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Abstract

The challenge for computational models of
spatial descriptions for situated dialogue sys-
tems is the integration of information from
different modalities. The semantics of spa-
tial descriptions are grounded in at least two
sources of information: (i) a geometric repre-
sentation of space and (ii) the functional inter-
action of related objects that. We train sev-
eral neural language models on descriptions of
scenes from a dataset of image captions and
examine whether the functional or geometric
bias of spatial descriptions reported in the liter-
ature is reflected in the estimated perplexity of
these models. The results of these experiments
have implications for the creation of models of
spatial lexical semantics for human-robot di-
alogue systems. Furthermore, they also pro-
vide an insight into the kinds of the semantic
knowledge captured by neural language mod-
els trained on spatial descriptions, which has
implications for image captioning systems.

1 Introduction

Spatial language understanding is fundamental re-
quirement for human-robot interaction through di-
alogue. A natural task for a human to request a
robot to fulfil is to retrieve or replace an object for
them. Consequently, a particularly frequent form
of spatial description within human-robot interac-
tion is a locative expression. A locative expression
is a noun phrase that describes the location of one
object (the target object) relative to another object
(the landmark). The relative location of the target
object is specified through a prepositional phrase:

Bring me the big red book on the table.
[\ S N——

Target Landmark

Prepositional
Phrase

Locative Expression
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In order to understand these forms of spatial de-
scriptions a robot must be equipped with compu-
tational models of the spatial semantics of prepo-
sitions that enable them to ground the semantics
of the locative expression relative to the context of
the situated dialogue.

A natural approach to developing these compu-
tational models is to define them in terms of scene
geometry. And, indeed, there is a tradition of re-
search that follows this path, see for example (Lo-
gan and Sadler, 1996; Kelleher and Costello, 2005,
2009). However, there is also a body of experi-
mental and computational research that has high-
lighted that the semantics of spatial descriptions
are dependent on several sources of information
beyond scene geometry, including functional se-
mantics (which encompasses a range of factors
such as world knowledge about the typical inter-
actions between objects, and object affordances)
(Coventry and Garrod, 2004). We can illustrate
this distinction between geometric and function-
ally defined semantics using a number of exam-
ples. To illustrate a geometric semantics: assum-
ing a spatial meaning, anything can be described
as to left of anything else so long the spatial con-
figuration of the two objects is geometrically cor-
rect. However, as (Coventry et al., 2001) has
shown the spatial description the umbrella is over
the man is sensitive to the protective affordances
of the umbrella to stop rain, and is appropriate in
contexts where, the umbrella is not in a geometri-
cally prototypical position above the man, so long
as the umbrella is protecting the man from the rain.

A further complication with regard to modelling
the semantics of spatial descriptions is that experi-
mental results indicate that the contribution of ge-
ometrical and functional factors is not the same for
every spatial relation (Garrod et al., 1999; Coven-
try et al., 2001). This experimental work shows
that there is an interplay between function and ge-
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ometry in the definition of spatial semantics and
therefore the spatial meaning of given spatial rela-
tion is neither fully functional nor fully geometric.
Rather, spatial terms can be ordered on a spectrum
based on the sensitivity of their semantics to geo-
metric or functional factors.

