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Abstract

This position paper argues that, while prior
work in spatial language understanding for
tasks such as robot navigation focuses on map-
ping natural language into deep conceptual
or non-linguistic representations, it is possi-
ble to systematically derive regular patterns of
spatial language usage from existing lexical-
semantic resources. Furthermore, even with
access to such resources, effective solutions
to many application areas such as robot nav-
igation and narrative generation also require
additional knowledge at the syntax-semantics
interface to cover the wide range of spatial
expressions observed and available to natu-
ral language speakers. We ground our in-
sights in, and present our extensions to, an ex-
isting lexico-semantic resource, covering 500
semantic classes of verbs, of which 219 fall
within a spatial subset. We demonstrate that
these extensions enable systematic derivation
of regular patterns of spatial language without
requiring manual annotation.

1 Introduction
While prior work in spatial language understand-
ing for tasks such as robot navigation focuses
on mapping natural language into deep concep-
tual or non-linguistic representations—for further
reasoning or embodied cognition (Perera et al.,
2017; Pastra et al., 2011)—we argue that it is pos-
sible to systematically derive regular patterns of
language usage from existing lexical-semantic re-
sources (Dorr et al., 2001). Furthermore, even
with access to such resources, effective solutions
to many application areas such as robot naviga-
tion and narrative generation require additional
knowledge at the syntax-semantics interface to
capture the range of spatial expressions observed
and available to natural language speakers.

The emphasis of this position paper is on the
representational underpinnings of spatial expres-

sions for problems such as natural-language medi-
ated two-way human-robot dialogue. Such com-
munication may ultimately take place over low
bandwidth networks where, for example, an au-
tonomous robot will navigate and report back from
a remote site on what it sees in cooperation with its
distant human teammate who directs and responds
to the robot as needed. We focus on the use and
modification of existing resources to address this
problem, making certain linguistically-motivated,
working assumptions about:

• layers within our lexical representations,
• levels for distinct language-based modules

with syntactic, semantic, and conceptual
knowledge (each with primitives and oper-
ations for that level), and

• a shared computational model of an environ-
ment that includes representations of objects,
agents, their relations to each other, events–
thus enabling navigation information to be
accessible to both robot and human.

That is, we assume first that there exist lexical-
internal semantic structures with layers, and those
semantic structures contain primitives that are
grounded at a conceptual level (not discussed
herein). We leverage Lexical Conceptual Struc-
ture (LCS) (Jackendoff, 1983; Dorr, 1993), a log-
ical representation with compositional properties,
to guide development of semantics for spatial lan-
guage in language understanding and generation.1

We note that other logical representations may
also be adequate for this study, e.g., Abstract
Meaning Representation (Banarescu et al., 2014),
Prague Dependency Trees (Hajič et al., 2018),
and descendants of such representations (Vander-
wende et al., 2015). LCS has been selected due

1We take these structures to capture language-bound
meanings, that is semantic forms. In our framework, these do
not, despite their name, capture language-independent, con-
ceptual knowledge.
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to its compositional, lexicon-based formalism and
its potential for follow-on work in other language
processing applications for which cross-lingual
LCS mappings have already been devised (e.g.,
machine translation (Habash and Dorr, 2002)).

We assume second, that for human-robot
natural-language mediated communication, a
number of constraints at the syntax-semantics in-
terface are crucial for interpreting the wide rang-
ing flexibility of real utterances and the context of
the system is central to dialogue management. We
leverage previously collected dialogue data with
naturally occurring spoken Bot Language (Marge
et al., 2017) that provides transcripts and dialog
analyses (Traum et al., 2018), but without any
form of lexical semantics.

We assume third, that we will test and validate
our approach by augmenting an implemented di-
alogue system for understanding and generation
of Bot Language. The application of our founda-
tional paradigm to this problem is a future direc-
tion outside of the scope of this position paper.

