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Introduction

Traditional NLP starts with a hand-engineered layer of representation, the level of tokens or words.
A tokenization component first breaks up the text into units using manually designed rules. Tokens
are then processed by components such as word segmentation, morphological analysis and multiword
recognition. The heterogeneity of these components makes it hard to create integrated models of
both structure within tokens (e.g., morphology) and structure across multiple tokens (e.g., multi-word
expressions). This approach can perform poorly (i) for morphologically rich languages, (ii) for noisy
text, (iii) for languages in which the recognition of words is difficult and (iv) for adaptation to new
domains; and (v) it can impede the optimization of preprocessing in end-to-end learning.

The workshop provides a forum for discussing recent advances as well as future directions on sub-word
and character-level natural language processing and representation learning that address these problems.

Topics of Interest:

• tokenization-free models

• character-level machine translation

• character-ngram information retrieval

• transfer learning for character-level models

• models of within-token and cross-token structure

• NL generation (of words not seen in training etc)

• out of vocabulary words

• morphology and segmentation

• relationship b/w morphology and character-level models

• stemming and lemmatization

• inflection generation

• orthographic productivity

• form-meaning representations

• true end-to-end learning

• spelling correction

• efficient and scalable character-level models
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Abstract

Neural machine translation has achieved im-
pressive results in the last few years, but its
success has been limited to settings with large
amounts of parallel data. One way to improve
NMT for lower-resource settings is to initial-
ize a word-based NMT model with pretrained
word embeddings. However, rare words still
suffer from lower quality word embeddings
when trained with standard word-level objec-
tives. We introduce word embeddings that
utilize morphological resources, and compare
to purely unsupervised alternatives. We work
with Arabic, a morphologically rich language
with available linguistic resources, and per-
form Ar-to-En MT experiments on a small cor-
pus of TED subtitles. We find that word em-
beddings utilizing subword information con-
sistently outperform standard word embed-
dings on a word similarity task and as initial-
ization of the source word embeddings in a
low-resource NMT system.

1 Introduction

Neural machine translation (Bahdanau et al., 2014;
Sutskever et al., 2014) has recently become the
dominant approach to machine translation. How-
ever, the standard encoder-decoder models with
attention have been shown to perform poorly in
low-resource settings (Koehn and Knowles, 2017),
a problem which can be alleviated by initializa-
tion of parameters from an NMT system trained
on higher-resource languages (Zoph et al., 2016).
An alternative way to initialize parameters in a
low-resource NMT setup is to use pretrained mono-
lingual word embeddings, which are quick to train
and readily available for many languages.

There is a large body of work on word
embeddings. Popular approaches include
word2vec (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014). These

have been shown to perform well in word sim-
ilarity tasks and a variety of downstream tasks.
However, they have been primarily evaluated
on English. The learned representations for rare
words are of low quality due to sparsity. For
morphologically rich languages, we may want
word embeddings that also consider morphological
information, to reduce sparsity in word embedding
training.

Previous work on morphological word embed-
dings has shown improvements on word similarity
tasks, but has not been evaluated on downstream
NMT tasks. Our contribution is two-fold:

1. We adapt word2vec to utilize lemmas from
a morphological analyzer,1 and show improve-
ments on a word similarity task over a state-
of-the-art unsupervised approach to incorpo-
rating morphological information based on
character n-grams (Bojanowski et al., 2017).

2. We experiment with Arabic-to-English NMT
on the TED Talks corpus. Our results demon-
strate that incorporating some form of mor-
phological word embeddings into NMT im-
proves BLEU scores and outperforms the con-
ventional approaches of using standard word
embeddings, random initialization, or byte-
pair encoding (BPE).

2 Neural Machine Translation

We follow recent work in neural machine transla-
tion, using a standard bi-directional LSTM encoder-
decoder model with the attention mechanism from
Luong et al. (2015). We describe below other work
in NMT that has tried to address some of the same
issues dealing with settings with limited parallel
data, improving translation of morphological com-
plexity, and Arabic NMT.

1https://github.com/pamelashapiro/
word2vec_morph
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2.1 Low-Resource Settings

Some success has been achieved applying neural
machine translation to low-resource settings. Zoph
et al. (2016) use transfer learning to improve NMT
from low-resource languages into English. They
initialize parameters in the low-resource setting
with parameters from an NMT model trained on
a high-resource language. Nguyen and Chiang
(2017) extend this by exploiting vocabulary overlap
in related languages. Similarly, Firat et al. (2016)
share parameters between high and low resource
languages via multi-way, multilingual NMT.

Other work aims to exploit monolingual data
via back-translation (Sennrich et al., 2016a).
Imankulova et al. (2017) aim to improve this tech-
nique for low-resource settings by filtering gen-
erated back-translations with quality estimation.
Meanwhile, He et al. (2016) use a reinforcement
learning approach to learn from monolingual data.

Our approach is similar to those utilizing trans-
fer learning, but we initialize on the source side
with monolingual word embeddings, which is rel-
atively simple to implement and low-cost to train.
Di Gangi and Marcello (2017) experiment with
monolingual word embeddings as we do, but they
merge external monolingual word embeddings with
the embeddings learned by an NMT system. We
simply use word embeddings as initialization, and
we instead focus on exploring how morphological
word embeddings can help in this setup.

2.2 Incorporating Morphology

Some research has aimed to incorporate morpho-
logical information into NMT systems. Byte-
Pair Encoding (BPE) segments words into pieces
by merging character sequences based on fre-
quency (Sennrich et al., 2016b), and these se-
quences of word pieces are translated. BPE be-
come standard practice. However, it is unclear how
much data is necessary for it to be beneficial. In our
experiments, BPE performs worse than initializing
with any of the word embeddings for our dataset.

Character-level NMT has recently become pop-
ular as well (Ling et al., 2015b; Costa-jussà and
Fonollosa, 2016; Lee et al., 2017). Their work
aims to implicitly learn morphology by building
neural network architectures over characters. We
also compare to a character-level NMT system in
our experiments.

Additionally, Dalvi et al. (2017) add morpholog-
ical information into the decoder, following work

from Belinkov et al. (2017) that showed that the
encoder already learns more morphological infor-
mation than the decoder. Our work differs in that
we are focusing on incorporating morphological in-
formation into the source side. Moreover, Belinkov
et al. (2017) works with higher-resource datasets.
It is possible that in lower-resource settings, it will
still be helpful to incorporate morphological infor-
mation into the encoder.

2.3 Arabic NMT

Almahairi et al. (2016) produce the first results
of neural machine translation on Arabic. They
find that preprocessing of Arabic as used in sta-
tistical machine translation is helpful. They nor-
malize the text, removing diacritics and normaliz-
ing inconsistently typed characters, and they tok-
enize according the Penn Arabic Treebank (ATB)
scheme (Maamouri et al., 2004), separating all cl-
itics except for definite articles. We normalize as
such, but do not use ATB tokenization, instead us-
ing the default tokenization in Moses (Koehn et al.,
2007). We do this to focus on embeddings for
words and to facilitate generalization to other lan-
guages. Additionally, Sajjad et al. (2017) explore
alternatives to language-specific segmentation in
Arabic, finding that BPE performs the best in their
scenario.

Note that unlike the previously described work,
we are using a dataset of only 2.9 million tokens for
training. This is to assess the use of morphological
word embeddings in settings with limited parallel
data.

3 Morphological Word Embeddings

Morphological word embeddings help improve the
quality of pretrained word embeddings for less
frequent morphological variants, which is impor-
tant for morphologically rich and low-resource lan-
guages. We outline related work in this section and
describe an additional approach of our own.

Some related work has used morphological re-
sources to guide word embeddings. Cotterell and
Schütze (2015) use a multi-task objective to encour-
age word embeddings to reflect morphological tags,
working within the log-bilinear model of Mnih
and Hinton (2007). Cotterell et al. (2016) use a
latent-variable model to adapt existing word em-
beddings to morphemes. Our additional approach
is similar to this vein of work in that it uses mor-
phological resources, but it works within the popu-
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Figure 1: Modified skipgram objective for training morph embeddings. Here, w(t) is the current word,
l(t) is its lemma, and w(t-2), w(t-1),w(t+1),w(t+2) are neighboring words.

lar word2vec skipgram objective (Mikolov et al.,
2013a), adding a simple modification to consider a
lemma in addition to a word form.

Other work uses purely unsupervised techniques.
Luong et al. (2013) segment words using Morfes-
sor (Creutz and Lagus, 2007), and use recursive
neural networks to build word embeddings from
morph embeddings. Instead of explicit segmen-
tation, fastText (Bojanowski et al., 2017) in-
corporates subword information into the skipgram
model by treating a word as a bag of character n-
grams. They represent each n-gram of sizes 3-6
with a vector, and each word as a sum of its n-gram
vectors. While fastText is not explicitly learn-
ing morphology, it can be viewed as potentially
incorporating morpheme-like subwords.

For simplicity and efficiency, we consider only
embeddings in the skipgram family—fastText,
word2vec skipgram, and our modification of the
word2vec skipgram objective, described in 3.1.
There is a large literature on exploiting characters,
morphology, and composition for embedding mod-
els (Chen et al., 2015; Ling et al., 2015a; Qiu et al.,
2014; Wieting et al., 2016; Lazaridou et al., 2013),
and a comparison with these different models may
be interesting future work.

The usefulness of word embeddings in down-
stream applications is a question that often needs
to be revisited. Many types of morphological or
character-level embedding models have been evalu-
ated under various extrinsic metrics, in applications
such as language modeling (Kim et al., 2016; Botha
and Blunsom, 2014; Sperr et al., 2013), parsing
(Ballesteros et al., 2015), part-of-speech tagging
(dos Santos and Zadrozny, 2014), and named-entity
recognition (dos Santos and Guimarães, 2015; Cot-

terell and Duh, 2017). Besides the Arabic word
similarity dataset, here we also focus on evaluat-
ing embeddings at the source side of a machine
translation task.

3.1 Modified Skipgram Objective

We assume the availability of a morphological an-
alyzer or lemmatizer that will output a lemma for
each word token in a text. We modify the skipgram
objective (Mikolov et al., 2013b) to use both word
and lemma to predict context words, as illustrated
in Figure 1. We learn word vectors and lemma vec-
tors, using their concatenation in the dot product
with a context vector in the skipgram objective. So
the modified objective we are approximating with
negative sampling is now

p(wO|wI , lI) =
exp(v

′T
wO

concat(vwI , vlI ))
∑W

w=1 exp(v′T
w concat(vwI , vlI ))

Without the lemma part, this objective corre-
sponds to word2vec.