Given the distinction between geometric and
functional factors in shaping spatial semantics,
a useful analysis that would inform the design
and creation of computational models of spa-
tial semantics is to identify the particular seman-
tic bias (geometric/functional) that each spatial
term evinces. However, such an analysis is dif-
ficult. Native speakers do not have strong in-
tuitions about the bias of prepositions and such
bias had to be established experimentally (Coven-
try et al., 2001; Garrod et al., 1999) or through
linguistic analysis (Herskovits, 1986, p.55).! Re-
viewing the literature on this experimental and an-
alytic work reveals that prepositions such as in,
on, at, over, under have been identified as being
functionally biased, whereas above, below, left of
and right of are geometrically biased. Other spa-
tial relations may be somewhere in between. In
this paper we will use these relations as ground-
truth pointers against which our methods will be
evaluated. If the method is successful, then we
are able to make predictions about those relations
that have not been verified for their bias experi-
mentally. Knowing the bias of a spatial relation
is useful both theoretically and practically. The-
oretically, it informs us about the complexity of
grounded semantics of spatial relations. In par-
ticular, it engages with the “what” and “where”
debate where it has been argued that spatial rela-
tions are not only spatial (i.e. geometric) (Landau
and Jackendoff, 1993; Coventry and Garrod, 2004;
Landau, 2016). Practically, the procedure to esti-
mate the bias is useful for natural language genera-
tion systems, for example in situated robotic appli-
cations that cannot be trained end-to-end. Given
that a particular pair of objects can be described
geometrically with several spatial relations, the
knowledge of functional bias may be used as a fil-
ter, prioritising those relations that are more likely
for a particular pair of objects, thereby incorporat-

I'The discussion of Herskovits focuses on interaction of
objects conceptualised as geometric shapes, for example on:
contiguity with line or surface. The fact that the inter-
acting objects can be conceptualised as different geometric
shapes points and therefore related by a particular preposi-
tions points to their functional nature as discussed here.

ing functional knowledge. This approach to gen-
eration of spatial descriptions is therefore similar
to the approach that introduces a cognitive load
based hierarchy of spatial relations (Kelleher and
Kruijff, 2006) or a classification-based approach
that combines geometric (related to the bounding
box), textual (word2vec embeddings) and visual
features (final layer of a convolutional network)
(Ramisa et al., 2015). The functional geometric
bias of spatial relations could also be used to in-
form semantic parsing, for example in preposi-
tional phrase attachment resolution (Christie et al.,
2016; Delecraz et al., 2017).

Previous work has investigated metrics of the
semantic bias of spatial prepositions, see (Dobnik
and Kelleher, 2013, 2014). (Dobnik and Kelle-
her, 2013) uses (i) normalised entropy of target-
landmark pairs to estimate variation of targets and
landmarks per relation and (ii) log likelihood ra-
tio to predict the strength of association of target-
landmark pairs with a spatial relation and presents
ranked lists of relations by the degree of argu-
ment variation or strength of the association re-
spectively. The approach hypothesises that func-
tionally biased relations are more selective in the
kind of targets and landmarks they co-occur with.
The reasoning behind this is that geometrically it
is possible to relate a wider range of objects than in
the case where additional functional constrains be-
tween objects are also applied. (Dobnik and Kelle-
her, 2014) generalises over landmarks and targets
in WordNet hierarchy and estimates the generality
of the types of landmark. Again, the work hypoth-
esises that functional relations are more restricted
in their choice of target and landmark objects and
therefore are generally more specific in terms of
the WordNet hierarchy. Both papers present re-
sults compatible with the hypotheses where the
functional or geometric nature of prepositions is
predicted in line with the experimental studies
(Garrod et al., 1999; Coventry et al., 2001).

Sensitive to the fact that relations such as in and
on not only have spatial usage but also usages that
may be considered metaphoric (Steen et al., 2010),
both (Dobnik and Kelleher, 2013) and (Dobnik
and Kelleher, 2014) were based on an analysis of
a corpus of image captions. The idea being that
descriptions of images are more likely to contain
spatial descriptions grounded in the image. For
similar reasons, we also employ a corpus of image
descriptions (larger than in the previous work).



This paper adopts a similar research hypothe-
sis to (Dobnik and Kelleher, 2014, 2013), namely
that: it is possible to distinguish between function-
ally biased and geometrically biased spatial rela-
tions by examining the diversity of the contexts in
which they occur. Defining the concept of context
in terms of the target and landmark object pairs
that a relation occurs within, the rationale of this
hypothesis is that: geometrically biased relations
are more likely to be observed in a more diverse set
of contexts, compared to functionally biased rela-
tions, because the use of a geometrically biased
relation only presupposes the appropriate geomet-
ric configuration whereas the use of a functionally
biased relation is also constrained by object affor-
dances or typical interactions.