The layered lexical representations referred to
in the first assumption above form the basis for
this discussion. Specifically, we posit that the de-
velopment of an application such as robot navi-
gation (Bonial et al., 2018; Moolchandani et al.,
2018) or generation of narrative explanations (Ko-
rpan et al., 2017; Lukin et al., 2018) requires a
layered representation scheme to include a set of
spatial primitives (the basis for the LCS represen-
tation) coupled with a representation of constraints
at the syntax-semantics interface. Additional lay-
ers include prepositional collocates2 and spatial
semantics that are crucial for understanding and
production of unconstrained spatial expressions.

We describe our extensions to an LCS resource
covering 500 semantic classes of verbs, of which
219 fall within a spatial subset. We demonstrate
that this resource is designed to systematically ac-
count for certain types of spatial expressions based
on lexical-semantic constraints of spatial verbs in
those expressions.

At the heart of the position presented herein is a
representational framework that supports the abil-
ity to “read off” such constraints from lexical en-
tries without requiring laborious manual annota-

2Prepositions that, when tested in collocations with oth-
erwise non-spatial expressions, add spatial information. For
example, in The hawk screeched across the sky., the preposi-
tional phrase headed by across introduces motion not present
in the intransitive The hawk screeched (Talmy, 2014).

tion. Similarly, when subsequent lexicon updates
occur, the ability to “read off” constraints is still
available without manual annotation. This differ-
entiates our approach from others, e.g., feature-
based annotation (for a cogent review of natural
language annotation approaches, see (Stubbs and
Pustejovsky, 2012)). Our LCS-based approach is
described next, followed by related work and con-
cluding remarks.

2 Approach
This section introduces the notion of LCS and
describes an LCS-based approach to systematic
derivation of usage patterns for understanding and
generation. We extend an LCS resource to include
constraints (blocks, overlaps, and fills) and present
the upshot of these extensions.

2.1 Lexical Conceptual Structure
Lexical Conceptual Structure (LCS) (Jackendoff,
1983, 1990; Dorr, 1993; Dowty, 1979; Guerssel
et al., 1985) has been used for a range of different
applications, including interlingual machine trans-
lation (Habash and Dorr, 2002), lexical acquisition
(Habash et al., 2006), cross-language information
retrieval (Levow et al., 2000), language generation
(Traum and Habash, 2000), and intelligent lan-
guage tutoring (Dorr, 1997).

The LCS representation was introduced by
Jackendoff as based in the spatial domain and nat-
urally extended to non-spatial domains, as spec-
ified by fields.3 For example, the spatial dimen-
sion of the LCS representation corresponds to the
(Loc)ational field, which underlies the meaning of
John traveled from Chicago to Boston in the LCS
[John GOLoc [From Chicago] [To Boston]]. This
is straightforwardly extended to the (Temp)oral
field to represent analogous meanings such as The
meeting went from 7pm to 9pm in the LCS [Meet-
ing GOTemp [From 7pm] [To 9pm]].

An “LCS Verb Database” (LVD) developed in
prior work (Dorr et al., 2001) includes a set of LCS
templates classified according to an extension of
(Levin, 1993)’s 192 classes, totaling 500 classes.
The first 44 classes were added beyond the origi-
nal set of semantic classes (Dorr and Jones, 1996).
Additional classes were derived through aspectual
distinctions to yield LCS classes that were finer-
grained than the original Levin classes (Olsen

3For a more extensive, non-LCS-based analysis and ac-
counting of the relation of spatial and temporal concepts, see
(Tenbrink, 2011).
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et al., 1997). Each LCS class consists of a set
of verbs and, in several cases, the classes include
non-Levin words (those not in (Levin, 1993)), de-
rived semi-automatically (Dorr, 1997). LVD is
foundational for the position adopted in this pa-
per, as it provides a mapping from LCS-based verb
classes to their surface realizations.