Because there may be multiple lemmas associ-
ated with a word type, we use a weighted average
over lemma vectors in the final vector:

w∗
I = concat(vwI ,

1

c(wI)

∑

lI

c(wI : lI) ∗ vlI)

where c(·) is the count of a word or word-lemma
pair. When the morphological analyzer cannot pro-
duce a lemma, we use the word form itself. We
output the vectors associated with individual lem-
mas as well, which can be used to handle OOV
words.
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The lemma simplifies a word, removing clitics
and some inflectional morphology. While it re-
duces sparsity of infrequent stems, it also removes
potentially useful information. The hope is that
by using both word and lemma, we can maintain
enough of the benefits of morphology in frequent
words while also reducing sparsity in infrequent
words. We do some preliminary experiments using
just the lemma to predict context words as well, but
in preliminary experiments this performed worse,
possibly because we lose too much information
from morphology.

In future work, we could also try modifying
what is predicted as well (i.e. instead of predicting
context words, predict lemma or both word and
lemma).2

4 Arabic Morphology and Resources

We describe here the morphological analyzer we
use, as well as prominent features of Arabic mor-
phology that we consider in our analysis.

4.1 Morphological Analyzer

We use a morphological analyzer for Arabic called
MADAMIRA (Pasha et al., 2014). MADAMIRA
performs rule-based morphological analysis on the
form of the word and then uses supervised learning
techniques to disambiguate in context. It provides
several types of morphological analysis for Arabic.
In this work we only use the lemma, though future
work could consider utilizing the other morpholog-
ical information provided.

4.2 Arabic Morphology

One prominent feature of Arabic morphology is
that it is rich with clitics, morphemes that syntac-
tically function as words but phonologically func-
tion as affixes. Arabic proclitics (prefixes) include
articles, conjunctions, and prepositions. Arabic
enclitics (suffixes) include object or possessive pro-
nouns. There are also inflectional affixes for num-
ber (singular, plural, and dual) and gender (mas-
culine, feminine), and grammatical case endings -
though only certain indefinite accusative case end-
ings are visible without diacritics.

Semitic languages such as Arabic also have a
substantial amount of non-concatenative morphol-
ogy. Most stems are formed from a 3-consonant

2Our adaptation of word2vec can be used for context-
dependent word tags in general, not just lemmas.

root inserted into a vowelled template, called “tem-
platic morphology.” When we are only consider-
ing inflectional morphology, as we are in the case
of lemmas, we see this most in “broken plurals,”
which are especially productive in Arabic (as com-
pared to other Semitic languages). A broken plural
changes the internal vowelled pattern from the sin-
gular, rather than attaching a suffix.

An example of this is the word for “key,” mf-
tAH �Atf�, and its plural, mfAtyH �y�Af�, where
the root is f-t-H, and the pattern for singular is
mCCAC, and for plural is mCACyC.3 In this case,
MADAMIRA would produce the lemma: 1 �At"fi�
for both forms. We hypothesize that the embed-
dings informed by MADAMIRA will have an ad-
vantage on these words, where the morphemes in-
volved cannot be captured by character n-grams.

5 Experiments

We compare three types of embeddings:

• word2vec: standard skip-gram word embed-
dings that only use word information.

• fastText: skip-gram embeddings that are
sums of vectors representing character n-
grams, implicitly incorporating some form of
morphological information.

• morph: the modified skip-gram word embed-
dings described in Section 3.1, which rely on
a morphological analyzer and lemma embed-
dings.

The word embeddings inserted into the NMT
system are always of dimension 300, and in word
similarity experiments, we experiment with dimen-
sions of different sizes. All word embeddings
are trained with negative sampling (5 samples),
with a window size of 5, a 10−4 rejection thresh-
old for subsampling, and 5 iterations. Additional
fastText parameters are left at the default. We
use OpenNMT-py (Klein et al., 2017) for all NMT
experiments, with a max sentence size of 80. We
use word-level prediction accuracy for model se-
lection. For the BPE baseline, the number of
BPE merge operations is 30,000. The hidden
layer size is 1024, trained with batch size 80, with
Adadelta (Zeiler, 2012) and a dropout rate of 0.2
for 20 epochs with a learning rate of 1.0.

When initializing the encoder with word embed-
dings, we experiment both with locking the word

3We use Buckwalter transliteration (Buckwalter, 2002).
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Normalize Diacritics Full Normalization
Null OOVs Handle OOVs Null OOVs Handle OOVs

word2vec, 150 0.52 NA 0.52 NA
word2vec, 300 0.51 NA 0.53 NA
fastText, 150 0.53 0.55 0.55 0.55
fastText, 300 0.53 0.55 0.54 0.55

morph, 150-150, word 0.15 NA 0.15 NA
morph, 150-150, word+lemma 0.54 0.55 0.54 0.55

morph, 150-150, lemma 0.59 0.60 0.59 0.60

Table 1: Spearman coefficient for Arabic word similarity dataset built off of WS353. We list the
dimension of the word embedding, and in the case of morph, we list the dimensions of the word part and
the lemma part. In the morph system, lemma refers to using just the lemma part of the vector to compare
similarity, word refers to using just the word part, and word+lemma refers to using the whole vector.

embeddings throughout training (“fixed”) and al-
lowing backpropagation through the word embed-
dings (“unfixed”). At test time, words not seen in
the MT training data are also initialized with word
embeddings, if they were seen in the word embed-
ding training data. Words unseen by either corpus
are mapped to the embedding of an <unk> token.

The bitext we use for NMT is a collection of
TED subtitles obtained from WIT3 (Cettolo et al.,
2012).4 This is a collection of monologue speeches
from TED talks, covering a wide range of topics
such technology, design, and social science. We
downloaded the latest XML files (version 2016-
04-08) for Arabic and performed subtitle extrac-
tion and sentence merging using the WIT3 scripts.
The data is then randomly split at the granularity
of talks, with 1939 talks for training, 30 talks for
development, and 30 talks for testing.5 The cor-
responding sentence/token statistics are shown in
Table 2. In this data, 9% of word types and 3% of
tokens in the test data were not seen in train.

The monolingual corpus we use for word embed-
dings is cleaned and tokenized Arabic Wikipedia,
consisting of about 80 million tokens, with a vocab-
ulary of around 350k words. The word embeddings
are trained on both the monolingual corpus and the
source side of the TED training data. The number
of lemma types in the monolingual corpus is 672k,
and in TED training data is 42k.

5.1 Word Similarity Results

Before running NMT, we first experiment on a
word similarity dataset to test the effectiveness of

4https://wit3.fbk.eu
5The data splits are available at http://www.cs.jhu.

edu/˜kevinduh/a/multitarget-tedtalks/.

Corpus Sentences Tokens Types

Wikipedia 1,751k 79,793k 1,263k
TED, train 175k 2,855k 152k
TED, dev 2k 30k 8k
TED, test 2k 29k 8k

Table 2: Size of corpora, the number of tokens for
MT data refers to the source side.

morphology in word embeddings. We compare
word2vec, fastText, and variants of our mor-
phological skip-gram in Section 3.1. We experi-
ment with normalizing only diacritics as well as
additionally normalizing inconsistently typed char-
acters as in Almahairi et al. (2016), referred to
here as “full normalization.” We normalize the
word similarity dataset accordingly. To ensure that
dimensionality is not a major factor, we experi-
ment with various dimensions. We also experiment
with just using lemmas to predict, which performs
slightly worse than using both word and lemma
and taking the lemma part of the vector, though
still better than word2vec and fastText.

We evaluate on an Arabic dataset developed by
Hassan and Mihalcea (2009) based on the classic
WordSim353 (Finkelstein et al., 2001), as is eval-
uated on by Bojanowski et al. (2017). We re-run
on word2vec and fastText and obtain simi-
lar, though not identical, results to Bojanowski
et al. (2017). We suspect the differences are due
to differences in cleaning and tokenizing Arabic
Wikipedia. As is standard for these evaluations, we
report Spearman rank coefficient in Table 1.

There are 3 OOV words when normalizing dia-
critics, and 1 with full normalization, out of 353
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Model Average ∆ 3 Runs
random initialization (word) 26.55 - (26.40, 26.55, 26.70)
random initialization (BPE) 27.80 1.25 (27.64, 27.87, 27.90)
word2vec, fixed 26.97 0.42 (26.79, 27.00, 27.11)
word2vec, unfixed 28.38 1.83 (28.25, 28.38, 28.51)
morph, fixed 28.15 1.60 (27.91, 28.25, 28.29)
morph, unfixed 28.76 2.21 (28.50, 28.81, 28.96)
fastText, fixed 28.66 2.11 (28.62, 28.64, 28.71)
fastText, unfixed 29.10 2.55 (28.91, 29.15, 29.24)

Table 3: Corpus-level BLEU on the test set, averaged over 3 runs, with individual runs. ∆ is the difference
in BLEU between the model vs. random initialization with words as units.

Model Average ∆ 3 Runs
random initialization (word) 22.85 - (22.50, 22.90, 23.14)
word2vec, unfixed 24.89 2.04 (24.76, 24.96, 24.96)
morph, unfixed 25.49 2.64 (25.20, 25.42, 25.85)
fastText, unfixed 25.77 2.92 (25.49, 25.79, 26.02)

Table 4: BLEU on test sentences that have rare morphological variants. ∆ is the difference in BLEU
between the model vs. random initialization with words as units.

word pairs. We report results both using zero vec-
tors for OOV and with an attempt to handle OOVs
when possible, as done by Bojanowski et al. (2017).
To handle OOVs, we run MADAMIRA on the un-
known form alone (without the benefit of a context
sentence) to get a lemma, and use the lemma vector
learned for the corresponding lemma, if it was seen
in training, with zeros for the word part.6

We see that across normalization schemes and
dimensions, fastText performs 1-3 points better
than word2vec in the null OOV setting and 2-4
points better handling OOVs. Using both word and
lemma to predict context words performs about the
same as fastText. However, when we take just
the part of the vector corresponded to a weighted
average of lemma vectors, it performs 4-6 points
better than fastText. 2-4 points of this gain
can be achieved by just using the lemma to predict
context words.

Interestingly, the word part of the morph vector
performs poorly on word similarity, but still pro-
vides some benefit in training. We found that using
just the lemma to predict in training performed
slightly worse than the lemma part of the vector
when using both. It is possible that complementary

6Note that when attempting to handle OOVs, in the case
where we are only normalizing diacritics, we can only recover
a lemma vector for 1 of the 3 OOVs while fastText is
using n-grams to recover something for all 3. In the case of
full normalization, both are able to recover a vector.

features are learned in the word part and lemma
part of the vector, and that the lemma part corre-
sponds much more closely to semantic similarity.

