark. When α is even, the top n×p and bot-
tom m× p blocks of V(α), denoted as V(α)

X ,V(α)
Y ,

may be used separately as diffusion coordinates
for the two sets of data X,Y .

3.2 Proposed algorithm
We present several different ways to use the α-
step diffusion coordinates V(α) ∈ R(n+m)×(k−1)

in (25), computed from a landmark-based bipar-
tite graph GX,Y , for clustering the input data X .

We consider the following two cases:
(1) α even: In this case, the initial bipartite graph
becomes two disjoint subgraphs corresponding to
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Algorithm 1 Landmark-based Bipartite Diffusion
Maps (LBDM)
Input: Data set X = {x1, x2, ..., xn} ⊂ Rd,

# clusters k, similarity function δ, landmark
selection method, # landmarks m, # nearest
landmarks s, # diffusion steps α, clustering
method: direct or landmark (for even α), or
co-clustering (for odd α).

Output: A partition of X into k clusters.
1: Find m landmarks Y = {y1, . . . , ym} ⊂ Rd

using the given method.
2: Form the affinity matrix A between the input

dataX and their respective s nearest landmark
points in Y by using the given similarity func-
tion δ.

3: Calculate the row and column sums of A and
use them to normalize A to obtain Ã (as in
(12)).

4: Find the largest k− 1 singular values (exclud-
ing 1) and corresponding left and right singu-
lar vectors of Ã.

5: Compute the diffusion coordinates matrix
V(α) by (25) (with p = k − 1).

6: Use the indicated clustering method to divide
the input data set X into k clusters.

X and Y , respectively. A direct way of clustering
the input data X is to focus on V(α)

X , the α-step
diffusion coordinates for X , and apply k-means to
group them into k clusters. Alternatively, we can
focus on V(α)

Y , the α-step diffusion coordinates for
the landmark set Y , and use k-means to group the
landmark points into k subsets. Afterwards, we
extend the landmark clustering to the input data
through s nearest neighbors (sNN) classification,
where s is the number of closest landmark points
connected to each data point.
(2) α odd: In this case, we are still left with a bi-
partite graph. To cluster the input data X , we pro-
pose to run k-means with the full set of diffusion
coordinates V(α) to divide X ∪ Y into k clusters,
and later remove the landmark points from them.
We refer to the three above-mentioned meth-
ods for clustering the given data respectively as
direct clustering, landmark clustering, and co-
clustering.

We now present our scalable spectral clustering
algorithm in Alg. 1.

Remark. We mention the work of Liu et al.
(2013) in the setting of large graph data, which

constructs a bipartite graph between the original
graph nodes and “supernodes” generated through
graph coarsening and then uses the plain co-
clustering algorithm by Dhillon (2001) to partition
the graph. Though the idea is somewhat similar,
our method directly operates in the Euclidean data
domain and extracts diffusion coordinates from
the bipartite graph for clustering.

3.3 Run time analysis

The landmark selection step of Alg. 1 takes
O(ndm) time when k-means sampling is used, or
O(m) time when uniform sampling is used. The
matrix A can be constructed in O(nm(d + s))
time since it takes O(nmd) time to calculate all
the pairwise distances between X and Y , and
O(nsm) time to find the s nearest landmarks in
Y for each of the n data points in X . It then
takes O(ns) time to obtain Ã, and O(nsk) time
to perform rank-k SVD of Ã. The diffusion co-
ordinates V(α) can be computed in O((n + m)k)
time. The final clustering step may take O(nk2),
or O(mk2 + ns), or O((n+m)k2) time, depend-
ing on the clustering method. Putting everything
together, the total running time is O(nm(d+ s) +
nk(s+ k)).

4 Experiments

In this section, we conduct extensive experiments
to evaluate the practical performance of LBDM
with α = 1, 2. For the odd value α = 1, for which
the co-clustering method has to be used, we denote
the corresponding implementation by LBDM(1).
For the even value α = 2, we use both the di-
rect clustering and landmark clustering methods
and denote them as LBDM(2,X) and LBDM(2,Y ),
respectively.

4.1 Experimental setup

We compare the different LBDM versions with the
following algorithms: KASP (Yan et al., 2009),
LSC (Cai and Chen, 2015), cSPEC (Wang et al.,
2009), and the co-clustering algorithm by Dhillon
(2001) (used similarly as LBDM(1)), in the setting
of Gaussian similarity. We also include the plain
Ncut algorithm (Shi and Malik, 2000) in our study
(as a baseline). We implement all the methods in
MATLAB 2016b (except LSC2) and conduct all

2MATLAB code available at http://www.cad.zju.
edu.cn/home/dengcai/Data/Clustering.html
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the experiments on a compute server with 48GB
of RAM and 2 CPUs with 12 total cores.