However, the work presented in this paper pro-
vides a more general analytical technique based
on a neural language model (Bengio et al., 2003;
Mikolov et al., 2010) which is applied to a larger
dataset of spatial descriptions. We use neural lan-
guage models as the basic tool for our analysis
because they are already commonly used to learn
the syntax and semantics of words in an unsu-
pervised way. The contribution of this paper in
relation to (i) the previous analyses of geomet-
ric and functional aspects of spatial relations is
that it examines whether similar predictions can
be made using these more general tools of repre-
senting meaning of words and phrases; the contri-
bution to (ii) deep learning of language and vision
is that it examines to what extent highly specific
world-knowledge can be extracted from a neural
language model. The paper proceeds as follows:
in Section 2 we describe the datasets and their pro-
cessing, in Section 3 we describe the basics behind
language models and the notion of perplexity, in
Section 4 and 5 we present and discuss our results.
We conclude in Section 6.

The code that was used to produce the
datasets and results discussed in this paper can
be found at: https://github.com/GU-CLASP/
functional-geometric-1m.

2 Datasets

The Amsterdam Metaphor Corpus (Steen et al.,
2010) which is based on a subsection of a BNC
reveals that the spatial sense of prepositions are
very rare in genres such as news, fiction and aca-
demic texts. For example, below only has two
instances that are not labelled as a metaphor and

more than 60% of fragments with in, on, and
over are not used in their spatial sense. For
this reason Dobnik and Kelleher (2013) use two
image description corpora (IAPR TC-12 (Grub-
inger et al., 2006) and Flickr8k (Rashtchian et al.,
2010)) where spatial uses of prepositions are com-
mon. They apply a dependency parser and a set
of post-processing rules to extract spatial relations,
target and landmark object triplets. The size of this
extracted dataset is 96,749 instances and is rela-
tively small for training a neural language model.
(Kordjamshidi et al., 2017) released CLEF 2017
multimodal spatial role labelling dataset (mSpRL)
which is a human annotated subset of the IAPR
TC-12 Benchmark corpus for spatial relations, tar-
gets and landmarks (Kordjamshidi et al., 2011)
containing 613 text files and 1,213 sentences.
While this dataset could not be used to train a lan-
guage model directly, a spatial role labelling clas-
sifier could be trained on it to identify spatial rela-
tions and arguments which would then be used to
produce a bootstrapped dataset for training a neu-
ral language model.

Recently, Visual Genome (Krishna et al., 2017)
has been released which is a crowd-source an-
notated corpus of 108K images which also in-
cludes annotations of relationships between (pre-
viously annotated) bounding boxes. Relation-
ships are predicates that relate objects which in-
clude spatial relations (2404639, “cup on table”),
verbs (2367163, “girl holding on to bear”) as
well as combinations of verbs and spatial relations
(2317920, “woman standing on snow”) and oth-
ers. We use this dataset in the work reported here.
Its advantage is that it contains a large number
of annotated relationships but the disadvantage is
that these are collected in a crowd-sourced setting
and are therefore sometimes noisy but we assume
these are still of better quality than those from a
bootstrapped machine annotated dataset.