5.2 Neural Machine Translation Results

We run 3 replicates of experiments with random ini-
tializations (re-training word embeddings on each
run as well). Results for corpus-level BLEU, calcu-
lated using the multi bleu.sh script from Moses are
in provided in Table 3.

BPE outperforms using full words by 1.3 BLEU
points (27.80 vs. 26.55). Initializing with
word2vec results in a 1.8 BLEU point gain over
randomly initialized word embeddings. morph re-
sults in a 0.4 BLEU point gain over word2vec,
and fastText a 0.7 BLEU point gain. Fixing
the embeddings consistently performs worse than
allowing backpropagation. However, this gap nar-
rows as the BLEU scores of both improve. We also
compare to running a NMT system with a CNN
over character embeddings in the encoder from
Costa-jussà and Fonollosa (2016), which results in
a BLEU score of 26.46. 7

We also perform statistical significance testing
via bootstrap resampling, using the multeval
tool (Clark et al., 2011). The best BLEU are

7We use the code from https://github.com/
harvardnlp/seq2seq-attn, modifying hyperparame-
ters to match our word-level models as closely as possible and
using character-level default settings.
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28.76 for morph and 29.10 for fastText.
Both morph and fastText improve upon
word2vec (28.38) with p-values < 0.01. The
differences between fastText and morph are
not statistically significant.

To see whether trends in BLEU are stronger for
sentences containing rarer words with more fre-
quent lemmas, we try filtering test sentences by the
ratio of word count to lemma count in the source
side of the MT training data. We take sentences
with at least one word that has a lemma that is
more than 50 times as frequent as the word in train-
ing data. Comparing just the unfixed, normalized,
word-based versions, we show results for BLEU
on filtered sentences in Table 4.

With this heuristic for rare morphological vari-
ants, there are 1,376 rare morphological variants
out of the 7,345 words that are in the intersection
of train and test source data. The heuristic pulls
out 1,038 out of 1,982 test sentences to evaluate
on. morph results in a 0.6 BLEU point gain over
word2vec, and fastText a 0.88 BLEU point
gain.

Because of corpus-level BLEU’s limitations in
characterizing translation quality with respect to
morphological variants at the word level, we also
perform a manual analysis of the sentences from
each system to inspect improvements that may
be due to the various word embeddings. We
use multeval (Clark et al., 2011) to inspect
the sentences that had the biggest sentence-level
BLEU improvement over standard word2vec in
the morph and fastText cases at the sentence
level and see if there are notable trends. We display
the median system’s translation in this analysis,
as recommended by Clark et al. (2011), though
sentences selected here exhibited the phenomena
described consistently across multiple runs. Exam-
ple sentences are shown in Table 5.

In several cases, both morph and fastText
systems consistently successfully translate rare or
unseen words with morphological variants that are
seen more commonly in the word embedding train-
ing data, while the word2vec system does not.
For instance, in example 1, the word �®�dtl�
(lltdxlAt, “of interventions”) is never seen in the
MT training data. It is only seen rarely in the word
embedding training data, 24 times. However, the
word stripped of the definite article and the clitic
corresponding to “of,” i.e. the character n-gram
�®�d� tdxlAt, is seen 657 times in word embed-

ding training data. The lemma, which is shared
between singular and plural as well, occurs 6,887
times.

In some cases, the morph system is consistently
the only system that successfully translates a rare
morphological variant. For instance, in example
2, the morph system translates the word � A`��
(AbEAdA, “dimensions”) correctly, while the other
systems do not. It occurs here in the accusative
case, which does not appear explicitly in many set-
tings in Arabic. This word form occurs 7 times in
the MT training data and 101 times in the monolin-
gual corpus. Meanwhile, the lemma 1 d"`u� occurs
214,297 times in the word embedding data. This is
much more frequent than we’d expect to see vari-
ants of the word “dimension,” because the lemma
is also associated with the very frequent word for
“after.” However, it seems to learn a good repre-
sentation despite this. It is unclear exactly why
fastText does not learn a good representation
in any of the three runs although it is possible that
with character n-grams, there is conflict with other
unrelated words. Note that because the plural is
non-concatenative, none of the character n-grams
in this word corresponds to the singular.

In other cases, the morphological analyzer can-
not provide an analysis for a word, and a rare
morphological variant is only translated correctly
by fastText. In example 3, while sentence-
level BLEU is best in the word2vec version in this
case, we see a word that is translated best with
fastText, and fails to be translated in the other
two systems. The word �®t�� (AbtlAE, “swallow-
ing”) is only seen as a word itself twice in MT train-
ing data and 171 times in the monolingual corpus.
However, the 6-gram corresponding to the word
is seen 444 times in the word embedding training
data as a part of other words. Meanwhile, the mor-
phological analyzer does not provide an analysis.
While fastText translates as “swallow” rather
than “swallowing,” it is better than morph for this
word, which consistently fails to translate the word
at all.

6 Discussion

Overall, morphologically aware word embeddings
(morph and fastText) can help reduce spar-
sity and improve results on both a word similarity
task and a low-resource NMT system when used
as initialization. The improvements over standard
word embeddings is consistent, and implies that
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src 1) .Ty�A�§¯� �®�dtl� Tl��� �lt� �@k¡ ¤
src-Buckwalter w hk*A ftlk Amvlp lltdxlAt AlAyjAbyp.
ref So those are examples of positive interventions.
word2vec And so these are examples of positive feedback.
morph And so these are examples for positive interventions.
fastText And so these are examples of positive interventions.
src 2) CwWtl� ­ry�� � A`�� �An¡  � ��rb�� A��
src-Buckwalter AnA Axbrkm An hnAk AbEAdA kvyrp lltTwr.
ref I’m telling you that there are many dimensions of development.
word2vec I’m telling you that there’s a lot of implications of evolution.
morph I’m telling you that there are many dimensions for evolution.
fastText I’m telling you there’s a lot of implications to evolution.
src 3) .Tm§dq�� dnh�� �� A� �� w¡ �ys�� �®t��
src-Buckwalter AbtlAE Alsyf hw mn EAdAt Alhnd Alqdymp.
ref Sword swallowing is from ancient India.
word2vec The sword is a tradition of ancient India.
morph The sword of the sword is a traditional Indian tradition.
fastText Swallow the ball is the old Indian habits.

Table 5: Examples of sentences where word embeddings considering subword information are beneficial.

morphology is a useful signal to incorporate.
It is interesting that the word embeddings that

perform best on a word similarity task (morph) do
not line up with what performs best in an NMT sys-
tem (fastText). This reinforces the argument
that word similarity tasks alone are not enough to
evaluate word embeddings (Faruqui et al., 2016),
and that which embeddings we prefer may depend
on the downstream task and the dataset. We discuss
here briefly the potential strengths and weaknesses
of each approach to morphological word embed-
dings, though more conclusive analysis is left to
future work.

One possible reason for the difference in best em-
beddings between the two tasks, is how in-domain
the morphological analyzer is for each task. In the
word similarity task, 434 of the 444 unique words
in the task receive lemmas (about 98%). On the
other hand, in the MT test data, 7,266 out of 8,309
unique words receive lemmas (only about 87%).

It is also possible that function words matter
more in the MT task, and that their translation does
not improve as much with embeddings informed
by lemmas. fastText may help more with these
words, especially when function words in English
correspond to pieces of a word in Arabic.

From these experiments, it appears that if one is
more concerned with semantic similarity or has a
dataset that lines up well with the morphological

analyzer used to produce lemmas, morphological
word embeddings exploiting the morphological re-
sources might be best. On the other hand, for a
downstream task such as MT, and when there is
a substantial number of words not covered by the
analyzer, a method considering character n-grams
may be better.

In both cases, word embeddings considering
subword information consistently perform better
than standard word embeddings on a morphologi-
cally rich language such as Arabic. It is possible
that future gains could be made by combining the
strengths of both models.

7 Conclusion

We extend the skipgram model for word embed-
dings to incorporate lemmas from a morphological
resource in a simple way, maintaining the efficiency
of word2vec, and release the code publicly. We
show that this model outperforms word2vec and
fastText on a word similarity task in Arabic.

We also conduct experiments with these word
embeddings as initialization for a low-resource neu-
ral machine translation system. We find that the
word embeddings utilizing subword information
consistently outperform standard word embeddings
at this task, and that any of the word embeddings
we tried outperformed a random initialization or
BPE. fastText does best at this task, with a 0.7
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BLEU gain over standard word embeddings and
2.5 BLEU gain over random initialization.

Future work will attempt to combine the
strengths of these multiple approaches to incor-
porating morphological information in word em-
beddings, as well as to explore other sources of
information such as part-of-speech or syntax.
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Abstract
Recent literature has shown a wide vari-
ety of benefits to mapping traditional one-
hot representations of words and phrases to
lower-dimensional real-valued vectors known
as word embeddings. Traditionally, most
word embedding algorithms treat each word
as the finest meaningful semantic granularity
and perform embedding by learning distinct
embedding vectors for each word. Contrary
to this line of thought, technical domains such
as scientific and medical literature compose
words from subword structures such as pre-
fixes, suffixes, and root-words as well as com-
pound words. Treating individual words as
the finest-granularity unit discards meaningful
shared semantic structure between words shar-
ing substructures. This not only leads to poor
embeddings for text corpora that have long-
tail distributions, but also heuristic methods
for handling out-of-vocabulary words. In this
paper we propose SubwordMine, an entropy-
based subword mining algorithm that is fast,
unsupervised, and fully data-driven. We show
that this allows for great cross-domain perfor-
mance in identifying semantically meaningful
subwords. We then investigate utilizing the
mined subwords within the FastText embed-
ding model and compare performance of the
learned representations in a downstream lan-
guage modeling task.

1 Introduction

In recent years, distributed continuous word rep-
resentations have become a popular tool for pro-
viding a low-dimensional, alternative representa-
tion to traditional one-hot bag of words (Rumel-
hart et al., 1988; Elman, 1990). These word-
embedding vectors are typically a real-valued vec-
tor of dimensionality much smaller than the vo-
cabulary size of a corpus. In addition to computa-
tional efficiency of working with low-dimensional
representations, distributed representations have

Figure 1: Hierarchical segmentation of words spatial,
spatiotemporal, temporally into subwords.

been shown to capture syntactic and semantic reg-
ularities and have been shown to boost the perfor-
mance in tasks such as text classification, sequen-
tial classification, sentiment analysis, and machine
translation (Mikolov et al., 2013c; Joulin et al.,
2017; Huang et al., 2015; Tang et al., 2014; Zou
et al., 2013). Many different methods have been
proposed to derive these continuous representa-
tions from large, unlabeled, text corpora (Col-
lobert and Weston, 2008; Mikolov et al., 2013a,b).

