
Proceedings of the 2nd Workshop on Stylistic Variation, pages 29–38
New Orleans, Louisiana, June 5, 2018. c©2018 Association for Computational Linguistics

Evaluating Creative Language Generation:
The Case of Rap Lyric Ghostwriting

Peter Potash, Alexey Romanov, Anna Rumshisky
Department of Computer Science

University of Massachusetts Lowell
{ppotash,aromanov,arum}@cs.uml.edu

Abstract
Language generation tasks that seek to mimic
human ability to use language creatively are
difficult to evaluate, since one must consider
creativity, style, and other non-trivial aspects
of the generated text. The goal of this pa-
per is to develop evaluations methods for one
such task, ghostwriting of rap lyrics, and to
provide an explicit, quantifiable foundation for
the goals and future directions for this task.
Ghostwriting must produce text that is sim-
ilar in style to the emulated artist, yet dis-
tinct in content. We develop a novel evalua-
tion methodology that addresses several com-
plementary aspects of this task, and illustrate
how such evaluation can be used to meaning-
fully analyze system performance. We provide
a corpus of lyrics for 13 rap artists, annotated
for stylistic similarity, which allows us to as-
sess the feasibility of manual evaluation for
generated verse.

1 Introduction

Language generation tasks are often among the
most difficult to evaluate. Evaluating machine
translation, image captioning, summarization, and
other similar tasks is typically done via compari-
son with existing human-generated “references”.
However, human beings also use language cre-
atively, and for the language generation tasks that
seek to mimic this ability, determining how accu-
rately the generated text represents its target is in-
sufficient, as one also needs to evaluate creativ-
ity and style. We believe that one of the reasons
such tasks receive little attention is the lack of
sound evaluation methodology, without which no
task is well-defined, and no progress can be made.
The goal of this paper is to develop an evaluation
methodology for one such task, ghostwriting, or
more specifically, ghostwriting of rap lyrics.

Ghostwriting is ubiquitous in politics, literature,
and music; as such, it introduces a distinction be-

tween the performer/presenter of text, lyrics, etc,
and the creator of text/lyrics. The goal of ghost-
writing is to present something in a style that is
believable enough to be credited to the performer.
In the domain of rap specifically, rappers some-
times function as ghostwriters early on before em-
barking on their own public careers, and there are
even businesses that provide written lyrics as a
service1. The goal of automatic ghostwriting is
therefore to create a system that can take as in-
put a given artist’s work and generate similar yet
unique lyrics.

Our objective in this work is to provide a quan-
tifiable direction and foundation for the task of
rap lyric generation and similar tasks through (1)
developing an evaluation methodology for such
models and (2) illustrating how such evaluation
can be used to analyze system performance, in-
cluding advantages and limitations of a specific
language model developed for this task. As an il-
lustration case, we use the ghostwriter model pre-
viously proposed in exploratory work by Potash et
al. (2015), which uses a recurrent neural network
(RNN) with Long Short-Term Memory (LSTM)
for rap lyric generation.

The following are the main contributions of this
paper. We present a comprehensive manual eval-
uation methodology of the generated verses along
three key aspects: fluency, coherence, and style
matching. We introduce an improvement to the
semi-automatic methodology used by Potash et al.
(2015) that automatically penalizes repetitive text,
removing the need for manual intervention. Fi-
nally, we build a corpus of lyrics for 13 rap artists,
each with his own unique style, and conduct a
comprehensive evaluation of the LSTM model
performance using the new evaluation methodol-

1http://www.rap-rebirth.com/,
http://www.precisionwrittens.com/
rap-ghostwriters-for-hire/

29



ogy. The corpus includes style matching annota-
tion for select verses in dataset, which can form a
gold standard for future work on automatic rep-
resentation of similarity between artists’ styles.
The resulting rap lyric dataset is publicly available
from the authors’ website2.

Additionally, we believe that the annotation
method we propose for manual style evaluation
can be used for other similar generation tasks. One
example is ’Deep Art’ work in the computer vision
community that seeks to apply the style of a par-
ticular painting to other images (Gatys et al., 2015;
Li and Wand, 2016). Although manual inspection
of results of such models suggests reasonable suc-
cess, a systemic evaluation methodology has yet to
be proposed. With this in mind, we make the in-
terface used for style evaluation in this work avail-
able for public use.