The representational framework provided by the
LVD has many similarities with others such as
FrameNet (Ruppenhofer et al., 2016) and Verb-
Net (Palmer et al., 2017), both of which also in-
clude classes and mappings to surface realizations.
Whereas FrameNet has a richer semantics, e.g.,
finer grained classes than those of Levin (1993),
VerbNet has a clearer mapping to surface realiza-
tions with specific mappings from thematic roles
to syntactic realizations.The LVD differs from
both of these in that its compositional represen-
tations support the ability to “read off”different
types of lexical-semantic constraints without re-
quiring manual annotation. For example, con-
straints on the mapping between semantics and
syntax, e.g., blocks, overlaps, and fills, can be
“read off” LVD entries, as described below.

2.2 Syntax-Semantics Interface
Prior work (Jackendoff, 1996; Levin, 1993; Dorr
and Voss, 1993; Voss and Dorr, 1995; Kipper
et al., 2007; Palmer et al., 2017) suggests that there
is a close relation between underlying lexical-
semantic structures of verbs and nominal predi-
cates and their syntactic argument structure. The
work of Voss et al. (1998) supports that the gener-
ation of a preposition (in English) as dependent on
both the semantics of the predicate and structural
idiosyncracies at the syntax-semantics interface.

Three notions introduced in this earlier work
are relevant to spatial language understanding:
BLOCK (where a LCS predicate preempts or
blocks the composition into one of its argument
positions by another LCS), OVERLAPS (where
a LCS predicate allows the composition of an-
other LCS into one of its already-occupied argu-
ments), and FILLS (where a LCS predicate allows
the composition of another correctly typed LCS
into one of its empty arguments).

To investigate the systematic derivation of lan-
guage usage patterns for both understanding and
generation of spatial language, we first sim-
plify and adapt the LVD to include mappings to
both lexically implicit and lexically explicit direc-
tional components of meaning. We focus specifi-

LCS Primitives: GO, BE, STAY, CAUSE, etc.

Spatial Semantics: upward, downward, etc. 

Prepositional collocates: up, down, in, into, 
out of, across, to, from, etc.. 

Blocks
Overlaps
Fills

Figure 1: Layered Representation Scheme: Spatial
primitives (bottom layer) are coupled with spatial se-
mantics (middle layer) and spatial semantics (top layer)
for spatial language understanding and generation

cally on directional verbs coupled with these im-
plicit/explicit directional components of meaning.

We posit that the development of a framework
for both understanding and generation of spatial
language requires a layered representation scheme
illustrated in Figure 1. The top two layers rely
heavily on the notions of BLOCKS, OVERLAPS,
and FILLS. More specifically:

• BLOCKS refers to lexically implicit di-
rectional components of meaning (such as
upward) that cannot be lexically realized on
the surface, as happens when a predicate al-
ready includes the corresponding directional
component of meaning, e.g., elevate and as-
cend do not collocate with the preposition up.

• OVERLAPS refers to lexically implicit and
optionally explicit directional components of
meaning (such as upward) that may or may
not be lexically realized on the surface even
though the semantics of the predicate in-
cludes the corresponding directional compo-
nent of meaning, e.g., lift and raise optionally
collocate with up.

• FILLS refers to lexically explicit directional
components of meanings that fall into one of
two categories: (1) obligatory components
of meaning (such as upward) that must be
lexically realized, as the semantics of the
predicate does not include the correspond-
ing directional component of meaning, e.g.,
put always collocates with a preposition such
as up. (2) optional components of mean-
ing (such as upward) that may or may not
be lexically realized, as the semantics of the
predicate does not include directional com-
ponent of meaning, e.g., move optionally col-
locates with a preposition, such as up.

The LVD described in Section 2.1 includes
compositional structures based on primitives such
as GO, BE, STAY, CAUSE. These structures,
which form the foundation for the bottom layer,
are outside of the scope of this paper.
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2.3 Upshot of Lexico-Semantic Extensions
for Spatial Language Understanding

An adapted form of the LVD has been developed
for the purpose of illustrating the position taken in
this paper. This derivative resource contains sim-
plified LCS classes, omitting the full LCS struc-
tures and thematic roles from prior work, and aug-
menting LCS classes to include prepositional col-
locations (the top layer of Figure 1), coupled with
a new spatial component of meaning (the middle
layer of Figure 1).