We choose six benchmark data sets - usps,
pendigits, letter, protein, shuttle, mnist - from the
LIBSVM website3 (see Table 1 for their summary
statistics). They are originally partitioned into
training and test parts for classification purposes,
but for each data set we have merged the two parts
together for our unsupervised setting. Also, we
provide the true number of clusters k to all algo-
rithms to focus on the clustering task.4

Table 1: Data sets used in our experiments.
Data n d k

usps 9,298 256 10
pendigits 10,992 16 10
letter 20,000 16 26
protein 24,387 357 3
shuttle 58,000 9 7
mnist 70,000 784 10

In order to have a fair comparison between the
different algorithms, we use the same values for
the shared parameters. In particular, we fix m =
500 (for all methods) and s = 5 (for LSC, Dhillon
and LBDM with α = 1, 2). Also, we feed all the
algorithms with the same landmark set found by
k-means (with only 10 iterations), which is ini-
tialized with the centroids obtained by preliminary
k-means clustering on 10% of the data (with 100
iterations, 10 restarts). In the last step of each al-
gorithm (where k-means is applied to cluster data
in the respective embedding space), we use 100
iterations and 10 restarts.

We evaluate the different methods in terms of
clustering accuracy and CPU time (averaged over
50 replications), with the former being calculated
by first finding the best match between the output
cluster labels and the ground truth and then com-
puting the fraction of correctly assigned labels.

4.2 Results

We report the experimental results in Tables 2 (ac-
curacy) and 3 (time).

The following observations on the clustering ac-
curacy are at hand: (1) LBDM(2,Y ) achieved the

3https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

4When k is unknown, one may use methods like the
gap statistic (Tibshirani et al., 2001) or eigenvectors rotation
(Zelnik-Manor and Perona, 2004) to infer its value.

highest accuracy on three data sets (usps, pro-
tein, mnist), while LBDM(2,X) achieved the high-
est accuracy only on letter; (2) LSC and cSPEC
each obtained the best accuracy once but each of
them also performed very badly in at least one
case; (3) The two co-clustering methods (Dhillon,
LBDM with α = 1) were very close and all per-
formed reasonably well but never achieved the
highest accuracy; (4) KASP never achieved the
best accuracy either and performed very poorly in
three cases (pendigits, letter, mnist). Overall, the
LBDM family exhibited very stable performance
(which demonstrates the power of diffusion co-
ordinates), and they also outperformed the plain
Ncut algorithm most of the time.

Regarding running time, LBDM(2,Y ) and
KASP are the two fastest methods because they
both cluster the landmark points first and then ex-
tend the clustering to the input data through near-
est neighbor classification. KASP is even faster
because it applies spectral clustering directly to the
landmark points in Rd (the corresponding weight
matrix is only m × m), but it is at the expense
of accuracy. The cSPEC algorithm, on the other
hand, is the slowest among the scalable methods
(because it does not sparsify the matrix A), but it
is still much faster than plain Ncut.

4.3 Parameter sensitivity study

We study in this section the effects of the parame-
ters of LBDM (and relevant methods): m (number
of landmark points), s (number of nearest land-
mark points), and α (diffusion time), using four
data sets from Table 1: usps, letter, protein, and
mnist.

In the first experiment, we focus on the param-
eter m by fixing s = 5 and varying m from 100
to 1000 with a step size of 100 in order to study
its influence on all the scalable methods in Table
2. For each data set and each value ofm, we apply
k-means to sample m landmark points from the
data set and provide the same landmark set to all
the methods being compared to obtain their clus-
tering accuracy and run time. This is then repeated
30 times and we report the average accuracy and
time for each method in Fig. 4. In general, all
methods except KASP and cSPEC improve their
accuracy rates as more landmark points are used,
with LBDM(2,Y ) achieving the highest accuracy
most of the time for three data sets (usps, protein,
mnist). The CPU time of each algorithm seems to
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Table 2: Average clustering accuracy (%) of the various methods obtained on the data sets in Table 1. (Due to
memory issue, we could not run the plain Ncut algorithm on the last two data sets.)