Our evaluation results highlight the truly multi-
faceted nature of the ghostwriting task. While hav-
ing a single measure of success is clearly desir-
able, our analysis shows the need for complemen-
tary metrics that evaluate different components
of the overall task. Indeed, despite the fact that
our test-case LSTM model outperforms a baseline
model across numerous artists based on automated
evaluation, the full set of evaluation metrics is
able to showcase the LSTM model’s strengths and
weakness. The coherence evaluation demonstrates
the difficulty of incorporating large amounts of
training data into the LSTM model, which in-
tuitively would be desirable to create a flexible
ghostwriting model. The style matching experi-
ments suggest that the LSTM is effective at captur-
ing an artist’s general style, however, this may in-
dicate that it tends to form ‘average’ verses, which
are then more likely to be matched with existing
verses from an artist rather than another random
verse from the same artist. Overall, the evalua-
tion methodology we present provides an explicit,
quantifiable foundation for the ghostwriting task,
allowing for a deeper understanding of the task’s
goals and future research directions.

2 Related Work

Previous work that explores text generation for
artistic purposes, such as poetry and lyrics, gen-
erally uses either automated or manual evalua-
tion. We would like to point out that none of

2http://text-machine.cs.uml.edu/
ghostwriter/

the works discussed below implement models that
generate complete verses from scratch (including
verse structure), which is the goal of the models
we aim to evaluate. In terms of manual evalua-
tion, Barbieri et al. (2012) have a set of annota-
tors evaluate generated lyrics along two separate
dimensions: grammar and semantic relatedness to
song title. The annotators rate the dimensions with
scores 1-3. A similar strategy is used by Gervás
(2000), where the author has annotators evaluate
generated verses with regard to syntactic correct-
ness and overall aesthetic value, providing scores
in the range 1-5. Wu et al. (2013) have anno-
tators determine the effectiveness of various sys-
tems based on fluency as well as rhyming. Some
heuristic-based automated approaches have also
been used, e.g., by Oliveira et al. (2014) who use
a simple automatic heuristic that awards lines for
ending in a termination previously used in the gen-
erated stanza. Malmi et al. (2015) evaluate their
generated lyrics based on the verses’ rhyme den-
sity, on the assumption that a higher rhyme density
means better lyrics.

3 Dataset

For our evaluation experiments, we selected the
following list of artists in four different categories:

• Three top-selling rap artists according to
Wikipedia3: Eminem, Jay Z, Tupac

• Artists with the largest vocabulary according
to Pop Chart Lab4: Aesop Rock, GZA, Sage
Francis

• Artists with the smallest vocabulary accord-
ing to Pop Chart Lab: DMX, Drake

• Best classified artists from Hirjee and Brown
(2010b) using rhyme detection features5:
Fabolous, Nototious B.I.G., Lil’ Wayne

We collected all available songs from the above
artists from the site The Original Hip-Hop (Rap)
Lyrics Archive - OHHLA.com - Hip-Hop Since
19926. We removed the metadata, line repetiton
markup, and chorus lines, and tokenized the lyrics

3http://en.wikipedia.org/wiki/List_of_
best-selling_music_artists

4http://popchartlab.com/products/
the-hip-hop-flow-chart

5Specifically, the authors used their automated rhyme de-
tection tool to generate rhyme statistics of verses, and used
those rhyme features, along with more shallow features such
as syllable count and word repetition, to classify the artist of
the verse.

6http://www.ohhla.com/

30



using the NLTK library (Bird et al., 2009). Since
the preprocessing was done heuristically, the re-
sulting dataset may still contain some text that
is not actual verse, but rather dialogue or chorus
lines. We therefore filter out all verses that are
shorter than 20 tokens. Statistics of our dataset
are shown in Table 1.

4 Evaluation Methodology

We believe that adequate evaluation for the ghost-
writing task requires both manual and automatic
approaches. The automated evaluation methodol-
ogy enables large-scale analysis of the generated
verse. However, given the nature of the task, the
automated evaluation is not able to assess certain
critical aspects of fluency and style, such as the
vocabulary, the tone, and the themes preferred by
a particular artist. In this section, we present a
manual methodology we propose for evaluating
these aspects of the generated verse, as well as an
improvement to the automatic methodology pro-
posed by Potash et al. (2015).

