
Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12), pages 7–11
New Orleans, Louisiana, June 6, 2018. c©2018 Association for Computational Linguistics

Efficient Generation and Processing of Word Co-occurrence Networks
Using corpus2graph

Zheng Zhang
LIMSI, CNRS,

Université Paris-Saclay
Orsay, France

LRI, Univ. Paris-Sud, CNRS,
Université Paris-Saclay

Orsay, France
zheng.zhang@limsi.fr

Ruiqing Yin
LIMSI, CNRS,

Université Paris-Saclay
Orsay, France

ruiqing.yin@limsi.fr

Pierre Zweigenbaum
LIMSI, CNRS,

Université Paris-Saclay
Orsay, France
pz@limsi.fr

Abstract

Corpus2graph is an open-source NLP-
application-oriented Python package that
generates a word co-occurrence network
from a large corpus. It not only contains
different built-in methods to preprocess
words, analyze sentences, extract word pairs
and define edge weights, but also supports
user-customized functions. By using paral-
lelization techniques, it can generate a large
word co-occurrence network of the whole
English Wikipedia data within hours. And
thanks to its nodes-edges-weight three-level
progressive calculation design, rebuilding
networks with different configurations is even
faster as it does not need to start all over again.
This tool also works with other graph libraries
such as igraph, NetworkX and graph-tool as
a front end providing data to boost network
generation speed.

1 Introduction

Word co-occurrence networks are widely used in
graph-based natural language processing methods
and applications, such as keyword extraction (Mi-
halcea and Tarau, 2004) and word sense discrimi-
nation (Ferret, 2004).

A word co-occurrence network is a graph of
word interactions representing the co-occurrence
of words in a corpus. An edge can be created
when two words co-occur within a sentence; these
words are possibly non-adjacent, with a maximum
distance (in number of words, see Section 2.2)
defined by a parameter dmax (Cancho and Solé,
2001). In an alternate definition, an edge can be
created when two words co-occur in a fixed-sized
sliding window moving along the entire document
or sentences (Rousseau and Vazirgiannis, 2013).
Despite different methods of forming edges, the
structure of the network for sentences will be the
same for the two above definitions if the maximum

distance of the former is equal to the sliding win-
dow size of the latter. Edges can be weighted or
not. An edge’s weight indicates the strength of
the connection between two words, which is often
related to their number of co-occurrences and/or
their distance in the text. Edges can be directed or
undirected (Mihalcea and Radev, 2011).

While there already exist network analysis
packages such as NetworkX (Hagberg et al.,
2008), igraph (Csardi and Nepusz, 2006) and
graph-tool (Peixoto, 2014), they do not include
components to make them applicable to texts di-
rectly: users have to provide their own word
preprocessor, sentence analyzer, weight function.
Moreover, for certain graph-based NLP applica-
tions, it is not straightforward to find the best net-
work configurations, e.g. the maximum distance
between words. A huge number of experiments
with different network configurations is inevitable,
typically rebuilding the network from scratch for
each new configuration. It is easy to build a word
co-occurrence network from texts by using tools
like textexture1 or GoWvis2. But they mainly fo-
cus on network visualization and cannot handle
large corpora such as the English Wikipedia.

Our contributions: To address these incon-
veniences of generating a word co-occurrence
network from a large corpus for NLP applica-
tions, we propose corpus2graph, an open-source3

NLP-oriented Python package designed to handle
Wikipedia-level large corpora. Corpus2graph sup-
ports many language processing configurations,
from word preprocessing to sentence analysis, and
different ways of defining network edges and edge
attributes. By using our node-edge-weight three-
level progressive calculation design, it can quickly
build networks for multiple configurations.

1http://textexture.com
2https://safetyapp.shinyapps.io/GoWvis/
3available at https://github.com/zzcoolj/corpus2graph

7

We are currently using it to experiment with
injecting pre-computed word co-occurrence net-
works into word2vec word embedding computa-
tion.

2 Efficient NLP-oriented graph
generation

Our tool builds a word co-occurrence network
given a source corpus and a maximal distance
dmax. It contains three major parts: word process-
ing, sentence analysis and word pair analysis from
an NLP point of view. They correspond to three
different stages in network construction.

2.1 Node level: word preprocessing

The contents of large corpora such as the whole
English Wikipedia are often stored in thousands
of files, where each file may contain several
Wikipedia articles. To process a corpus, we con-
sider a file as the minimal processing unit. We
go through all the files in a multiprocessing way:
Files are equally distributed to all processors and
each processor handles one file at a time.