To extract spatial relations from the annotated
relationships, we created a dictionary of their syn-
tactic forms based on the lists of English spatial
relations in Landau (1996) and Herskovits (1986).
For the training data we preserve all items an-
notated as relationships as single tokens (“jump-
ing_over”) and we simplify some of the composite
spatial relations based on our dictionary, e.g. “left
of”” and “to the left of” become “left” to increase
the frequency of instances. This choice could have
affected our results if done without careful consid-



eration. While compound variants of spatial re-
lations have slightly different meanings, we only
collapsed those relations for which we assumed
this would not affect their geometric or functional
bias. Furthermore, Dobnik and Kelleher (2013)
show that compound relations cluster with their
non-compound variants using normalised entropy
of target-landmark pairs as a metric. Finally, some
variation was due to the shorthand notation used
by the annotators, e.g. “to left of”. The reason be-
hind keeping all relation(ships) in the training set
is to train the language model on as many targets
and landmarks as possible and to learn paradig-
matic relations between them. We normalise all
words to lowercase and remove the duplicate de-
scriptions per image (created by different anno-
tators). We also check for and remove instances
where a spatial relation is used as an object, e.g.
“chair on left”. We remove instances where one of
the words has fewer than 100 occurrences in the
whole dataset which reduces the dataset size by
10%. We add start and end tokens to the triplets
((s) target relation landmark (/s)) as required for
training and testing a language model. The dataset
is shuffled and split into 10 folds that are later used
in cross-validation. In the evaluation, we take 20
samples per spatial relation from the held out data
of those relations that are members of the dictio-
nary created previously. This way the average per-
plexity is always calculated on the same number
of samples per each relation.

3 Language model and perplexity
3.1 Language model

Probabilistic language models capture the sequen-
tial properties of language or paradigmatic rela-
tions between sequences of words. Using the
chain rules of probabilities they estimate the like-
lihood of a sequence of words:

T
P(wir) =Y P(wiiilwiy) (1)

=1
Neural language models estimate probabilities by
optimising parameters of a function represented in
a neural architecture (Bengio et al., 2003):

fi—1:0) =% (2

2The reason we use 20 sample is that this is also the size
of the 10% test folds in the down-sampled dataset described
later. In selecting 20 items for the test-set we also ensure that
it contains the vocabulary in the down-sampled training folds.

P Wz+1 ’WI it = V/q,)

where O represents parameters of the model, f be-
ing the composition of functions within the neu-
ral network architecture, and v, the words up to
time ¢ in the sequence. The output of the function
is y; € R", a vector of probabilities, with each di-
mension representing the probability of a word in
the vocabulary. The loss of a recurrent language
model is the average surprisal for each batch of
data (Graves et al., 2013; Mikolov et al., 2010):

Z Z log Vr Vk,+1 ) 3)

loss(S
s€St=0 |S|

Note that our architecture is deliberately simple as
we apply it in an experimental setting with con-
strained descriptions®. We use a Keras implemen-
tation (Chollet et al., 2015), and fit the model pa-
rameters with Adam (Kingma and Ba, 2014) with
a batch size of 32 and iterations of 20 epochs. On
each iteration the language model is optimised on
the loss which is related to perplexity as described
in the following section.

3.2 Perplexity

Instead of calculating the averages of likelihoods
from Equation 1, which might get very low on
long sequences of text, we use perplexity which
is an exponential measure for average negative log
likelihoods of the model. This solves the repre-
sentation problem with floating points and large
samples of data.

Perplexity(S, P) = 25sl-loa:(Pvir))l (g
where wy.7 is an instance in a sample collection
S. Perplexity is often used for evaluating language
models on test sets. Since language models are
optimised for low perplexities*, the perplexity of
a trained model can be used as a measure of fit of
the model with the samples.

4 Varying targets and landmarks

4.1 Hypotheses

As a language model encodes semantic relations
between words in a sequence we therefore expect
that the distinction between functional and geo-
metric spatial relations will also be captured by

3For more details on the architecture see Section A.1 in
the supplementary material, in particular Figure 6 and Equa-
tion 5.