While distributed continuous representations
have helped push the state-of-the-art in a vari-
ety of NLP tasks, because most text corpora have
long-tail distributions, embeddings in the long-
tail are often of poor quality due to infrequency.
This is even worse for out-of-vocabulary words
which are all given the same constant embed-
ding vector because no information is available
to infer a meaningful representation. To address
this deficiency, we propose to mine smaller sub-
word structures that form the base syntactic unit
and leverage the discovered subwords for gener-
ating better-quality word embeddings. As seen in
Figure 1, morphologically-rich words often con-
tain semantically meaningful subwords that are
shared among many words. Understanding the se-
mantic meaning of these subwords can be used
to infer the meaning of words that contain them.
With this motivation, we propose SubwordMine,
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an algorithm for mining semantically-meaningful
subwords from corpus vocabulary. We utilize
the mined subwords as the base-unit for embed-
ding and combine them to construct a word’s
distributed vector representation. The resultant
word embeddings are robust to data-sparsity due
to word infrequency and can be constructed on
many out-of-vocabulary words.

We state and analyze the problem in Section 2,
followed by our proposed solution in Section 3
where we present the key components of our so-
lution, subword mining and subword-based word
embeddings. In Section 4, we review the related
work. Then we evaluate the proposed solution in
Section 5, conclude in Section 6, and present fu-
ture directions in Section 7.

2 SubwordMine Framework

We formalize and analyze the task of extracting
subword structure and propose a framework for
entropy-based subword mining.

2.1 Preliminaries

The input is a corpus W , consisting of |W | words:
W = w1, . . . , w|W |. From this corpus, we con-
struct a vocabulary of unique words, V , of size
|V | such that ∀w ∈ W,w ∈ V . In addi-
tion, the vth word is a sequence of |v| characters:
cv,i, i = 1, . . . , |v|. For convenience we index
all the unique characters that compose the input
vocabulary with C characters and cv,i = x, x ∈
{1, . . . , C} means that the ith character in vth
word is the xth character in the character vocab-
ulary. Given an input corpus consisting of a word
sequence and a vocabulary list of unique words,
our goal is to segment the vocabulary list to iden-
tify human-interpretable and semantically mean-
ingful subwords, then utilize these subwords for
parameter sharing when learning distributed word
representations from the corpus.

Definition 1 (Subword Formalization) We formally define
subwords and other necessary notation and terminology as
follows:

• A subword is a sequence of contiguous characters:
s={cv,i, ...cv,i+n} n > 0

• A partition over vth word is a sequence of subwords:
Gv =(sv,1, . . . , sv,Gv ) Gv ≥ 1 s.t. the concatenation
of the subword instances is the original word.

In Definition 1 we formalize a subword and the
resultant partition from segmenting a vocabulary

word into subwords. In addition we outline the de-
sired properties of the resultant subword as well as
the mining and embedding framework as follows:

• The subwords extracted are semantically-
meaningful and human-interpretable.

• Utilizing these subwords improves word em-
beddings.

• The overall method is computationally effi-
cient.

• The number of subwords generated is com-
parable to the vocabulary size.

2.2 SubwordMine Framework

To extract subwords that satisfy our desired re-
quirements, we propose a framework that can be
divided into two sequential steps: 1) subword pat-
tern mining 2) subword segmentation. Our pro-
cess for transforming each word in the input vo-
cabulary word to a high-quality ‘bag-of-subwords’
involves creating a subword vocabulary, and then
using these subwords to hierarchically segment
each word in the vocabulary. By applying an
information-theoretic metric to detect candidate
subword boundaries, we identify candidate sub-
words within each vocabulary word. From this
candidate pool, we then apply an unsupervised dy-
namic programming segmentation algorithm to se-
lect a subset of these subwords that best segment
the word. After inducing a partition on each word,
we can recursively segment each subword to an ar-
bitrary level of subword granularity. The resultant
subwords from the hierarchical segmentation can
then be used for word embedding.

The goal of frequent subword pattern mining is
to collect aggregate statistics on subword patterns
for use in the word segmentation algorithm. For
each character-ngram that appears more than once
in the vocabulary, there is the potential for param-
eter sharing via that candidate subword. Addi-
tionally the frequency counts of these subwords
will be used for entropy-boundary computation
to identify potential subword candidates. These
candidates are inputted to the word-segmentation
algorithm that attempts to apply Occam’s Razor
by selecting subwords that maximally cover each
word using the fewest number of subwords. Each
subword can then be recursively segmented into
further subwords.
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3 Methodology

We present a subword mining algorithm that,
given an input vocabulary list V , segments each
vocabulary word into, non-overlapping, character-
ngrams. Our method is purely data-driven rely-
ing on character co-occurence statistics allowing
for good cross-domain performance on a variety of
scientific datasets. Additionally the method oper-
ates directly on an input vocabulary list, forgoing
any corpus-level statistics. This allows for more
scalable subword extraction as passes over large
corpora are unnecessary. From a high-level per-
spective, the subword segmentation algorithm can
be decomposed into the following steps:

1. Mine candidate subword counts and compute
relevant co-occurence statistics.

2. Apply SubwordMine to segment each word.

3. Recurse for finer-grained subword segmenta-
tion.

We apply an entropy-based scoring function to
identify subword boundaries: generating candi-
date subwords. Given a collection of subwords,
the next step in the framework is to apply a
dynamic-programming algorithm to segment each
word into subwords. The framework proceeds to
recursively segment each subword in the segmen-
tation. We will discuss these steps in greater detail
in the next subsections.

3.1 Subword Vocabulary Generation
Our segmentation of words into subwords relies
on the idea of subword compositionality. That is,
the input vocabulary can be constructed by com-
posing subwords drawn from a smaller subword
vocabulary. As such we introduce a two-step ap-
proach for creating the initial subword vocabulary:
prefix and suffix generation followed by root-word
generation.

Prefix & Suffix Generation
The first step in creating the subword vocabulary
is to generate a set of high-quality prefixes and
suffixes. The method is based on the principle
that a high-quality prefix or suffix can be mea-
sured by a high level of unpredictability in transi-
tion to longer substrings from the current substring
state. For example, following the prefix “pr”, most
prefixes transition to the character “e” with high
probability forming a prefix “pre”. On the other

Figure 2: Entropy for candidate prefixes and suffixes in
the word “spatiotemporal” from a DBLP titles dataset.

hand, transitioning from “pre” to a longer prefix
is not as predictable as a large number of words
contain the prefix “pre” followed by a variety of
root words starting with different characters. We
identify these high-unpredictability boundaries us-
ing the concept of information entropy to score
the predictability of each prefix or suffix bound-
ary (Shannon, 2001).

Let v be a word consisting of |v| characters and
si be a prefix of w ending at the ith character of
w. For each candidate prefix boundary i for i ∈
[1 . . . |v|], the information entropy of the prefix is
computed as follows:

E(i) = −
C∑

j=1

P(si ⊕ cj |si)× log2P(si ⊕ cj |si)

(1)
Where ⊕ denotes the binary concatenation of

two subwords and the transitional probabilities be-
tween a prefix and the prefix with the next charac-
ter appended is estimated by:

P(si ⊕ cj |si) =
f(si ⊕ cj)

f(si)
(2)

and f(si) denotes the frequency of a prefix si in
the input vocabulary list. The entropy of suffixes
can, without loss of generality, be similarly com-
puted by reversing each word in the vocabulary
and treating each suffix as a prefix.

The information entropy of each possible pre-
fix and suffix in the vocabulary is computed in
linear time using a prefix tree data structure to
store counts over prefixes. Given entropy scores
for each prefix and suffix, scores are computed
for each candidate split point in each word. Un-
der the entropy scoring of prefixes and suffixes,
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we identify local maxima in entropy as candi-
date boundaries for prefixes and suffixes. That
is entropy of prefixes of one-character shorter and
one-character longer should be lower than a can-
didate prefix boundary. This is intuitive as un-
der our principle of compositionality assumption,
complex words are formed by concatenating sub-
word structures. As such, given an incomplete
subword, the next character can easily be pre-
dicted, but given a complete subword, any number
of new subwords can be concatenated to the com-
pleted subword increasing the unpredictability and
thus entropy. These high-entropy positions thus
serve as a strong indicator of subword boundaries.
As seen in Figure 2, for the word “spatiotempo-
ral”, candidate prefixes and suffixes are found at
boundaries exhibit a local maxima in entropy. For
“spatiotemporal”, candidate prefixes are “spa” and
“spati” while candidate suffixes include “al” and
“temporal”.

Root Word Generation

While utilizing entropy-scoring, it is possible to
detect subword structures that occur at the begin-
ning or end of a word, often many words contain
subword structure between prefixes and suffixes.
For each prefix and suffix candidate identified in a
word, it is possible to generate candidate root word
by stemming the word and removing prefixes and
suffixes. This creates a high-quality pool of root-
words to be used in conjunction with prefixes and
suffixes for segmenting the vocabulary.

Example 1 (Root Extraction) Removing prefixes and
suffixes yields candidate root words.

[pre] + authenticat + [ion]

The characters grouped together by [] are prefixes and suf-
fixes. When removed, the remaining underlined character-
sequence represent candidate root words.

As seen in Example 1, when stripping the possi-
ble prefixes and suffixes of a word, the remaining
character sequence is considered a candidate root
word. We apply some filtering conditions for each
candidate root to test the viability as a shareable
root. These include: 1) a minimum support of two
within the vocabulary 2) the entropy boundary of
each rootword must be non-zero. Additionally, for
each word in the vocabulary, after stripping pre-
fixes and suffixes, the candidate root words that
meet the root word constraints are extracted and
added to the subword vocabulary.

(a) Parsimonious Segmenta-
tion

(b) Candidate Subwords

Figure 3: Segmentation of the word “spatiotemporal”
using disjoint interval covering.

3.2 Parsimonious Subword Segmentation

In the previous section, we introduce an unsuper-
vised method of subword generation based on an
entropy-based predictability metric for boundary
detection. In this subsection we introduce an un-
supervised segmentation algorithm that, utilizing
a given subword vocabulary, segments a word into
subwords. Our algorithm first identifies candidate
subwords from the subword vocabulary within a
word, then selects a subset of these candidate sub-
words that best segment the word. The main in-
sight behind the unsupervised segmentation is a
per-word implementation of Occam’s Razor. That
is, according to the preference for parsimonious
hypotheses, we posit that each word is composed
of the fewest number of subwords that maximally
cover the word.

Example 2 (Parsimonious Segmentation) According to
parsimonious segmentation, candidate segmentations are
scored based on word coverage and number of subwords
used for coverage.

Segmentation # Subwords Coverage
[spa] + tio+ [temporal] 2 11
[spati] + o + [temporal] 2 13
[spati] + o + [tempor] + [al] 3 13

. . .
[spa] + tio [tempor] + [al] 3 11

The highlighted row displays the maximally parsimonious
subword segmentation.