4.1 Manual Evaluation
We have designed two annotation tasks for manual
evaluation. The first task is to determine how flu-
ent and coherent the generated verses are. The sec-
ond task is to evaluate manually how well the gen-
erated verses match the style of the target artist.

Fluency/Coherence Evaluation Given a gener-
ated verse, we ask annotators to determine the flu-
ency and coherence of the lyrics. Even though
our evaluation is for systems that produce entire
verses, we follow the work of Wu (2014) and an-
notate fluency, as well as coherence, at the line
level. To assess fluency, we ask to what extent a
given line can be considered a valid English utter-
ance. Since a language model may produce highly
disjointed verses as it progresses through the train-
ing process, we offer the annotator three options
for grading fluency: strongly fluent, weakly flu-
ent, and not fluent. If a line is disjointed, i.e., it
is only fluent in specific segments of the line, the
annotators are instructed to mark it as weakly flu-
ent. The grade of not fluent is reserved for highly
incoherent text.

To assess coherence, we ask the annotator how
well a given line matches the preceding line. That
is, how believable is it that these two lines would
follow each other in a rap verse. We offer the an-
notators the same choices as in the fluency eval-

uation: strongly coherent, weakly coherent, and
not coherent. During the training process, a lan-
guage model may output the same line repeatedly.
We account for this in our coherence evaluation by
defining the consecutive repetition of a line as not
coherent. This is important to define because the
line on its own may be strongly fluent, however, it
is not correct to consider a verse that consists of a
single fluent line repeated indefinitely to be coher-
ent.

Style Matching The goal of the style matching
annotation is to determine how well a given verse
captures the style of the target artist. In this an-
notation task, a user is presented with a verse and
asked to compare it against four other verses. The
goal is to pick the verse that is written in a similar
style. One of the four choices is always a verse
from the same artist that was used to generate the
verse being evaluated. The other three verses are
chosen from the remaining artists in our dataset.
Each verse is evaluated in this manner four times,
each time against different verses, so that it has the
chance to get matched with a verse from each of
the remaining twelve artists. The generated verse
is considered stylistically consistent if the annota-
tors tend to select the verse that belongs to the tar-
get artist. To evaluate the difficulty of this task, we
also perform style matching annotation for authen-
tic verse, in which the evaluated verse is not gen-
erated, but rather is an actual existing verse from
the target artist.7

4.2 Automated Evaluation

The automated evaluation we describe below at-
tempts to capture computationally the dual aspects
of “unique yet similar” in a manner originally pro-
posed by Potash et al. (2015).

Uniqueness of Generated Lyrics We use a
modified tf-idf representation for verses, and cal-
culate cosine similarity between generated verses
and the verses from the training data to determine
novelty (or lack thereof). In order to determine
which training verse a generated verse matches the
most, we calculate the maximum similarity score
across all training verses.

7As mentioned earlier, we believe that this annotation
method can be useful for evaluation of a wide range of other
style-dependent generation tasks, so we have made the anno-
tation interface available on (http://text-machine.
cs.uml.edu/ghostwriter/).

31



Artist Verses Unique Vocab Vocab Richness Avg Len Stdev Len Max Len
Tupac 660 5776 7.1 117 83 423
Aesop Rock 549 11815 14.8 140 139 1039
DMX 819 5593 5.3 125 82 552
Drake 665 6064 7.0 128 112 1057
Eminem 1429 12393 6.2 136 105 931
Fabolous 892 8304 7.4 122 91 662
GZA 287 6845 15.9 145 102 586
Jay Z 1245 9596 6.7 111 81 842
Lil’ Wayne 1564 10848 5.5 124 101 977
Nototious B.I.G. 426 5465 10.2 120 88 557
Sage Francis 570 8082 11.9 114 112 645
Kanye West 851 7007 7.6 105 109 2264
Kool Keith 1471 13280 7.4 118 85 626
Too Short 1259 7396 4.3 134 123 1411

Table 1: Rap lyrics dataset statistics. Vocabulary richness measures how varied an artist’s vocabulary is,
computed as the total number of words divided by vocabulary size.