To reduce space requirements, we encode each
file by replacing words with numeric ids. Be-
sides, to enable independent, parallel processing
of each file, these numeric ids are local to each
process, hence to each file. A local-id-encoded
file and its corresponding local dictionary (word
→ local id) are created after this process. As this
process focuses on words, our tool provides sev-
eral word preprocessing options such as tokenizer
selection, stemmer selection, removing numbers
and removing punctuation marks. It also supports
user-provided word preprocessing functions.

All these local-id-encoded files and correspond-
ing local dictionaries are stored in a specific
folder (dicts and encoded texts). Once
all source files are processed, a global dictionary
(word→ global id) is created by merging all local
dictionaries. Note that at this point, files are still
encoded with local word ids.

2.2 Node co-occurrences: sentence analysis

To prepare the construction of network edges, this
step aims to enumerate word co-occurrences, tak-
ing into account word distance. Given two words
wi1 and wj2 that co-occur within a sentence at po-
sitions i and j (i, j ∈ {1 . . . l} where l is the
number of words in the sentence), we define their
distance d(wi1, w

j
2) = j − i . For each input

δ Word Pairs
2 (8746, 2357), (2357, 2669), (2669, 4), (4, 309),

(309, 1285), (1285, 7360)
3 (8746, 2669), (2357, 4), (2669, 309), (4, 1285),

(309, 7360)
4 (8746, 4), (2357, 309), (2669, 1285), (4, 7360)
5 (8746, 309), (2357, 1285), (2669, 7360)

Table 1: Word pairs for different values of distance δ
in sentence “8746 2357 2669 4 309 1285 7360”

file, dmax output files will be created to enumer-
ate co-occurrences: one for each distance δ ∈
{1, . . . dmax}. They are stored in the cooc folder.

To prepare the aggregation of individual statis-
tics into global statistics (see Section 2.3), each
process converts local word ids into global word
ids through the combination of its local dictionary
and of the global dictionary. Note that at this point
the global dictionary must be loaded into RAM.

Then, a sentence analyzer goes through this
file sentence by sentence to extract all word co-
occurrences with distances δ ≤ dmax. For in-
stance, sentence “The NLP history started in the
1950s.” may be encoded as “8746 2357 2669 4
309 1285 7360”; the sentence analyzer will extract
word pairs from distance 1 to dmax. The results for
dmax = 5 are shown in Table 1.

User-customized sentence analyzer and dis-
tance computation are also supported so that more
sophisticated definitions of word pair distance can
be introduced. For instance, we plan to provide a
syntactic distance: the sentence analyzer will build
a parse tree for each sentence and compute word
pair distance as their distance in the parse tree.

Besides, in this step, we also provide an option
to count the number of occurrences of each word
occ(w). Given that a large corpus like Wikipedia
has a huge number of tokens, a global word count
is convenient to enable the user to select words
based on a frequency threshold before network
generation. We return to this point in the next sub-
section.

2.3 Edge attribute level: word pair analysis

A word pair (w1, w2) is represented by an edge
linking two nodes in the word co-occurrence net-
work. In this step, we enrich edge information
with direction and weight by word pair analysis.

Let cooc(δ, w1, w2) the number of co-
occurrences of w1 and w2 with a distance of
δ (Eq. 1). We define the weight w(dmax, w1, w2)
of an edge (w1, w2) as the total number of

8

co-occurrences of w1 and w2 with distances
δ ≤ dmax (Eq. 2).

cooc(δ, w1, w2) = |{(wi1, wj2); d(wi1, wj2) = δ}| (1)

w(dmax, w1, w2) =
∑

δ≤dmax

cooc(δ, w1, w2) (2)

For efficiency we use an iterative algorithm
(Eq. 3):

w(d,w1, w2) =





cooc(1, w1, w2), if d = 1

cooc(d,w1, w2)+

w(d− 1, w1, w2), otherwise

(3)

We calculate the edge weight of different window
sizes in a stepwise fashion by applying Eq. 3. For
the initial calculation, we start by counting and
merging all word pair files of distance 1 in the
edges folder generated by step 2 to get a co-
occurrence count file. This file contains informa-
tion on all distinct word pair co-occurrence counts
for distance 1. We then follow the same principle
to obtain a co-occurrence count file for distance 2.
We merge this result with the previous one to get
word pair co-occurrence counts for window size 2.
We continue this way until distance dmax.