The spatial component of meaning may or may
not be overtly realized on the surface. For exam-
ple, in the LCS Class of Verbs of inherently di-
rected motion (corresponding to Class 51.1.a in
(Levin, 1993)), the verb leave can take a NP com-
plement (as in leave the room) and the verb depart
can take a PP complement (as in departed from the
room). For either case, the spatial component of
meaning is uniformly move to a position
outside of the room.

Whereas the collocations were derived from
thematic roles in the original LVD, the spatial
components of meaning were derived from verb-
prepositions pairs associated with a subset of
the “Categorial Variation” database (Habash and
Dorr, 2003). Representative members of LCS
classes were then paired with prepositions that
were propagated to other members of the class.

Table 1 summarizes the number of LCS classes
associated with the lexical notions introduced
above (Blocks, Overlaps, Fills-Oblig, Fills-Opt).4

Not all LCS classes are spatial in nature; thus,
the second column provides a tally for the full set
of LCS classes, and the third column provides a
tally for just the spatial subset. The fourth column
presents the number of spatial verbs included in
the corresponding spatial classes. Representative
spatial examples are provided in the fifth column.
Lexical
Notions

LCS
Classes

Spatial
Subset

#Spatial
verbs

Spatial Examples

Blocks 7 7 297 elevate, face, pocket
Overlaps 17 10 84 advance, lower, lift
Fills-Oblig 310 128 2783 drive, rotate, put
Fills-Opt 87 59 1280 remove, slide
Intrans 6 3 34 float, part, squirm
N/A 73 12 162 bend, break, carry
Total 500 219 4640

Table 1: Summary of number of classes associated with
Blocks, Overlaps, Fills-Oblig, Fills-Opt, and Intrans in
LCS Classes and Spatial Subset

4N/A refers to verb classes whose members take bare NP
or S arguments. Intrans refers to Intransitive verbs.

Interestingly, the spatial subset of classes is
sizeable (44% of the entire set of 500 classes).
The percentage of verb entries in the spatial sub-
set is also quite high (42% of the 11K total num-
ber of verb entries). Several verbs in the Spatial
Subset are relevant to those used in robot naviga-
tion, e.g., move, go, advance, drive, return, rotate,
and turn. Others are easily accommodated by ex-
tending classes—without modification to the spa-
tial notions described above. For example, back up
matches the class containing advance, and pivot
matches the class containing rotate.

Note that the BLOCKS, OVERLAPS, AND
FILLS notions are generalizable to a high num-
ber of LCS classes that are non-spatial as well.
These typically correspond to metaphorical exten-
sions of spatial components of meaning to other
domains, e.g., lifted her spirits up, elevated her
spirits. Thus, these notions are more broadly ap-
plicable than just to the spatial dimension.

Ultimately, surface realizations of verbs with
collocations include lexically explicit prepositions
as in lift up, whereas no such collocates are avail-
able when spatial components of meaning are in-
ternally conveyed as in elevate and thus are lex-
ically implicit. Adding this information to the
derivative resource supports a refined formulation
of BLOCKS, OVERLAPS, and FILLS notions–
which are central to a range of important prob-
lems, e.g., dialogue management in robot naviga-
tion (Bonial et al., 2017) and generation of narra-
tive explanations (Korpan et al., 2017).

3 Related Work
The ever-growing number of interdisciplinary re-
search programs that now involve natural language
processing but are published outside of computa-
tional linguistics, provides both challenges and op-
portunities to all communities seeking to leverage
emerging insights from beyond their own areas of
expertise. In this short position paper, we high-
light but two areas pertinent to our work, while
acknowledging there exists much other research
in situated dialogue for robots (e.g., (Mavridis and
Roy, 2006; Kruiff et al., 2007)) and spatial cog-
nition (e.g., publications of the Spatial Cognition
collaborative research center in Germany) that is
not as central to our focus.