Stylistic Similarity via Rhyme Density of Lyrics
We use the rhyme detection tool provided by Hir-
jee and Brown (2010a) calculate the rhyme den-
sity of a given verse, with the ultimate goal of
evaluating how well the generated verse models
an artist’s style (specifically, rhyme style in this
case). The point of an effective system is not to
produce arbitrary rhymes: it is to produce rhyme
types and rhyme frequency similar to the target
artist. For the ghostwriter models trained exclu-
sively on the verses of a given artist, the vocabu-
lary of the generated verse is closed with respect
to the training data. In that case, assessing how
similar the generated vocabulary is to the target
artist is not important. Instead, we focus on rhyme
density, which is defined as the number of rhymed
syllables divided by the total number of syllables
(Hirjee and Brown, 2010a). Certain artists dis-
tinguish themselves by having more complicated
rhyme schemes, such as the use of internal8 or
polysyllabic rhymes9. Rhyme density is able to
capture this in a single metric.

However, this rhyme detection method is not
designed to deal with highly repetitive text, which
the LSTM model produces often in the early
stages of training. Since the same phoneme is re-
peated (because the same word is repeated), the
rhyme detection tool generates a false positive.
Potash et al. (2015) dealt with this by manually
inspecting the rhyme densities of verses generated
in the early stages of training to determine if a gen-

8e.g. “New York City gritty committee pity the fool” and
“How I made it you salivated over my calibrated”

9e.g. “But it was your op to shop stolen art/Catch a
swollen heart form not rolling smart”.

erated verse should be kept for the evaluation pro-
cedure.

In order to fully automate their method, we ac-
count for the presence of repetitive text by weight-
ing the rhyme density of a given verse by its en-
tropy. More specifically, for a given verse, we
calculate entropy at the token level and divide
by total number of tokens in that verse. Verses
with highly repetitive text will have a low entropy,
which results in down-weighting the rhyme den-
sity of verses that produce false positive rhymes
due to their repetitive text.

Merging Uniqueness and Similarity Since
ghostwriting is a balancing act of the two oppos-
ing forces of textual uniqueness and stylistic sim-
ilarity, we want a low correlation between rhyme
density (stylistic similarity) and maximum verse
similarity (lack of textual uniqueness). However,
our goal is not to have a high rhyme density, but
rather to have the rhyme density similar to the tar-
get artist, while simultaneously keeping the max-
imum similarity score low. As the model over-
fits the training data, both the value of maximum
similarity and the rhyme density will increase, un-
til the model generates the original verse directly.
Therefore, our goal is to evaluate the value of the
maximum similarity at the point where the rhyme
density has the value of the target artist. In order
to accomplish this, we follow Potash et al. (2015)
and plot the values of rhyme density and maxi-
mum similarity obtained at different points during
model training. We use regression lines for these
points to identify the value of the maximum simi-
larity line at the point where the rhyme density line

32



has the value of the target artist. We give more de-
tail below.

5 Lyric Generation Experiments

The main generative model we use in our evalu-
ation experiments is an LSTM. Similar to Potash
et al. (2015), we use an n-gram model as a base-
line system for automated evaluation. We refer the
reader to the original work for a detailed descrip-
tion. After every 100 iterations of training10 the
LSTM model generates a verse. For the baseline
model, we generate five verses at values 1-9 for
n. We see a correspondence between higher n and
higher iteration: as both increase, the models be-
come more ‘fit’ to the training data.

For the baseline model, we use the verses gener-
ated at different n-gram lengths (n = 1...9) to ob-
tain the values for regression. At every value of n,
we take the average rhyme density and maximum
similarity score of the five verses that we generate
to create a single data point for rhyme density and
maximum similarity score, respectively.

To enable comparison, we also create nine data
points from the verses generated by the LSTM,
which is done as follows: a separate model for
each artist is trained for a minimum of 16,400 iter-
ations. We take the verses generated every 2,000
iterations, from 0 to 16,000 iterations, giving us
nine points. The averages for each point are ob-
tained by using the verses generated in iterations
±x, x ∈ {100, 200, 300, 400} for each interval of
2,000.