If we wish to make further experiments with
a larger distance, there is no need to recompute
counts from the very beginning: we just need to
pick up the word pair co-occurrences of the largest
distance that we already calculated and start from
there. All co-occurrence count files for the differ-
ent distances are stored in the graph folder.

Defining the weight as the sum of co-
occurrences of two words with different distances
is just one of the most common ways used in
graph-based natural language processing applica-
tions. We also support other (built-in and user-
defined) definitions of the weight. For instance,
when calculating the sum of co-occurrences, we
can assign different weights to co-occurrences ac-
cording to the word pair distance, to make the re-
sulting edge weight more sensitive to the word pair
distance information.

For a large corpus, we may not need all edges
to generate the final network. Based on the word
count information from Section 2.2, we may se-
lect those nodes whose total frequency is greater
than or equal to min count, or the most frequent
vocab size number of nodes, or apply both of these
constraints, before building edges and computing
their weights.

3 Efficient graph processing

3.1 Matrix-type representations
Although our tool works with graph libraries like
igraph, NetworkX and graph-tool as a front end,
we also provide our own version of graph pro-
cessing class for efficiency reasons: Most graph
libraries treat graph processing problems in a net-
work way. Their algorithms are mainly based on
network concepts such as node, edge, weight, de-
gree. Sometimes, using these concepts directly in
network algorithms is intuitive but not computa-
tionally efficient. As networks and matrices are
interchangeable, our graph processing class uses
matrix-type representations and tries to adapt net-
work algorithms in a matrix calculation fashion,
which boosts up the calculation speed.

In our matrix representation for graph informa-
tion, nodes, edges and weights are stored in an ad-
jacency matrix A: a square matrix of dimension
|N | × |N |, where N is the number of nodes in the
graph. Each row of this matrix stands for a start-
ing node, each column represents one ending node
and each cell contains the weight of the edge from
that starting node to the ending node.

Note that not all network algorithms are suit-
able for adapting into a matrix version. For this
reason, our graph processing class does not aim to
be a replacement of the graph libraries we men-
tioned before. It is just a supplement, which pro-
vides matrix-based calculation versions for some
of the algorithms.

To give the reader an intuition about the differ-
ence between the common network-type represen-
tation and the matrix-type representation, the com-
ing subsection uses the random walk algorithm as
an example.

3.2 Random walk
Random walks (Aldous and Fill, 2002) are widely
used in graph-based natural language process-
ing tasks, for instance word-sense disambigua-
tion (Moro et al., 2014) and text summariza-
tion (Erkan and Radev, 2004; Zhu et al., 2007).
The core of the random walk related algorithms
calculation is the transition matrix P .

In the random walk scenario, starting from an
initial vertex u, we cross an edge attached to u
that leads to another vertex, say v (v can be u it-
self when there exists an edge that leads from u to
u, which we call a self-loop). Element Puv of the
transition matrix P represents the transition prob-

9

ability P (u, v) of the walk from vertex u to vertex
v in one step. For a weighted directed network,
P (u, v) can be calculated as the ratio of the weight
of the edge (u, v) over the sum of the weights of
the edges that start from vertex u.

NetworkX (version 2.0) provides a built-in
method stochastic graph to calculate the transition
matrix P . For directed graphs, it starts by cal-
culating the sum of the adjacent edge weights of
each node in the graph and stores all the results in
memory for future usage. Then it traverses every
edge (u, v), dividing its weight by the sum of the
weights of the edges that start from u.

Based on the adjacency matrix A introduced in
Section 3.1, the transition probability P (u, v) can
be expressed as:

P (u, v) = Auv/
|Au|∑
i=1

Aui

The transition matrix P can be easily calcu-
lated in two steps: First, getting sums of all el-
ements along each row and broadcasting the re-
sults against the input matrix to preserve the di-
mensions (keepdims is set to True); Second, per-
forming element-wise division to get the ratios of
each cell value to the sum of all its row’s cell val-
ues. By using NumPy (Walt et al., 2011), the cal-
culation is more efficient both in speed and mem-
ory. Besides, as the calculations are independent
of each row, we can take advantage of multipro-
cessing to further enhance the computing speed.

4 Experiments

4.1 Set-up
In the first experiment, we generated a word co-
occurrence network for a small corpus of 7416 to-
kens (one file of the English Wikipedia dump from
April 2017) without using multiprocessing on a
computer equipped with the Intel Core i7-6700HQ
processor. Our tool serves as a front end to provide
nodes and edges to the graph libraries NetworkX,
igraph and graph-tool. In contrast, the baseline
method processes the corpus sentence by sentence,
extracting word pairs with a distance δ ≤ dmax
and adding them to the graph as edges (or updat-
ing the weight of edges) through these libraries.
All distinct tokens in this corpus are considered as
nodes.