Dataset Ncut KASP LSC cSPEC Dhillon LBDM(1) –(2,X) –(2,Y )

usps 66.21 67.25 66.86 66.89 68.21 67.80 68.10 69.45
pendigits 69.73 68.45 77.93 67.93 73.20 72.95 74.70 73.22
letter 24.93 26.19 31.51 24.98 32.06 32.13 32.21 31.28
protein 43.68 43.85 43.85 44.84 43.35 43.55 43.16 45.88
shuttle 74.52 39.71 82.78 74.24 74.26 74.38 74.49
mnist 57.99 70.28 54.50 72.15 72.43 72.37 73.29

Table 3: Average CPU time (in seconds) used by the various methods on the data sets in Table 1. The CPU time
needed by the initial k-means to sample landmark points from each data set has been separately reported in the
third column of the table (as it is common to all the methods).

Dataset Ncut (k-means) KASP LSC cSPEC Dhillon LBDM(1) –(2,X) –(2,Y )

usps 131.78 7.46 + 0.61 4.44 7.89 4.45 4.39 4.17 1.95
pendigits 246.08 3.13 + 0.55 3.08 5.26 3.14 2.91 3.08 1.65
letter 1180.70 5.30 + 0.77 12.24 25.07 13.51 14.96 12.87 2.78
protein 2024.54 27.04 + 0.41 3.55 7.54 3.93 4.04 3.93 4.40
shuttle 23.89 + 1.23 8.49 61.68 12.35 15.09 12.15 5.88
mnist 299.74 + 0.63 25.07 39.26 27.17 25.69 25.83 16.67
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Figure 4: Effects of the parameter m (with s = 5 fixed all the time). Top row: clustering accuracy; bottom row: CPU time. In
all plots the color and symbol of each method is fixed, so only one legend box is displayed.

depend linearly on m, with KASP always being
the fastest two method.

In our second experiment about the parame-
ter s (which is only needed by LBDM, LSC and
Dhillon), we use the same setup as in the first ex-
periment, except to fix m = 500 while varying
s from 2 to 10 continuously. We plot the aver-
age clustering accuracy and run time of the dif-
ferent methods against the parameter s in Fig. 5.
We see that increasing the value of s tends to de-
crease the clustering accuracy of each algorithm
(with LBDM(2,Y ) being the best in three cases),
while increasing their run time linearly (but very
little for LBDM(2,Y )).

Lastly, we study the α parameter of LBDM
by varying it from 1 to 40 continuously (with
m = 500 and s = 5 fixed). Recall that for
odd values of α, we have to use the co-clustering
method LBDM(α), while for each even value of
α, we can use either the direct clustering method
LBDM(α,X) or the landmark clustering method
LBDM(α,Y ). Their average accuracy (over 30
replications) for each value of α is displayed in
Fig. 6. We can see that increasing the time scale
α may further improve the clustering accuracy for
all three methods on some data sets, demonstrating
the power of diffusion maps.
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Figure 5: Effects of the parameter s (with m = 500 fixed all the time). Top row: clustering accuracy; bottom row: CPU time.
Since KASP fixes s = 1 and cSPEC requires no sparsification, we have respectively plotted their accuracy rates at s = 1 and 0
in each plot.
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Figure 6: Effects of the parameter α on LBDM (with m = 500 and s = 5 fixed all the time).
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Figure 7: Clustering accuracy of LBDM (with 1 ≤ α ≤ 20)
and Dhillon’s method (shown at α = 0) on two text data sets.

4.4 LBDM with bipartite graphs between
documents and terms

In this section we conduct an extra experiment to
show that we can easily adapt LBDM (Alg. 1)
for the original bipartite graph model by Dhillon
(2001), which consists of documents and terms,
by simply treating the terms as the “landmarks”
and using the document-term frequency matrix A
as the affinity matrix between the two compo-
nents of the bipartite graph. We then carry out
the remaining steps of Alg. 1, using either the
direct clustering method (for even α) or the co-
clustering method (for odd α), and still denote
them as LBDM(α,X) and LBDM(α).

We compare these two methods for 1 ≤ α ≤ 20
with Dhillon’s co-clustering algorithm using two

news data sets, TDT2 and Reuters21578.5 Be-
cause of the much varied cluster sizes, we focus on
the top 30 categories in each data set. The cluster-
ing accuracy of the three methods on both data sets
is reported in Fig. 7. It is clear that the use of diffu-
sion coordinates on the bipartite graph (for small
α) considerably improves the documents cluster-
ing accuracy.

5 Conclusions

We presented a landmark-based scalable spectral
clustering approach by a novel combination of dif-
fusion maps and bipartite graphs. Our experiments
showed that the proposed algorithm achieved very
stable and competitive accuracy while running
fast. We conclude that LBDM can be used as a
very promising new alternative to current large-
scale spectral clustering methods.
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