6 Results

We present the results of our evaluation exper-
iments using both manual evaluation and auto-
mated analysis.

6.1 Fluency/Coherence
In order to fairly compare the fluency/coherence of
verses across artists, we use the verses generated
by each artist’s model at 16,000 iterations. We
apply the fluency/coherence annotation method-
ology from Section 4.1. Each line is annotated
by two annotators. Annotation results are shown
in Figure 2 and Figure 3. For each annotated
verse, we report the percentage of lines annotated
as strongly fluent, weakly fluent, and not fluent, as
well as the corresponding percentages for coher-
ence. We convert the raw annotation results into

10Training is done in batches with two verses per batch.

what more could i say i wouldn t be here today
if the old school didn t pave the way grand puba

(a) Tupac’s generated verse that was evaluated for fluency
(0.88) and coherence (1.00). The verse is generally fluent,
however, the ending of the second verse represents a break
in fluency that results in the line being labeled weakly fluent.
This break in fluency does not affect the perfect fluency score.

i m gon na be alright or die
i m a dog and i m the dog and i m a dog
but i m gon na be alright
and i m gon na be alright

(b) DMX’s generated verse that was evaluated for fluency
(0.42) and coherence (0.36). The overall repetitiveness con-
tributes to the verse’s lack of coherence, and the second line
in particular contributes to the verse’s general lack of fluency.

Figure 1: A qualitative analysis of verses annotated
for fluency and coherence.

a single score for each verse by treating the la-
bels “strongly fluent”, “weakly fluent”, and “not
fluent” as numeric values 1, 0.5, and 0, respec-
tively. Treating each annotation on a given line
separately, we calculate the average numeric rat-
ing for a given verse:

Fluency =
#sf + 0.5#wf

#a
(1)

where #sf is the number of times any line is la-
beled strongly fluent, #wf is the number of times
any line is labeled weakly fluent, and #a is the
total annotations provided for a verse, which is
equal to the number of lines × 2. Coherence
is calculated in a similar manner. In terms of
practically implementing the annotation method-
ology, an annotators annotates an average of 8.5
lines per minute (this includes fluency and coher-
ence). For our experiments, it took 3.3 hours to
annotate 1,687 lines. A qualitative analysis of flu-
ency/coherence annotation is given in Figure 1.

6.2 Style Matching

We performed style-matching annotation for the
verses generated at iterations 16,000–16,400 for
each artist. Therefore, each artist has five gener-
ated verses available for evaluation, one for each
interval of 100 iterations. For the experiment with
authentic verses, we randomly chose five verses
from each artist, with a verse length of at least 40
tokens. Each page was annotated twice, by native
English-speaking rap fans. The results of our style

33



Artist Authentic Generated
Match% MatchA% Raw agreement % Match% MatchA% Raw agreement %

Tupac 35.0 50.0 40.0 45.0 57.1 35.0
Aesop Rock 30.0 25.0 40.0 37.5 100.0 10.0
DMX 40.0 71.4 35.0 27.5 30.0 50.0
Drake 32.5 44.4 45.0 37.5 40.0 25.0
Eminem 12.5 00.0 50.0 35.0 50.0 30.0
Fabolous 25.0 12.5 40.0 45.0 50.0 40.0
GZA 52.5 72.7 55.0 32.5 22.2 45.0
Jay Z 35.0 42.9 35.0 22.5 22.2 45.0
Lil’ Wayne 27.5 22.2 45.0 37.5 57.1 35.0
Notorious B.I.G. 25.0 0.00 35.0 27.5 33.3 30.0
Sage Francis 52.5 66.7 45.0 22.5 16.7 30.0
Average 33.4 37.1 42.3 33.6 43.5 34.1

Table 2: The percentage of correct matches and the inter-annotator agreement in style matching evaluation

Fluency evaluation

Figure 2: Percentage of lines annotated as strongly
fluent, weakly fluent, and not fluent. The numbers
above the bars reflect the total score of the artist
(higher is better). The resulting mean is 0.723 and
the standard deviation is 0.178.

matching annotations are shown in Table 2. We
present two different views of the results. First,
each annotation for a page is considered separately
and we calculate:

Match% =
#m

#a
(2)

where #m is the number of times, on a given
page, the chosen verse actually came from the tar-
get artist, and #a is the total number of annota-
tions done. For a given artist, five verses were
evaluated, each verse appeared on four separate
pages, and each page is annotated twice, so #a
is equal to 40. Since in each case (i.e., page)
the classes are different, we cannot use Fleiss’
kappa directly. Raw agreement for style annota-
tion, which corresponds to the percentage of times

Coherence evaluation

Figure 3: Percentage of lines annotated as strongly
coherent, weakly coherent, and not coherent. The
numbers above the bars reflect the total score of
the artist (higher is better). The resulting mean is
0.713 and the standard deviation is 0.256.

annotators picked the same verse (whether or not
they are correct) is shown in the column ’Raw
agreement %’ in Table 2.

We also report annotators’ joint ability to guess
the target artist correctly, which we compute as
follows:

MatchA% =
#mA

#sA
(3)

where #sA is the number of times the annotators
agreed on a verse on the same page, and #mA is
the number of times that the agreed upon verse is
from the target artist.

In terms of times requirements for implement-
ing this annotation task, each page takes two min-
utes on average to complete, given that the anno-
tator must read five verses then make the match
decision. For our experiments, we annotated 880

34



pages total, resulting in a total annotation time of
29 hours.

6.2.1 Artist Confusion

Figure 4: Fraction of confusions between artists

The results of style-matching annotation pro-
vides us with an interesting insight into the sim-
ilarity between two artists’ styles. This is captured
by the confusion between two artists during the an-
notation of the pages with authentic verses, which
is computed as follows:

Confusion(a, b) =
#c(a, b) + #c(b, a)

#p(a, b) + #p(b, a)
(4)

where #p(a, b) is the number of times a verse
from artist a is presented for evaluation and a verse
from artist b is shown as one of four choices;
#c(a, b) is the number of times the verse from
artist b was chosen as the matching verse. The re-
sulting confusion matrix is presented in Figure 4.
We intend for this data to provide a gold standard
for future experiments that would attempt to en-
code the similarity of artists’ styles. For example,
if we were to try to embed an artist, we could use
the confusion results as gold standard similarity
scores between the artists’ embeddings to deter-
mine how effective the embedding methodology
is.

6.3 Automated Evaluation

The results of our automated evaluation are shown
in Table 3. For each artist, we calculate their av-
erage rhyme density across all verses. We then
use this value to determine at which iteration this

rhyme density is achieved during generation (us-
ing the regression line for rhyme density). Next,
we use the maximum similarity regression to de-
termine the maximum similarity score at that it-
eration. Low maximum similarity score indicates
that we have maintained stylistic similarity while
producing new, previously unseen lyrics.

Note that the reason for negative numbers in Ta-
ble 3 is that in the beginning of training (in case of
LSTM) and at a low n-gram length (for the base-
line model), the models actually achieved a rhyme
density that exceeded the artist’s average rhyme
density. As a result, the rhyme density regression
line hits the average rhyme density on a negative
iteration.

7 Discussion

In order to understand better the interaction be-
tween the four metrics we have introduced in this
paper, we examined correlation coefficients be-
tween different measures of quality for generated
verse (see Table 4). The lack of strong correla-
tion supports the notion that different aspects of
verse quality should be addressed separately and
are, in fact, complementary. Even the measures
of fluency and coherence, despite sharing a similar
goal, have a relatively low correlation of 0.4.

Interestingly, the number of verses a rapper has
in our dataset has a strong negative correlation
with coherence score (cf. Table 5). This can be
explained by the following consideration: on iter-
ation 16,000, the model for the authors with the
smaller number of verses has seen the same verses
more times than the model trained on a larger
number of verses. Therefore, it is easier for the
former to produce more coherent lyrics since it
saw more of the same patterns. As a result, models
trained on a larger number of verses have a lower
coherence score. For example, Lil’ Wayne has the
most verses in our data, and correspondingly, the
model for his verse has the worst coherence score.
Note that the fluency score does not have this neg-
ative correlation with the number of verses. Based
on our evaluation, 16,000 iterations is enough to
learn a language model for the given artist that pro-
duces fluent lines. However, these lines will not
necessarily form a coherent verse if the artist has
a large number of verses. Furthermore, although
the average fluency score was 0.723, which can
be interpreted as being roughly halfway between
weakly fluent and strongly fluent, the standard de-