4Equation 4 is related to Equation 3 as perplexity is 2105
given a neural model as the likelihood model.



it. As functionally biased spatial relations are used
in different situational contexts than geometrically
biased spatial relations, we expect that a language
model will capture this bias in different distribu-
tions of target and landmark objects in the forms
of the perplexity of phrases. Our weak hypothesis
is that the perplexity of phrases on the test set re-
flects the functional-geometric bias of a spatial re-
lation (Hypothesis 1). We take the assumption that
functionally-biased relations are more selective in
terms of their target and landmark choice (Sec-
tion 1) and consequently sequences such as <s>
target relation landmark </s> withfunc-
tional relations have a higher predictability in the
dataset resulting in a lower perplexity in the lan-
guage model (Hypothesis 2). Related to this hy-
pothesis, there is a stronger hypothesis that target
and landmark are predictable with a given func-
tional spatial relation (Hypothesis 3).

4.2 Method

We train two language models as described in
Section 3.1. For training and evaluation 10-fold
cross-validation is used and average results are re-
ported. We ensure that the evaluation sets con-
tain no vocabulary not seen during the training.
The language model 1 (LM1) is trained on unre-
stricted frequencies of instances. In training the
language model 2 (LM2) we down-sample rela-
tions so that they are represented with equal fre-
quencies. The dataset to train LM2 contains 200
instances of each possible relations while the eval-
uation set contains 20 instances for each spatial
relation. Note that using this method some tar-
geted spatial relations might disappear from the
evaluation set as their frequency in the held-out
data is too low. In addition to the requirement that
the evaluation set contains no out-of-vocabulary
items, the target and landmarks are included with-
out restriction on their frequency, as they occur
with these spatial relations.

4.3 Results

Figure 1 shows the estimated average perplexi-
ties of a subset of spatial relations, those that sat-
isfy the sampling frequency requirement described
in Section 4.2. Functionally and geometrically
biased spatial relations as identified experimen-
tally in the literature (Section 1) are represented
with orange and blue bars respectively. There is
a tendency that functionally biased relations lead
to lower mean perplexity of phrases (Hypothesis

unbalanced plain perplexity average in 10 folds
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Figure 1: Mean perplexities of spatial descriptions of
LMI (orange: functionally biased, blue: geometrically
biased relations).

2 is confirmed) and also that there is a tendency
that spatial relations of a particular bias cluster to-
gether (Hypothesis 1 is also confirmed). We re-
port results both on the training set and the test set
which show the same tendencies. This means that
our model generalises well on the test set and that
the latter is representative.

However, in the language model the perplexities
are biased by the frequency of individual words:
more frequent words are more likely and therefore
they are associated with lower LM perplexity. The
results show high Spearman’s rank correlation co-
efficient p = 0.90 between frequencies of spatial
relation in the dataset and the perplexity of the
model on the test set: on (329,529) > in (108,880)
> under (11,631) > above (8,952) > over (5,714)
> at (4,890) > below (2,290) > across (1,230) >
left (996) > right (891). For the purposes of our
investigation in predictability of target-landmark
pairs (Hypothesis 3) we should avoid the bias in
the training set. In order to exclude the bias of
frequencies of relations, we evaluate LM2 where
spatial relations are presented with equal frequen-
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Figure 2: Mean perplexities of LM2 by spatial rela-
tion (orange: functionally biased, blue: geometrically
biased).

cies in training. Figure 2 shows the ranking of spa-
tial relations by the perplexities when the language
model was trained with balanced frequencies. The
two kinds of spatial relations are less clearly sep-
arable as the colours overlap (Hypothesis 3 is not
confirmed). In comparison to Figure 1 there is an
observable trend that all instances lead to lower
perplexities in the training set which is the effect of
down-sampling on vocabulary size. Figure 2 also
shows that phrases with geometrically biased spa-
tial relations have a higher change towards lower
perplexities.

Noting that the frequency of using functionally-
biased spatial relations are higher in English, this
bias and our strong hypothesis for predictability
of target-landmark pairs can be expressed with
simple joint probabilities which we are estimating
with the language model:

P(target,relation,landmark) =

P(relation)P(target,landmark|relation)

It is possible that targets and landmarks that occur
with these relations are very specific to these rela-

tions but infrequent with other relations. When we
remove their frequency support provided by the
frequency of relations these targets and landmarks
become infrequent in the dataset and therefore less
probable which on overall results in higher per-
plexities of phrases with functionally-biased rela-
tions. Specificity of targets and landmarks can be
a source of these results.