3.1 Spatial Language Understanding
Spatial language understanding has made great
strides in recent years, with the emergence of lan-
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guage resources and standards for capturing spa-
tial information. For example, the ISO 24617
standard provides guidelines for annotating spa-
tial information in English language texts (24617-
7, 2014) that continues to evolve (Pustejovsky and
Lee, 2017). This Semantic Annotation Framework
(semAF) identifies places, paths, spatial entities,
and spatial relations that can be used to associate
sequences of processes and events in news articles
(Pustejovsky et al., 2011). Spatial prepositions
and particles (such as near, off ) and verbs of po-
sition and movement (such as lean, swim) in text
have corresponding spatial components of mean-
ings, collocations, and classes of spatial verbs in
the perspective adopted in this paper.

Spatial role labeling using holistic spatial se-
mantics (i.e., analysis at the level of the full ut-
terance) has been used for identifying spatial rela-
tions between objects (Kordjamshidi et al., 2010).
The association between thematic roles and their
corresponding surface realizations has been inves-
tigated previously, including in the LCS formal-
ism (described next), but Kordjamshidi et al’s ap-
proach also ties into deeper notions such as region
of space and frame of reference. Their work dif-
fers from the perspective adopted in this paper in
that they provide annotation guidelines for train-
ing systems that do spatial information extraction,
and so do not focus on generalized mappings at
the syntax-semantics interface to predict possible
linguistic constructs for spatial relations.

3.2 Embodied Cognition
Another research area relevant to the position
adopted herein is that of embodied cognition for
the development of language processing tools
(Pastra et al., 2011). A European-funded project
(POETICON) has resulted in a suite of embodied
language processing tools relating symbolic and
sensorimotor representation spaces. This work
sheds light on the nature of the relationship be-
tween language and action, enabling exploration
of a range of different projects concerning lan-
guage learning and human-robot interaction.

Other researchers have focused on natural lan-
guage grounding for embodied interaction (Al-
Omari et al., 2017) to learn components of lan-
guage and the meanings of each word. The ac-
quired knowledge that emerges from this approach
is used to parse commands involving previously
unseen objects. Thus, that work assumes no prior
knowledge of the structure of language; rather,

word meanings are learned from scratch. In con-
trast, the perspective put forward in this paper is
one in which this knowledge already exists and
can be leveraged for support of both language un-
derstanding and generation.

The work of Spranger et al. (2016) is the clos-
est to our perspective, particularly in its use of
spatial relations such as across and in front of,
both for hearing and for producing utterances for
robot-robot communication. However, the posi-
tion adopted here is one in which generalizations
about language structure are assumed and avail-
able in natural language generation for both use
(“lift up”) and suppression (“elevate”) of spatial
prepositions in phrases containing motion and di-
rection verbs, depending on the context.

4 Conclusions and Future Work
We have made a case for the systematic deriva-
tion of regular patterns of spatial language us-
age from an existing lexical semantic resource
(LCS Verb Lexicon). We have focused on a re-
fined formulation of BLOCKS, OVERLAPS, and
FILLS, lexical-semantic notions that are central to
problems dialogue management in robot naviga-
tion and generation of narrative explanations. We
demonstrated that these extensions enable system-
atic derivation of regular patterns of spatial lan-
guage without requiring manual annotation.

Future work motivated by the position set forth
in this paper is investigation of systematic deriva-
tion of mappings at the syntax-semantics inter-
face for other parts of speech involving access to a
“Categorial Variation” database (CatVar) (Habash
and Dorr, 2003) to map verbs in the LCS classes
to their nominalized and adjectivalized forms. For
example, the CatVar entry for depart includes
the nominalized form departure, which takes a
prepositional-phrase complement (e.g., from the
room)—analogous to the verbal counterpart spec-
ified in the simplified LCS classes.

Another future direction is one where these gen-
eralized mappings are used in conjunction with
data collected within an ongoing Bot Language
project (Marge et al., 2017) to enable spatial lan-
guage understanding in robot navigation. That
project has heretofore focused on dialogue anno-
tation (Traum et al., 2018) and has not yet incor-
porated deeper semantics necessary for automati-
cally detecting incomplete, vague, or implicit nav-
igation commands within dialogues in the spatial
domain—issues addressed by our extensions.
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