35



Artist Avg Rhyme Density Baseline LSTM
Similarity N-gram Similarity iteration

Tupac 0.302 0.024 −2 0.065 −3168
Aesop Rock 0.349 0.745 7 0.460 12 470

DMX 0.341 0.663 6 0.431 8271

Drake 0.341 0.586 5 0.519 9949

Eminem 0.325 0.337 3 0.302 8855

Fabolous 0.360 1.353 14 0.569 14 972

GZA 0.280 0.520 4 0.616 14 939

Jay Z 0.365 0.499 5 0.463 15 147

Lil’ Wayne 0.362 0.619 6 0.406 9249

Notorious B.I.G. 0.383 0.701 7 0.428 3723

Sage Francis 0.415 0.764 8 0.241 −187
Average - 0.619 - 0.409 -

Table 3: The results of the automated evaluation. The bold indicates the system with a lower similarity at
the target rhyme density.

Coherence Fluency Similarity Matching
Coherence 1.000 0.398 0.102 -0.285
Fluency 0.398 1.000 0.137 -0.276
Similarity 0.102 0.137 1.000 0.092
Matching -0.285 -0.276 0.092 1.000

Table 4: The correlation between the four metrics
we have developed: Coherence, Fluency, similar-
ity score based on automated evaluation (Similar-
ity), and Style Matching (Matching).

viation was 0.178. Referring to Table 5, we have
yet to find a linguistic statistic that accounts for
this variance in fluency score amoung the artists.

Coherence Fluency Similarity Matches
Verses -0.509 -0.084 0.133 0.111
Tokens -0.463 -0.229 -0.012 0.507
Vocab Richness 0.214 0.116 -0.263 0.107

Table 5: The correlation between the number of
verses/tokens and average coherence, fluency, and
similarity scores, as well as MatchA% at 16000
iterations.

As can be seen from Table 2, the Match%
score suggests that the LSTM-generated verses are
able to capture the style of the artist as well as
the original verses. Furthermore, MatchA% is
significantly higher for the LSTM model, which
means that the annotators agreed on matching
verses more frequently (see Figure 5 as well). We
believe this means that the LSTM model, trained
on all verses from a given artist, is able to cap-
ture the artist’s “average” style, whereas authen-
tic verses represent a random selection that are
less likely, statistically speaking, to be similar to

another random verse. One aspect to which the
match results for authentic verse point is that prac-
tically, in terms of artist style, certain artists are
more distinct, making them better suited to be tar-
get artists for the ghostwriting tasks. For example,
GZA recorded the highest Match%, MatchA%,
and agreement percentage, meaning his style is
the most distinguishable. Note that as expected,
there is a strong correlation between the number
of tokens in the artist’s data and the frequency of
agreed-upon correct style matches (cf. Table 5).
Since verses vary in length, this correlation is not
observed for verses. Finally, the absence of strong
correlation with vocabulary richness suggests that
the uniqueness of the tokens themselves is not as
important as the sheer volume.

Figure 5: The numbers of style matches in the
Style Matching evaluation. The maximum possi-
ble number is 40.

One aspect of the generated verse we have not
discussed so far is the structure of the generated

36



Artist Max Len % of training completed
Tupac 454 69.7
Aesop Rock 450 91.0
DMX 361 64.9
Drake 146 82.3
Eminem 452 90.8
Fabolous 278 47.3
GZA 433 81.1
Jay Z 449 98.5
Lil’ Wayne 253 92.7
Nototious B.I.G. 253 83.0
Sage Francis 280 53.9
Average - 77.8

Table 6: The maximum lengths of generated verses
and % of training completed on which the verse is
generated

verse. For example, the length of the generated
verses should be evaluated, since the models we
examined do generate line breaks and also decide
when to end the verse. Table 6 shows the longest
verse generated for each artist, and also the point
at which it was achieved during the training. We
note that although 10 of the 11 models are able
to generate long verses (up to a full standard de-
viation above the average verse length for that au-
thor), it takes a substantial amount of time, and the
correlation between the average verse length for a
given an artist and the verse length achieved by the
model is weak (0.258). This suggests that model-
ing the specific verse structure, including length,
is one aspect that should be better addressed in the
future.