To provide (some) evidence for this assump-
tion, Figure 3 shows the average ratios of unique
types over total types of targets and landmarks in
the balanced dataset over 10-folds on which LM2
was trained. There is a very clear division be-
tween functionally and geometrically biased spa-
tial relations in terms of the uniqueness of tar-
gets, functionally-biased relations are occurring
with more unique ones which contributes to higher
perplexity of LM2. There is less clear distinction
between the two kinds of spatial relations in terms
of uniqueness of landmarks. Some functional re-
lations such as on occur with fewer unique land-
marks than targets (from .11 to .06), some ge-
ometric relations such as right occur with more
unique landmarks than targets (from .07 to .11).
The asymmetry between targets and landmarks is
expected since the choice of landmarks in the im-
age description task is restricted by the choice
of the targets (as well as other contextual factors
such as visual salience). They have to be “good
landmarks” to relate the targets to. A functional
relation-landmark pair is more related to the target
through the landmark’s affordances whereas a ge-
ometric relation-landmark pair is more related to
the target through geometry. This might explain
for example, why on has fewer, but right has more
unique landmarks than targets. On the other hand
there are also relations where the ratio of unique
targets and landmarks is very similar, for example
at (.14 and .14). Overall, it appears that if unique-
ness of objects is contributing to the perplexity of
the language model of phrases which functionally-
biased relations (which in this balanced dataset is
the case) then this is more contributed by targets
rather than the landmarks.

To further explore the idea of asymmetry be-
tween targets and landmarks we re-arranged the
targets and landmarks in the descriptions from
the balanced dataset that LM2 was trained to
<s> landmark relation target </s> and
trained LM2'. The average perplexities over 10-
folds of cross-validation are shown in Figure 4.
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Figure 3: Ratio between unique types and all types per spatial relation in the balanced dataset for LM2.

Comparing Figure 4 with Figure 2 we first observe
that the perplexity of LM2’ on the descriptions is
overall several magnitudes lower than the perplex-
ity of LM2 (max 0.06, max 140). Secondly, we
observe that the perplexities of phrases containing
different relations are very similar and that there is
no separation of phrases by perplexity depending
on the relation bias. The results are in line with
our argument above. Knowing the landmark, it is
much easier for the language model to predict the
relation (of either kinds) and the target.

balanced plain perplexity average in 10 folds
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Figure 4: Mean perplexities of LM2’ by spatial rela-
tion (orange: functionally biased, blue: geometrically
biased)
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In conclusion, the explanation why descriptions
with functionally-biased relations have a higher
perplexity than descriptions with geometrically-
biased descriptions appears to be twofold: (i)
functionally-biased relations are more selective
of their targets as expressed by the uniqueness
counts, and (ii) functional relations are also more
selective of their landmarks but this fact works
against the performance of the language model.

As it is trained on the sequence left to right, it
has to learn to predict relations only on the basis
of targets which in the case of functionally-biased
relations are represented by more unique tokens
than geometrically-biased relations. The more in-
formative words, the landmarks, that would enable
the language model to predict a functional rela-
tion, comes last, after the relation has already been
seen. The possible reason why geometrically-
biased relations lead to lower perplexities of a lan-
guage model on descriptions is because they have
fewer unique targets. Hence, our Hypothesis 1
which linked selectivity of functionally-biased re-
lations to low perplexity of phrases can be refuted.
In spatial relations the order of the semantic in-
terpretation of tokens (that we want to capture in
these experiments) is different from the linear syn-
tactic order of order which can be captured by the
language model. When this order is changed as in
LM?2’ our predictions come closer to the hypothe-
sis (Figure 4).°

By removing the frequency bias on spatial re-
lations in LM2 we fix the distribution of spatial
relations and examine the effect of distribution of
targets and landmarks on perplexities of phrases
(spatial relation as fixed context). In the follow-
ing section, we fix the distributions of targets and
landmarks of each spatial relation and examine the
perplexity of phrases when another spatial relation
is projected in this context (targets-landmarks as
fixed context).