As seen in Figure 3, for each word a set of sub-
words present in the target word are identified and
recursive segmentation is performed to separate
the word into subwords. Example 2 demonstrates
how the candidates are used to segment the target
word under the parsimony criterion. Subsets of
non-overlapping candidate subwords are used to
segment and the most parsimonious segmentation
is selected. Because there are a O(2|Av |) number
of possible subsets of candidate subwords, direct
enumeration of each segmentation quickly proves
intractable for even a modest number of candidate
subwords. To identify the most parsimonious seg-
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mentation, we abstract out our parsimonious sub-
word segmentation task into a general problem we
dub Disjoint Interval Covering and demonstrate
that this problem can be solved via dynamic pro-
gramming in linear time.

We formalize the disjoint interval covering
problem as follows:

Definition 2 (Disjoint Interval Covering)
Given an input N ∈ N and a set A of pairs
(a, b) : a, b ∈ {1 . . . N} × {1 . . . N} and

a < b, find the smallest subset B ⊆ A such
that |⋃x|

x∈B
is maximized, |B| is minimized, and

∀x, y ∈ B : x 6= y ⇒ x ∩ y = ∅.

As seen in Definition 2, the input is a set of
pairs A and a positive integer N . Within the seg-
mentation perspective, these refer to position in-
dex boundary pairs for candidate subwords and the
word length. Given these inputs, the objective is
to select a minimum subset of disjoint subwords
whose length maximize coverage of the word.

F (j) = max
0

min
1





(0, 0), j < 1
F (j−1), j ≥ 1
max0min1{F

(i,j)∈B
(i−1)0 + (j−i+1), F (i−1)1+1}, j ≥ 1





(3)

We define a recurrence to the disjoint interval
covering problem in Equation 3. This recurrence
posits that the segmentation that maximally covers
the word is either the solution for the current word
minus the ending character, or the max-covering,
min-subword solution utilizing all subwords that
have a right boundary index equal to the index
of the end of the word. With proper memoiza-
tion, it is evident that for a word of size |v|, there
are |v| subproblems to solve. In addition, be-
cause each interval’s right boundary corresponds
to the word size, each interval is iterated over a
constant number of times. As such, for word v,
the total, memoized complexity of this segmenta-
tion is O(v + |Av|) where Av indicates the pre-
segmentation subwords that are substrings of word
v.

Algorithm 1 presents the subword segmentation
algorithm. The algorithm takes as input a word
and a collection of intervals corresponding to in-
dex boundaries of candidate subwords within the
word. It then proceeds to select a set of intervals
that maximally cover the word while utilizing the
fewest number of intervals. Solutions to subprob-
lems are memoized as to avoid repeated computa-
tion.

3.3 Hierarchical Subword Segmentation
In Subsection 3.1 we introduced the concept of uti-
lizing high-entropy boundaries to create a subword
vocabulary, and in Subsection 3.2 we introduce
an algorithm for segmenting words into subwords
based on the principle of parsimonious disjoint
interval covering. In this subsection we demon-

Algorithm 1: DP Parsimonious Segmentation (DP)
Input: Word v, Subword Intervals Av

Output: Optimal segmentation S

n[0]← 0; c[0]← 0; p[0]← null;1
for j := 1 to Nv do2

num← n[j-1]; cov←c[j-1]; pair← p[j-1];3
for (i, j) ∈ Av do4

cov′ ← c[i-1]+(j-i+1)5
num′ ← n[i−1]+16
if cov′ > cov then7

cov← cov′; num← num′;8
pair← (i, j);9

end10
if cov′=cov ∧ num′<num then11

num← num′; pair← (i, j)12
end13

end14
n[j]← num; c[j]← cov; p[j]← pair;15

end16
return p17

strate a high-level overview on how applying these
two methods can be used to hierarchically segment
words into multi-granular subwords.

Following the steps from Subsection 3.1, an ini-
tial subword vocabulary is created. Within the vo-
cabulary, we differentiate between prefixes, suf-
fixes, and root words. As seen in Algorithm 2,
Line 2, each subword found in the input word
is mapped to an interval indicating its boundary
indices within the word with the condition that
prefix intervals must start at the beginning of the
word, suffix intervals must terminate at the end
of the word, and root word intervals can be lo-
cated at any position within the word. In addition,
the complete word is not included (to ensure the
word segments to smaller subwords). The algo-
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Algorithm 2: Segmentation Algorithm (SEGMENT)
Input: Word v, Subword Vocabulary SW
Output: Set of subwords of v

output← {v}1
Av ← {(i, j) for vi . . . vj ∈ SW and j-i 6= |v|}2
if Av = ∅ then3

return output4
end5
segmented← DP(w, Av)6
for subword ∈ segmented do7

output ∪ SEGMENT(subword, SW)8
end9
return output10

rithm terminates if the word cannot be further seg-
mented. Otherwise, the word is segmented with
the dynamic programming parsimonious segmen-
tation algorithm. Each subword is then treated as a
word and recursively segmented by the algorithm,
and the collection of all subwords from segmenta-
tion are outputted.

3.4 Word Embedding

To efficiently utilize our mined subwords to im-
prove upon word embeddings, we modify the Fast-
Text model for word embeddings to use our ex-
tracted subwords (Bojanowski et al., 2016).

FastText utilizes the skip-gram objective with
negative sampling yielding the following objective
(for simplicity, `(x) = log(1 + exp(−x))):

W∑

x=1

[ ∑

c∈Cx
`(s(wx, wc)) +

∑

t∈Nx,c

`(−s(wx, t))
]

(4)
The scoring function is then adapted to incorporate
subword information as follows:

s(wx, wc) =
∑

p∈wx

zᵀpvc (5)

which equates to a simple summation over sub-
word embedding vectors.

4 Related Works

There have been many attempts at automatic sub-
structure extraction from words. These techniques
generally fall into one of three families: scoring
based on segment predictability, identifying sub-
words based on discovering similar and dissimilar
word parts, and optimization methods.

In morphological analysis of relating phonemes
to morphemes, segment predictability has been
suggested as a potential identifying characteristic

for detecting subword structure. An early quanti-
tative metric proposed was the number of differ-
ent variations of subwords following a subword
sequence whereby a high number of variations in-
dicates a subword boundary (Harris, 1970). While
this work provided influential insight into useful
metrics for subword-detection, the main objective
was developing a scoring function for identifying
candidate subwords, not segmentation. Following
this line of work, many methods have extended the
variation boundary approach to identify frequent
morphemes from text corpora (Hafer and Weiss,
1974). A similar method adopts the metric to iden-
tify frequent affixes (Déjean, 1998). Both these
methods seek to identify a small subset of high-
quality, high frequency subwords from each cor-
pus, prioritizing precision over recall. Other meth-
ods propose slight variations to the predictabil-
ity metric such as drops in transitional probabili-
ties (Saffran et al., 1996).

Deviating from predictability-based methods,
several subword detection methods have been pro-
posed for detecting subwords by comparing words
and identifying similar and dissimilar parts. One
such method performs alignment from the left and
right edge of words (Neuvel and Fulop, 2002)
identifying common subwords. Another method
adds words to a trie in correct order and reverse
order to identify leading and trailing frequent sub-
words (Schone and Jurafsky, 2001). Unfortu-
nately both these methods can only identify prefix
and suffix subwords, ignoring many internal sub-
words. Unlike these methods, our subword seg-
mentation is position insensitive and can identify
subwords that occur in any position in a word.

Opting for an optimization over a scoring per-
spective, a variety of methods have been proposed.
One such method models segmentation through
the minimum description length principle (Creutz
and Lagus, 2002). This method attempts to min-
imize both the vocabulary while maintaining the
likelihood of the corpus data.This method was
successfully applied to languages such as Turk-
ish (Sak et al., 2010). Unfortunately, unlike meth-
ods that take the vocabulary as input, these family
of optimization methods must make several passes
over the corpus. This not only adds significant run-
time and may discourage use as a preprocessing
step before embedding, but can also be intractable
for large text corpora. Other methods apply a max-
imum likelihood approach to identifying subwords
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(also called wordpieces) and has been successfully
applied to a variety of NLP tasks (Wu et al., 2016;
Schuster and Nakajima, 2012). And similarly the
byte-pair compression algorithm has been used to
identify subwords for neural machine translation
tasks (Sennrich et al., 2015). Both these methods
construct a fixed-size subword vocabulary to con-
struct each word as a sequence of subwords.

Many attempts have been proposed to address
data-sparsity when learning distributed word rep-
resentations. These methods posit that individ-
ual words have semantically meaningful attributes
that are shared among other words allowing for pa-
rameter sharing between vocabulary words. One
such method proposes a factored neural language
model where words are represented as a set of
features including subword information (Alexan-
drescu and Kirchhoff, 2006). Another method
attempts to incorporate morphological informa-
tion into the word embeddings by adding mor-
phological similarity features into a neural net-
work along with the context features (Cui et al.,
2015). This method while similarly motivated,
does not leverage subword structure but instead
utilizes the embeddings of “morphologically sim-
ilar” words in the embedding process. While
this may seem appealing, identifying morpholog-
ically similar words can be an expensive pro-
cess as it requires a search over the entire vo-
cabulary which may be prohibitive during on-the-
fly computation out-of-word vocabulary. In ad-
dition, this method may miss important morpho-
logical cues such as negation subwords. When
extended to use subword information, this model
assumes subwords are already provided, this re-
quires manual identification of subwords which
can be an expensive human-powered task, es-
pecially in domain-specific settings or new lan-
guages (Qiu et al., 2014). Along similar moti-
vation, a method has been proposed where given
an input of morphologically annotated data, log-
bilinear models are trained to jointly predict con-
text words and its morphological tag (Cotterell
and Schütze, 2015). Despite displaying supe-
rior embedding performance on German corpora,
this method once again requires human-labeling
for tagging words. This limits applicability to
domain-specific corpora and new languages where
labeled data is scarce or expensive to obtain. The
method that is is closest to our approach is the
extension of FastText enriched with subword in-

formation (Bojanowski et al., 2017). This method
extends the standard skip-gram model but utilizes
character-ngram subword embeddings for param-
eter sharing. The major differences between Sub-
wordMine and this method is that FastText em-
bedding utilizes all character n-grams of user-
specified lengths for subword embedding and per-
forms a simple sum over their representations
while SubwordMine performs unsupervised seg-
mentation and applies a novel attention mecha-
nism to combine the subword representations into
word representations. Finally, utilizing subword
information was shown to improve performance in
machine translation (Sennrich et al., 2016).