Lastly, we note that the fully automated
methodology we propose is able to replicate the
results of the previously available semi-automatic
method for the rapper Fabolous, which was the
only artist evaluated by Potash et al. (2015). Fur-
thermore, the results of automated evaluation for
the 11 artists confirm that the LSTM model gener-
alizes better than the baseline model.

8 Conclusions and Future Work

In this paper, we have presented a comprehensive
evaluation methodology for the task of ghostwrit-
ing rap lyrics, which captures complementary as-
pects of this task and its goals. We developed
a manual evaluation method that assesses sev-
eral key properties of generated verse, and cre-
ated a data set of authentic verse, manually an-
notated for style matching. Previously proposed
semi-automatic evaluation method has now been
fully automated, and shown to replicate results

of the original method. We have shown how the
proposed evaluation methodology can be used to
evaluate an LSTM-based ghostwriter model. We
believe our evaluation experiments also clearly
demonstrate that complementary evaluation meth-
ods are required to capture different aspects of the
ghostwriting task.

Lastly, our evaluation provides key insights into
future directions of the generative models them-
selves. For example, the automated evaluation
shows how the LSTM’s inability to integrate new
vocabulary makes it difficult to achieve truly de-
sirable similarity scores; future generative models
can draw on the work of (Graves, 2013; Bowman
et al., 2015) in an attempt to leverage other artists’
lyrics.

References
Gabriele Barbieri, François Pachet, Pierre Roy, and

Mirko Degli Esposti. 2012. Markov constraints for
generating lyrics with style. In ECAI, pages 115–
120.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2015. Generating sentences from a continuous
space. arXiv preprint arXiv:1511.06349.

Leon A Gatys, Alexander S Ecker, and Matthias
Bethge. 2015. A neural algorithm of artistic style.
arXiv preprint arXiv:1508.06576.

Pablo Gervás. 2000. Wasp: Evaluation of different
strategies for the automatic generation of spanish
verse. In Proceedings of the AISB-00 Symposium on
Creative & Cultural Aspects of AI, pages 93–100.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Hussein Hirjee and Daniel Brown. 2010a. Using auto-
mated rhyme detection to characterize rhyming style
in rap music.

Hussein Hirjee and Daniel G Brown. 2010b. Rhyme
analyzer: An analysis tool for rap lyrics. In Pro-
ceedings of the 11th International Society for Music
Information Retrieval Conference. Citeseer.

Chuan Li and Michael Wand. 2016. Combining
markov random fields and convolutional neural
networks for image synthesis. arXiv preprint
arXiv:1601.04589.

37



Eric Malmi, Pyry Takala, Hannu Toivonen, Tapani
Raiko, and Aristides Gionis. 2015. Dopelearning:
A computational approach to rap lyrics generation.
arXiv preprint arXiv:1505.04771.

Hugo Gonçalo Oliveira, Raquel Hervás, Alberto Dı́az,
and Pablo Gervás. 2014. Adapting a generic plat-
form for poetry generation to produce spanish po-
ems. In 5th International Conference on Computa-
tional Creativity, ICCC.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2015. Ghostwriter: Using an LSTM for automatic
rap lyric generation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

Dekai Wu, Karteek Addanki, Markus Saers, and
Meriem Beloucif. 2013. Learning to freestyle: Hip
hop challenge-response induction via transduction
rule segmentation. In 2013 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2013), Seattle, Washington, USA.

Karteek Addanki Dekai Wu. 2014. Evaluating impro-
vised hip hop lyrics–challenges and observations. In
LREC.

A Appendix: Additional visualizations

Figure 6: The maximum similarity score of the n-
gram model by n.

Figure 7: The maximum similarity score of the
LSTM model by epoch. Note that LSTM model
does not achieve as high a similarity as the n-gram
model even on the latter epochs.

Figure 8: The training process of Fabolous in terms
of fluency evaluation

38