5Modulo that landmarks are, as discussed above, well-
predictive of relations of both kinds.



5 Varying spatial relations

5.1 Hypotheses

Given a particular spatial relation, the distribu-
tion of targets and landmarks that occur with it
creates a particular signature of targets and land-
marks, the target-landmark context of a spatial re-
lation. In this experiment, we investigate the effect
on perplexity of phrases when another spatial rela-
tion is projected in such a target-landmark context.
Given different selectivity of functionally- and
geometrically-biased spatial relations, namely the
functionally-based spatial relations are more se-
lective of their targets and landmarks and therefore
create more specific contexts, we should observe
differences in perplexities of phrases when other
spatial relations are projected in these contexts.
In particular, we hypothesise that geometrically-
biased spatial relations are more easily swap-
pable than functionally-biased spatial relations as
measured by the perplexity of a language model
trained on the original, non-swapped phrases (Hy-
pothesis 4).

5.2 Method

We use LM2 from Section 4 (trained on the bal-
anced frequencies of spatial relations) with no ad-
ditional training from the previous experiment.
We group descriptions in the evaluation set by spa-
tial relation. For each phrase containing a par-
ticular spatial relation, we replace it with every
other spatial relation and estimate the perplexity of
the resulting phrase using a language model. Fi-
nally, we calculate the mean of perplexities over
all phrases. We use 10-fold cross-validation and
report the final means across the 10 folds.

5.3 Results

Figure 5 shows a %-increase in mean complex-
ities from those in Figure 2 when LM?2 is ap-
plied on phrases with swapped relations in the
contexts of the original relations. Hence, the
column “at” shows the %-increase in perplexi-
ties of phrases that originally contained ar in the
validation dataset but this was replaced by all
other spatial relations. Comparing with Figure 2
the estimated perplexities are higher across all
cases which is predictable. There is a weak ten-
dency that replacing functionally-biased relations
with other relations leads to higher perplexities of
spatial descriptions than replacing geometrically-
biased relations, but the distinction is not clear cut

balanced swapped perplexity average in 10 folds
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Figure 5: %-increase in perplexities of LM2 shown per
context of the original preposition when swapped with
another one.
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(Hypothesis 4 partially confirmed). The lack of a
clear distinction between two classes of descrip-
tions confirms our previous observations about
landmarks and targets: the LM has learned par-
ticular contexts for both kinds of descriptions.

6 Discussion and conclusion

We explored the degree that the functional and ge-
ometric character of spatial relations can be iden-
tified by a neural language model by focusing on
spatial descriptions of controlled length and con-
taining normalised relations. Our first question
was about the implications of using a neural lan-
guage model for this task. The previous research
(Dobnik and Kelleher, 2013) used normalised en-
tropy of target-landmarks per relation and log like-
lihood ratio between target-landmarks and rela-
tions to test this. These are focused measures that
estimate the variation and the strength of associa-
tion of words in a corpus. On the other hand, a lan-
guage model provides a more general probabilistic
representation of the entire description. As such it
captures any kind of associations between words
in a sequence. The other important observation is
that it captures sequential relations in the direction
left to right and as we have seen the sequential na-
ture of the language model does not correspond
precisely with the order in which semantic argu-
ments of spatial relations are interpreted. How-
ever, nonetheless we can say that language models
are able to capture a distinction between functional
and geometric spatial relations (plus other seman-
tic distinctions) to a similar degree of success as
previously reported measures. Our initial hypothe-
sis about the greater selectivity of spatial relations