Another spectrum of approaches address word
sparsity through the use of characters as the base
unit for embedding. Some approaches treat each
word as a sequence of characters. and apply recur-
rent neural networks to the task of language mod-
eling (Bojanowski et al., 2015; Sutskever et al.,
2011). Other related models apply convolutional
neural networks directly on characters (Kim et al.,
2016).

5 Experimental Results

We introduce the datasets used and methods for
comparison. We then describe our evaluations for
both subword extraction and for word embedding
performance.

5.1 Datasets and methods for comparison
Datasets

We use the following three datasets for evalua-
tion purpose:

• DBLP Abstracts. Computer science ab-
stracts containing 529K abstracts, 186K
unique words, and 39M tokens.

• DBLP Title. Titles of computer science pa-
pers published in 20 conferences containing
44K titles, 5.5K unique words, and 351K to-
kens.

• PubMed Abstracts. Abstracts of research
papers obtained from from PubMed Cen-
tral containing 421K abstracts, 334K unique
words and 5.8M tokens.

For baseline comparison methods to our pro-
posed SubwordMine algorithm we utilize a un-
igram language model segmentation of ‘word-
pieces’ and byte-pair encoding segmentation as
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Figure 4: Accuracy in extracting Greek and Latin root
words while varying subword vocabulary size.

Model Extraction Accuracy
PubMed DBLP

Byte-Pair Encoding 0.2180 0.1881
Unigram LM 0.2535 0.1782
SubwordMine 0.3831 0.3363

Table 1: Accuracy in automatically extracting Greek
and Latin root words.

described in the related works. For comparable
methods for embedding we utilize FastText, a pro-
posed variation of the Skip-Gram objective that
utilize subword information, and modify FastText
to use a variety of subword segmentations.

5.2 Subword Extraction Accuracy
To evaluate the effectiveness of our proposed
unsupervised segmentation algorithm at extract-
ing semantically meaningful subwords, we col-
lect a list of approximately three-thousand English
words and their Greek or Latin roots. For each
segmentor trained on each dataset, we test to see
if the segmentation correctly extracts the ground
truth root.

As seen in Figure 4, the accuracy of extracting
the root words varies with the vocabulary size for
both BPE and the Unigram LM method. As seen
in Table 2, for the optimal vocabulary size for both
methods, we see SubwordMine still outperforms
both methods.

5.3 Perplexity
We investigate the benefits of using semantically
meaningful subwords for parameter-sharing dur-
ing when learning word embeddings. For each set
subword-enriched embedding vectors, we learn a
language model and evaluate its quality by com-
puting the language model perplexity on a DBLP
title dataset. The model used for language mod-
eling is an LSTM variant of a recurrent neural
network with two hidden layers and 600 hidden
units per layer and regularized with dropout with

Model Perplexity
Untuned Tuned

SkipGram 378.45 245.01
BPE-FastText 356.29 210.59
ULM-FastText 324.07 220.73

FastText 370.68 212.88
SubwordMine 320.65 207.84

Table 2: Test perplexity on the language modeling task
for DBLP titles dataset. Evaluation is performed with
fixed pre-trained embeddings, and embedding tuning.

0.2 probability. The RNNs are unrolled for 35
steps and the batch size is set to 20. Parameters
are learned using Adagrad with a gradient clip-
ping of 1. Each language model instance trained
on a training set partition consisting of 80% of the
DBLP data and evaluation of perplexity was com-
puted for each model on an independent test set
consisting of 10% of the data after selecting the
best performing iteration of the model on the re-
maining validation set.

The results are summarized in Table 2. Be-
cause our implementation performs minimal data
cleaning and does not drop infrequent or out-of-
vocabulary words, we expect the resulting per-
plexity should be relatively higher than cleaned-
datasets but directly comparable among the differ-
ing methods (Bojanowski et al., 2016).

For the LSTM model, we observe that across
all sub-word enriched embeddings perform bet-
ter in language modeling over traditional skip-
gram. Additionally, for both the untuned and
tuned settings, SubwordMine segmentations im-
prove test-perplexity over all other subword ex-
traction method including original FastText’s enu-
meration of all possible subwords. This is likely
due to the sheer number of enumerated subwords
and subword embeddings generated by FastText
which may be more difficult to learn.

6 Conclusions

In this paper, we propose a computationally effi-
cient method of segmenting vocabulary lists into
semantically meaningful subwords. We demon-
strate experimentally that utilizing the subwords in
word embeddings in scientific domain corpora im-
proves embedding quality as measured by a down-
stream language modeling task.
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7 Future Works

Currently SubwordMine applies unsupervised
segmentation. While this has be shown to yield
high-quality segmentations, one natural extension
is to incorporate human-labeling and perform su-
pervised segmentation. Another area of work is to
utilize subword structures in a variety of sequen-
tial modeling tasks which could improve tasks
such as entity typing, relation extraction, and ma-
chine translation where substructures can provide
valuable signals.
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Abstract

This paper seeks to examine the effect of in-
cluding background knowledge in the form of
character pre-trained neural language model
(LM), and data bootstrapping to overcome the
problem of unbalanced limited resources. As a
test, we explore the task of language identifica-
tion in mixed-language short non-edited texts
with an under-resourced language, namely the
case of Algerian Arabic for which both la-
belled and unlabelled data are limited. We
compare the performance of two traditional
machine learning methods and a deep neural
networks (DNNs) model. The results show
that overall DNNs perform better on labelled
data for the majority categories and struggle
with the minority ones. While the effect of
the untokenised and unlabelled data encoded
as LM differs for each category, bootstrap-
ping, however, improves the performance of
all systems and all categories. These methods
are language independent and could be gener-
alised to other under-resourced languages for
which a small labelled data and a larger unla-
belled data are available.

1 Introduction

Most Natural Language Processing (NLP) tools
are generally designed to deal with monolingual
texts with more or less standardised spelling.
However, users in social media, especially in
multilingual societies, generate multilingual non-
edited material where at least two languages or
language varieties are used. This phenomenon is
linguistically referred to as language (code) mix-
ing where code-switching and borrowing, among
others, are the most studied phenomena. Poplack
and Meechan (1998) defined borrowing as a mor-
phological or a phonological adaptation of a word
from one language to another and code-switching
as the use of a foreign word, as it is in its origi-
nal language, to express something in another lan-

guage. However, the literature does not make it
clear whether the use of different script is counted
as borrowing, or code-switching or something
else. For instance, there is no linguistic well-
motivated theory about how to classify languages
written in other scripts, like French written in Ara-
bic script which is frequently the case in North
Africa. This theoretical gap could be explained
by the fact that this fairly recent phenomenon has
emerged with the widespread of the new tech-
nologies. In this paper, we consider both code-
switching and borrowing and refer to them collec-
tively as language mixing. Our motivation in do-
ing so is to offer to sociolinguists a linguistically
informative tool to analyse and study the language
contact behaviour in the included languages.

The task of identifying languages in mixed-
language texts is a useful pre-processing tool
where sequences belonging to different lan-
guages/varieties are identified. They are then pro-
cessed by further language/variety-specific tools
and models. This task itself has neither been well
studied for situations when many languages are
mixed nor has it been explored as a main or an aux-
iliary task in multi-task learning (see Section 2).

1.1 Related Work

There has been some interesting work in detecting
code mixing for a couple of languages/language
varieties, mostly using traditional sequence la-
belling algorithms like Conditional Random Field
(CRF), Hidden Markov Model (HMM), linear ker-
nel Support Vector Machines (SVMs) and a com-
bination of different methods and linguistic re-
sources (Elfardy and Diab, 2012; Elfardy et al.,
2013; Barman et al., 2014b,a; Diab et al., 2016;
Samih and Maier, 2016; Adouane and Dobnik,
2017). Prior work that is most closely related
to our work using neural networks and related
languages, Samih et al. (2016) used supervised
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deep neural networks (LSTM) and a CRF classi-
fier on the top of it to detect code-switching, us-
ing small datasets of tweets, between Egyptian
Arabic and MSA and between Spanish and En-
glish using pre-trained word embeddings trained
on larger datasets. However, in their annotation
they combined ambiguous words, which are words
that could be of either languages depending on the
context, in one category called ’ambiguous’ and
ignored words from minority languages. More-
over, the system was evaluated on a dataset with
no instances of neither ’ambiguous’ nor ’mixed-
language’ words, basically distinguishing between
MSA and Egyptian Arabic words in addition to
Named Entities and other non-linguistic tokens
like punctuation, etc.

Similar to our work, Kocmi and Bojar (2017)
proposed a supervised bidirectional LSTM model.
However, the data used to train the model was cre-
ated by mixing edited texts, at a line level, in 131
languages written in different scripts to create a
multilingual data, making it a very different task
from the one investigated here. We use non-edited
texts, a realistic data as generated by users reflect-
ing the real use of the included languages which
are all written in the same Arabic script. Our texts
are shorter and the size of the dataset is smaller,
therefore, our task is more challenging.

By comparison to our work, most of the litera-
ture focuses on detecting code-switching points in
a text, either at a token level or at a phrase level
or even beyond a sentence boundaries, we distin-
guish between borrowing and code-switching at
a word level by assigning all borrowed words to
a separate variety (BOR). Most importantly, our
main focus is to investigate ways to inject ex-
tra knowledge to take advantage of the unlabelled
data.

1.2 Linguistic Situation in Algeria

The linguistic landscape in Algeria consists of
several languages which are used in different
social and geographic contexts to different de-
grees (Adouane et al., 2016a): local Arabic va-
rieties (ALG), Modern Standard Arabic (MSA)
which is the only standardised Arabic variety,
Berber which is an Afro-Asiatic language different
from Arabic and widely spoken in North Africa,
and other non-Arabic languages such as French,
English, Spanish, Turkish, etc. A typical text con-
sists of a mixture of these languages, and this mix-

ture is often referred to, somewhat mistakenly as
Algerian Arabic. In this paper, we use the term Al-
gerian language to refer to a mixture of languages
and language varieties spoken in Algeria, and the
term Algerian variety (ALG) to refer to the local
variety of Arabic, which is used alongside other
languages such as, for example Berber (BER).

This work seeks to identify the language or lan-
guage variety of each word within an Algerian lan-
guage text. Algerian language is characterised by
non-standardised spelling and spelling variations
based on the phonetic transcription of many local
variants. For instance, the Algerian sentence in
(1), which is user generated, is a mixture of 3 lan-
guages (Arabic, French and Berber) and 2 Arabic
varieties (MSA and ALG). Each word is coloured
by its language in d., b. is an IPA transcription
and c. is the human English translation. To il-
lustrate the difficulty of the problem, we addition-
ally show the (incorrect) translation proposed by
Google translate e., where words in black are ad-
ditional words not appearing in the original sen-
tence.