In the second experiment, we used our tool
to extract nodes and edges for the generation of
a word co-occurrence network on the entire En-
glish Wikipedia dump from April 2017 using 50

logical cores on a server with 4 Intel Xeon E5-
4620 processors , dmax = 5, min count = 5 and
vocab size = 10000.

In the last experiment, we compared the random
walk transition matrix calculation speed on the
word co-occurrence network built from the pre-
vious experiment result between our method and
the built-in method of NetworkX (version 2.0) on
a computer equipped with Intel Core i7-6700HQ
processor.

4.2 Results

NetworkX igraph graph-tool
baseline 4.88 8727.49 77.70
corpus2graph 15.90 14.47 14.31

Table 2: Word network generation speed (seconds)

Table 2 shows that regardless of the library used
to receive graph information generated by cor-
pus2graph, it takes around 15 seconds from the
small Wikipedia corpora to the final word co-
occurrence network. And our method performs
much better than the baseline method with igraph
and graph-tool even without using multiprocess-
ing. We found that in general loading all edges
and nodes information at once is faster than load-
ing edge and node information one by one and it
takes approximately the same time for all graph
libraries. As for NetworkX, the baseline method
is faster. But as the corpora get larger, the base-
line model uses more and more memory to store
the continuously growing graph, and the process-
ing time increases too.

For the second experiment, our tool took around
236 seconds for node processing (Section 2.1),
2501 seconds for node co-occurrence analysis
(Section 2.2) and 8004 seconds for edge informa-
tion enriching (Section 2.3). In total, it took less
than 3 hours to obtain all the nodes and weighted
edges for the subsequent network generation.

Generation of: network transition matrix
NetworkX 447.71 2533.88
corpus2graph 116.15 1.06

Table 3: Transition matrix calculation speed (seconds)

Table 3 shows the results of the third experi-
ment. Loading network information into our graph
processing class is faster than loading into the
graph class of NetworkX. Moreover, our random

10

walk transition matrix calculation method is 2390
times faster than the built-in method in NetworkX.

5 Conclusion

We presented in this paper an NLP-application-
oriented Python package that generates a word co-
occurrence network from a large corpus. Experi-
ments show that our tool can boost network gen-
eration and graph processing speed compared to
baselines.

Possible extensions of this work would be to
support more graph processing methods and to
connect our tool to more existing graph libraries.

References
David Aldous and James Allen Fill. 2002. Reversible

Markov chains and random walks on graphs.
Unfinished monograph, recompiled 2014, avail-
able at http://www.stat.berkeley.edu/
˜aldous/RWG/book.html.

Ramon Ferrer i Cancho and Richard V. Solé. 2001.
The small world of human language. Proceedings of
the Royal Society of London B: Biological Sciences,
268(1482):2261–2265.

Gabor Csardi and Tamas Nepusz. 2006. The igraph
software package for complex network research. In-
terJournal, Complex Systems:1695.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research, 22:457–479.

Olivier Ferret. 2004. Discovering word senses from a
network of lexical cooccurrences. In Proceedings of
the 20th International Conference on Computational
Linguistics, COLING ’04, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
2008. Exploring network structure, dynamics, and
function using NetworkX. In Proceedings of the 7th
Python in Science Conference (SciPy2008), pages
11–15, Pasadena, CA USA.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing.

Rada F. Mihalcea and Dragomir R. Radev. 2011.
Graph-based Natural Language Processing and In-
formation Retrieval, 1st edition. Cambridge Univer-
sity Press, New York, NY, USA.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. TACL, 2:231–244.

Tiago P. Peixoto. 2014. The graph-tool python library.
figshare.

François Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: New approach to ad hoc
ir. In Proceedings of the 22Nd ACM International
Conference on Information & Knowledge Manage-
ment, CIKM ’13, pages 59–68, New York, NY,
USA. ACM.

Stefan van der Walt, S. Chris Colbert, and Gael Varo-
quaux. 2011. The numpy array: A structure for effi-
cient numerical computation. Computing in Science
and Engg., 13(2):22–30.

Xiaojin Zhu, Andrew Goldberg, Jurgen Van Gael, and
David Andrzejewski. 2007. Improving diversity in
ranking using absorbing random walks. In Human
Language Technologies 2007: The Conference of
the North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference, pages 97–104.

11