for its arguments is correct but it is exemplified in a
greater perplexity of a language model in the con-
text of balanced spatial relations. We argued that
this has to do with the fact that the targets are more
unique to these relations (which is consequence of
a greater specificity for arguments of functionally
biased relations) and is also related to the way a se-
quential language model works. In the unbalanced
dataset, the perplexity of the language model is re-
versed (it is lower with functionally biased rela-
tions) because the specificity of targets to relations
is boosted with greater frequency of functionally-
biased relations. The fact that functionally-biased
relations are more frequent is probably related to
the fact that such descriptions are more informa-
tive than purely geometric ones if available for a
particular pair of objects.

We can only report tendencies based on the per-
plexities of our language models as our conclu-
sions. This is because the functional-geometric
bias is graded, because the predictions are highly
dependent on the quality and the size of the
dataset, and because other semantic relations
might also be expressed by this measure. We
chose a large contemporary dataset of image de-
scriptions because we hope that it contains a high
proportion of prepositions used as spatial rela-
tions. However, there is no guarantee that all
prepositions in this dataset are used this way.
We observe that there is considerable variation
of obtained values across the 10-folds of cross-
validation and we report the mean values over all
folds. As an illustration, in the supplementary ma-
terial (Section A.2) we give an example of graphs
from two intermediary folds.

Using a language model in this task we have
also learned new insights about the way language
models encode spatial relations in image descrip-
tions. It has been pointed out (cf. (Kelleher and
Dobnik, 2017) among others) that convolutional
neural networks with an attention model are de-
signed to detect objects whereas spatial relations
between objects are likely to be predicted by the
language model. In this work we show that lan-
guage models are not only predicting the rela-
tion (which is expected) but are able to distin-
guish between different classes of relations thus
encoding finer semantic distinctions. This tells us
that language models are able to encode a surpris-
ing amount of information about world knowledge
with a usual caveat that it is difficult to separate

several strands of this knowledge.

The work can be extended in several ways. One
way is to study dataset effects on the predicted re-
sults. Datasets with descriptions of robotic actions
and instructions may be particularly promising as
they focus on spatial uses. Different normalisa-
tions of spatial relations have a significant effect
on the results. In this work composite spatial rela-
tions such on the left side of are normalised to sim-
ple spatial relations such as left. However, these
could be treated as separate relations as difference
between may exist. A more systematic examina-
tion of clusters of spatial relations would eventu-
ally tell us what other spatial relations not yet iden-
tified as functionally or geometrically biased have
similar properties to those that have identified as
such experimentally.
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A Supplementary material

A.1 Language Model Architecture

P(Wet = Vi, [Wou = Vi) = %V, )

Figure 6: The recurrent language model diagram with
LSTM recurrent unit.

The neural language model architecture with
the Long-Short Terms Memory (LSTM) function
and its parameters, similar to tied weights in (Gal
and Ghahramani, 2016):

e W, € R for word embeddings,

o Wisry € R**4 for parameters of the Long-
Short Term Memory function,
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® Wrinas € R¥" of the final dense layer with
softmax.

where n is the vocabulary size for V =
{vi,v2,...,v,} and d is both the embeddings size
and the memory size in LSTM. For mini-batches
from training data, these parameters are being up-
dated using a stochastic gradient descent to min-
imise the loss.

x =8, W, (5)
i c
i = g ((hj(;) 'WLSTM> (6)
g tanh
¢t =foc_1+iog @)
h; = ootanh(c,) (8)
9 = softmax (h; - W fings + b) )

where d,, represents the one-hot encoding of the
t-th word in the sequence. The x; is the word em-
bedding for this word, and two vectors ¢; and A,
represent the states of the recurrent unit. Figure 6
illustrates the same equation.

A.2 Evaluation
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Figure 7: Mean perplexities of LM?2 by spatial relation
for (a) folds 1 and (b) 2 (orange: functionally biased,
blue: geometrically biased).