(1) a. ¼@PñÓ H. AJ. Ë Qº� ð �é�̄ A¢Ë@ Ég ú
ÎK. ñ�JÊJ
�

b. [muræk ælbæb sekkær wu ætQaqæ èæl
si:ltupli:]

c. Please open the window and close the
door behind you

d. French Algerian Berber MSA Berber
MSA Algerian

e. SELTOPLEY POWER SOLUTION
AND SUGAR FOR MORAK PAPER

All the words in different languages are normally
written in the Arabic script, which causes high de-
gree of lexical ambiguity and therefore even if we
had dictionaries (only available for MSA) it would
be hard to disambiguate word senses this way. In
(1), the ALG word É g open means solution in

MSA, the Berber word �é �̄ A ¢ Ë@ window which is
adapted to the MSA morphology by adding the
MSA definite article È@ (case of borrowing) means

energy/capacity in MSA. The Berber word Q º �
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close means sugar / sweeten / liquor / get drunk in
MSA.

Moreover, the rich morphology of Arabic is
challenging because it is a fusional language
where suffixes and other morphemes are added to
the base word, and a single morpheme denotes
multiple aspects and features. Algerian Arabic
shares many linguistic features with MSA, but it
differs from it mainly phonologically, morpholog-
ically and lexically. For instance, a verb in the first
person singular in ALG is the same as the first per-
son plural in MSA. The absence of a morphologi-
cal/syntactic analyser for ALG makes it challeng-
ing to correctly analyse an ALG text mixed with
other languages and varieties.

Except for MSA, Arabic varieties are neither
well-documented nor well-studied, and they are
classified as under-resourced languages. Further-
more, social media are the only source of written
texts for Algerian Arabic. The work in NLP on Al-
gerian Arabic and other Arabic varieties also suf-
fers severely from the lack of labelled (and even
unlabelled) data that would allow any kind of su-
pervised training. Another challenge is that we
have to deal with all the complications present
in social media domain, namely the use of short
texts, spelling and word segmentation errors, etc.
in addition to the non-standard orthography used
in informal Arabic varieties. We see the task of
identification of the variety of each word in a text
a necessary first step towards developing more
sophisticated NLP tools for this Arabic variety
which is itself a mixture of other languages and
varieties.

In this paper we explore two avenues for im-
proving the state of the art in variety identifi-
cation for Algerian Arabic. First, we measure
the ability of recurrent neural networks to iden-
tify language mixing using only a limited train-
ing corpus. Second, we explore to what extent
adding background knowledge in the form of pre-
trained character-based language model and boot-
strapping can be effective in dealing with under-
resourced languages in the domain of language
identification in mixed-language texts for which
neither large labelled nor unlabelled datasets ex-
ist.

The paper is organized as follows: in Section
2, we give a brief overview of methods for lever-
ing learning from limited datasets. In Section 3,
we describe the data. In Section 4, we present the

architecture of our learning configurations which
include both traditional approaches and deep neu-
ral networks and explain the training methods used
on the labelled data, experiments and results. In
Section 5, we experiment with these models when
adding background knowledge and report the re-
sults.

2 Leveraging Limited Datasets

Deep learning has become the leading approach
to solving linguistic tasks. However deep neural
networks (DNNs) used in a supervised and un-
supervised learning scenario usually require large
datasets in order for the trained models to per-
form well. For example, Zhang et al. (2015) es-
timates that the size of the training dataset for
character-level DNNs for text classification task
should range from hundreds of thousands to sev-
eral million of examples.

The limits imposed by the lack of labelled
datasets have been countered by combining
structural learning and semi-supervised learn-
ing (Ando and Zhang, 2005). Contrary to the su-
pervised approach where a labelled dataset is used
to train a model, in structural learning, the learner
first learns underlying structures from either la-
belled or unlabelled data. If the model is trained
on labelled data, it should be possible to reuse
the knowledge encoded in the relations of the pre-
dictive features in this auxiliary task, if properly
trained, to solve other related tasks. If the model
is trained on unlabelled data, the model captures
the underlying structures of words or characters in
a language as a language model (LM), i.e., model
the probabilistic distribution of words and charac-
ters of a text.

Such pre-trained LM should be useful for var-
ious supervised tasks assuming that linguistic
structures are predictive of the labels used in these
tasks. Approaches like this are known as trans-
fer learning or multi-task learning (MTL) and are
classified as a semi-supervised approaches (with
no bootstrapping) (Zhou et al., 2004). There is an
increasing interest in evaluating different frame-
works (Ando and Zhang, 2005; Pan and Yang,
2010) and comparing neural network models (Cho
et al., 2014; Yosinski et al., 2014). Some studies
have shown that MTL is useful for certain tasks
(Sutton et al., 2007) while others reported that it is
not always effective (Alonso and Plank, 2017).

Bootstrapping (Nigam et al., 2000) is a gen-
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eral and commonly used method of countering the
limits of labelled datasets for learning. It is a
semi-supervised method where a well-performing
model is used to automatically label new data
which is subsequently used as a training data for
another model. This helps to enhance supervised
learning. However, this is also not always effec-
tive. For example, Pierce and Cardie (2001) and
Ando and Zhang (2005) show that bootstrapping
degraded the performance of some classifiers.

3 Data

In this section, we describe the datasets that we use
for training and testing our models. We use two
datasets: small dataset, annotated with language
labels, and a larger dataset lacking such annota-
tion.

3.1 Labelled data

We use the human labelled corpus described by
Adouane and Dobnik (2017) where each word is
tagged with one of the following labels: ALG (Al-
gerian), BER (Berber), BOR (Borrowing), ENG
(English), FRC (French), MSA (Modern Stan-
dard Arabic), NER (Named Entity), SND (inter-
jections/sounds) and DIG (digits). The annotators
have access to the full context for each word. To
the best of our knowledge, this corpus is the only
available labelled dataset for code-switching and
borrowing in Algerian Arabic, written in Arabic
script, and in fact also one of the very few available
datasets for this particular language variety over-
all. Because of the limited annotation resources
the corpus is small, containing only 10,590 sam-
ples (each sample is a short text, for example one
post in a social media platform). In total, the data
contains 215,875 tokens distributed unbalancely
as follows: 55.10% ALG (representing the major-
ity category with 118,960 words), 38.04% MSA
(82,121 words), 2.80% FRC (6,049 words), 1.87%
BOR (4,044 words), 1.05% NER (2,283 words),
0.64% DIG (1,392 numbers), 0.32% SND (691 to-
kens), 0.10% ENG (236 words), and 0.04% BER
(99 words).

3.2 Unlabelled data

Unfortunately, there is no existing user-generated
unlabelled textual corpus for ALG. Therefore, we
also collected, automatically and manually, new
content from social media in Algerian Arabic
which include social networking sites, blogs, mi-

croblogs, forums, community media sites and user
reviews.1

The new raw corpus contains mainly short non-
edited texts which require further processing be-
fore useful information can be extracted from
them. We cleaned and pre-processed the cor-
pus following the pre-processing and normalisa-
tion methods described by Adouane and Dobnik
(2017). The data pre-processing and normalisa-
tion is based on applying certain linguistic rules,
including: 1. Removal of non-linguistic words
like punctuation and emoticons (indeed emoticons
and inconsistent punctuation are abundant in so-
cial media texts.) 2. Reducing all adjacent re-
peated letters to maximum two occurrences of let-
ters, based on the principle that MSA allows no
more than two adjacent occurrences of the same
letter. 3. Removal of diacritics representing short
vowels, because these are rarely used; 4. Removal
all duplicated instances of texts; 5. Removal of
texts not mainly written in Arabic script 6. Nor-
malisation all remaining characters to the Arabic
script. Indeed, some users use related scripts like
Persian, Pashto or Urdu characters, either because
of their keyboard layout or to express some sounds
which do not exist in the Arabic alphabet, e.g. /p/,
/v/ and /g/.

Additionally, we feed each document, as a
whole, to a language identification system that dis-
tinguishes between the most popular Arabic vari-
eties (Adouane et al., 2016b) including MSA; Mo-
roccan (MOR); Tunisian (TUN); Egyptian (EGY);
Levantine (LEV); Iraqi (IRQ) and Gulf (GUF)
Arabic. We retain only those predicted to be Al-
gerian language, so that we can focus on language
identification within Algerian Arabic, at the word
level.

Table 1 gives some statistics about the labelled
and unlabelled datasets. Texts refer to short texts
from social media, words to linguistic words ex-
cluding punctuation and other tokens, and types
to sets of words or unique words. We notice that
82.52% of the words occur less than 10 times in
both datasets. This is due to the high variation
of spelling and misspellings which are common in
these kinds of texts.

1We have a documented permission from the own-
ers/users of the used social media platforms to use their tex-
tual contributions for research.
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Dataset #Texts #Words #Types
Labelled 10,590 213,792 57,054
Unlabelled 189,479 3,270,996 290,629

Table 1: Information about datasets.

4 Using Labelled Data

4.1 Systems and Models

We frame the task as a sequence labelling prob-
lem, namely to assign each word in a sequence the
label of the language that the word has in that con-
text. We use three different approaches: two ex-
isting sequence labelling systems – (i) an HHM-
based sequence labeller (Adouane and Dobnik,
2017); (ii) a classification-based system with vari-
ous back-off strategies from (Adouane and Dob-
nik, 2017) which previously performed best on
this task, henceforth called the state-of-the-art sys-
tem; and (iii) a new system using deep neural net-
works (DNNs).

4.1.1 HMM system
The HMM system is a classical probabilistic se-
quence labelling system based on Hidden Markov
Model where the probability of a label is estimated
based on the history of the observations, previous
words and previous labels. In order to optimise the
probabilities and find the best sequence of labels
based on a sequence of words, the Viterbi algo-
rithm is used. For words that have not been seen in
the training data, an constant low probability com-
puted from the training data is assigned.

4.1.2 State-of-the-art system
The best-so-far performing system for identifying
language mixing in Algerian texts is described by
Adouane and Dobnik (2017). The system is a
classifier-based model that predicts the language
or variety of each word in the input text with var-
ious back-off-strategies: trigram and bigram clas-
sification, lexicon lookup from fairly large man-
ually compiled and curated lexicons, manually-
defined rules capturing linguistic knowledge based
on word affixes, word length and character combi-
nations, and finally the most frequent class (uni-
gram).

4.1.3 DNN model
Recurrent Neural Networks (RNNs) (Elman,
1990) have been used extensively in sequence pre-
diction. The most popular RNN variants are the

Long Short-Term Memory (LSTMs) (Hochreiter
and Schmidhuber, 1997) and the Gated Recurrent
Unit (GRUs) (Cho et al., 2014).

Our neural networks consists of four layers: one
embedding layer, two recurrent layers, and a dense
layer with softmax activation. All our models are
optimized using the Adam optimizer, built using
the Keras library (Chollet, 2015), and run using
a TensorFlow backend. A summary of the model
architecture is shown in Figure 1. (This variant
is composed of only the uncoloured (white) parts
of the figure; the coloured parts are added in the
model described in section 5). The DNN is pro-
vided the input character by character. We opt for
character-based input rather than word-based in-
put for two reasons. First, we expect that the inter-
nal structure of words (phonemes and morphemes)
is predictive of a particular variety. This way we
hope to capture contexts within words and across
words. Second, we do not have to worry about the
size of the vocabulary, which we would if we were
to use word embeddings.

This language-identification model is trained
end-to-end. Because of the nature of RNNs, the
network will assign one language variant per in-
put symbol, and thus per character — even though
the tags are logically associated word-by-word. To
deal with this mismatch, when training we tag
each character of a word and the space which fol-
lows it with the variant of the word. When eval-
uating the model, we use the tag associated with
the space, so that all the word has been fed to the
model before a prediction is made.

We have trained models with various values
for the hyper-parameters: number of layers, num-
ber of epochs, memory size, drop-out rate and
the batch size, but report detailed results for the
model with the best behaviour. We experimented
with both GRU and LSTM RNNs and found that
the GRU performs better than LSTM on our task
which is in line with the results of the previous
comparisons but on different tasks (Chung et al.,
2014). We also found out that our best systems are
optimised with the architecture shown in Figure 1
with a memory size of 200, batch size of 512 and
number of epochs of 25. Increasing or decreasing
these values caused the overall accuracy to drop.
Using drop-out improved the performance of the
systems (overall accuracy > 90%) over not using
it (< 70%). The best results are obtained using
drop-out rate of 0.2 for the recurrent layers. We
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refer to this model as DNN in the following.

Embedding

Language model (2 × RNN)

Tagging model (2 × RNN)

Dense layer

Softmax

input characters in [0..38]

character representation in R40

language model state in R200

tagging model state in R200

tag score in R10

tag prediction in [0,1]10

Dense layer

Softmax

character representation in R40

next character prediction in [0,1]39

Figure 1: DNN architecture.

4.2 Results
To ensure a fair comparison, all the models have
been evaluated under the same conditions. We
use 10-fold cross validation on all of them and
report their performance measured as the aver-
age accuracy. Table 2 shows the results. Note
that for the DNN we only report the results of
the (best-performing) GRU models. As a base-
line we take the most frequent category in the
labelled data. State-of-the-art (2) outperforms
slightly HMM (1). DNN (3) outperforms slightly
the State-of-the-art (2). All the systems perform
better than the baseline.

Model Accuracy (%)
1 HMM 89.29
2 State-of-the-art 89.83
3 DNN 90.53
4 Baseline 55.10

Table 2: Performance of the models on labelled data.

Figure 2 shows the performance of each model
per category reported as average F-score. Over-
all the models perform better on the majority cat-
egories such as ALG (Algerian) and MSA (Mod-
ern Standard Arabic), and non linguistic categories
like DIG (digits) and SND (sounds) because their
patterns are more or less regular and language in-
dependent. The State-of-the-art system achieves
the best performances for all categories except for
ALG where it is slightly outperformed by DNN,

ALG BER BOR DIG ENG FRC MSA NER SND
0

20

40

60

80

100

HMM State-of-the-art DNN

Figure 2: Models’ average F-score per category.

average F-score of 91.45 and 92.22 respectively.
A possible explanation for this is that the State-
of-the-art system is more robust because it in-
volves several strategies of classification. DNN
performed better than HMM in all cases except for
ENG (English) and SND. Both DNN and HMM
struggle with minority categories like ENG, BOR
(borrowing), BER (Berber), NER (Named Enti-
ties), and FRC (French). Note that in this exper-
iment we only used the smaller labelled dataset.
In the following section, we explore ways to take
advantage of the additional relatively large unla-
belled dataset in order to improve the performance
of the systems.

5 Using Data Augmentation With
Background Knowledge

5.1 Training Methods

In this section, we examine which data augmen-
tation method performed on the unlabelled cor-
pus can best enhance the performance of our three
models. We experiment with data bootstrapping,
pre-training a language model, and the combina-
tion of both methods. In each case, we are pro-
viding some form of background knowledge com-
pared to the task described in Section 4.

5.1.1 Bootstrapping
For bootstrapping, we use the State-of-the-art sys-
tem (Section 4.1.2) to label the unlabelled data
without additional checking of the quality of an-
notation and then use this bootstrapped data in fur-
ther training. We re-run the experiments described
in Section 4 using the bootstrapped data as the
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training data. We refer to the systems as HMM
bootstrapped, State-of-the-art bootstrapped, and
DNN bootstrapped respectively.

5.1.2 Language Model
Another way to take advantage of the unlabelled
data is to train a language model (LM) on the
whole data and use the internal state of the LM
as input to the tagger, rather than using the raw
textual input. To this end, we modify the struc-
ture of our DNN as indicated by the blue-coloured
parts in Figure 1. Namely, we add two language-
modelling RNN layers between the embedding
and the tagging layers. They are followed by a
dense layer with softmax activation, which pre-
dicts the next character in the input.

With this setup, we train the language-
modelling layers on the unlabelled corpus, as a
generative language model on the unlabelled data
set. Thus, the output of these layers contains the
information necessary to predict the next charac-
ter given the previous sequence of characters. The
language model is trained on 80% of the unla-
belled data and evaluated on the remaining 20%.
The rest of the network is then trained as in the
previous case (Section 4.1.3). We stress that, in
this instance, only the last two layers are trained
on the language-identification task. We refer to
this model as DNN with LM.

25 50 75 100 125 150
1.68

1.7

1.73

1.75

1.78

1.8

1.83

validation loss training loss

Figure 3: Language model loss through training epochs

You may notice in Figure 3 that the model is
still improving (at 150 epochs), albeit slowly, even
after exhausting our computational budget. Never-
theless, the model appears to be working well as a
text generator. For instance, we took sentence (1)
as a seed and obtained sentences that are gram-
matically and structurally acceptable, even if they
are semantically meaningless and reproduce the

many spelling variants found in the original cor-
pus. Here are two examples:

1. ú

	G @P ú


�æ 	k AK
 é<Ë @ ð AîD
Ê« �HñÖ 	ß ��PY�® 	K AÓ A 	K @ ÑêÖÏ @
ÈAmÌ'@ 	áÓ ÕÎª�J 	K ��PY�® 	K AÓ A 	K @ ½Ëñ�® 	K AÓ é<Ë @ ð ¼AªÓ

2. 	¬QªK
 ð ðCJ. ��K
 �� 	̄QªK
 AÓ ¼PAJ. K
 é<Ë @ Èñ�® 	K AÓ é<Ë @ ð
A 	JK
YîE
 é<Ë @ Èñ�®K
 I. m�'
 ���. m�'
 AÓ ú
Í@ @QÖÏ @ è @P 	áK
ð

5.1.3 Language Model and Bootstrapping
We retrain the DNN model using the pre-trained
LM and the bootstrapped data in order to optimise
the use of the unlabelled data. We refer to this
model as DNN bootstrapped and LM.

5.2 Results
We evaluate all the models under the same condi-
tions as in Section 4, using 10-fold cross valida-
tion we report the average accuracy over the folds.
The evaluation set in the bootstrapping models in
each fold is only taken from the labelled data while
the training part consists of a combined 9-folds
from the labelled data and the entire bootstrapped
data. In other words, the entire bootstrapped data
is added to the training data at each time. In
the case of DNNs, we found again that GRUs
perform significantly better than LSTM, and that
bootstrapped models are optimised with drop-out
rate of 0.2 whereas models with language model
perform better with drop-out rate of 0.1. The ob-
tained results are reported as the average accuracy
in Table 3. For the DNN, we only report the results
of the (best-performing) GRU models.

Model Accuracy (%)
1 HMM bootstrapped 93.97
2 State-of-the-art bootstrapped 95.42
3 DNN bootstrapped 93.31
4 DNN with LM 90.31
5 DNN bootstrapped and LM 90.19

Table 3: Performance of the models with background
knowledge.

The best performance overall is achieved by the
bootstrapped state-of-of-the-art model (2). HMM
bootstrapped (1) performs slightly better than
the DNN bootstrapped (3). Bootstrapping helps
the State-of-the-art system and HMM more than
DNN. This is due to the training nature of the
DNN which is based on capturing frequent reg-
ular patterns, hence adding the bootstrapped data
means introducing even more irregular patterns.
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Compared to the results in Section 4.2, the DNN
bootstrapped (3) outperforms all the models with
the labelled data: (1), (2) and (3) in Table 2. The
bootstrapping method thus improves the perfor-
mance of all configurations, whether they are us-
ing DNNs or not. The reported benefits of boot-
strapping are contrary to the previous observations
where bootstrapping did not help (Section 2).

However, the use of the language model (4) de-
creases slightly (−0.22%) the performance of the
DNN compared to its performance with the la-
belled data (3) in Table 2. The use of the bootstrap-
ping and the language model (5) leads to no signif-
icant difference in performance in respect to (4).
Overall, it appears that the usage of the language
model has no strong effect. This could be caused
by the noise in the data, and adding more unla-
belled data makes it hard for the language model
to learn all the data irregularities. Maybe the sys-
tem requires more training data.

ALG BER BOR DIG ENG FRC MSA NER SND
0

20

40

60

80

100

HMM bootstrapped
State-of-the-art bootstrapped
DNN with LM
DNN bootstrapped
DNN bootstrapped and LM

Figure 4: Models’ average F-score per category.

Figure 4 sums up the performance of each
model per category reported as the average F-
score. The first thing to notice is that bootstrap-
ping improves the performance of all systems, and
the best performance is achieved with the State-of-
the-art. This could be explained by ‘the more data,
the better performance’. HMM bootstrapped out-
performs the DNN bootstrapped except for FRC
and BER. Adding language model to the DNN
causes the overall accuracy to drop compared to
the DNN bootstrapped. Nevertheless, compared

to the results in Figure 2, language model be-
haves differently with each category. For instance,
it boosts the performance of the DNN on ENG,
and the performance on BOR, BER, FRC over
HMM. Whereas combining language model and
bootstrapped data performs the worst except for
BER, ENG and NER. The effect of combining
bootstrapping and language model is better for mi-
nority categories: BER, ENG and NER.

Error analysis of the confusion matrices shows
that all the systems are confused, chiefly between
ALG and MSA, BOR and ALG, FRC and ALG.
The confusions are caused mainly by the lexical
ambiguity between these categories, given that we
identify the language of each word in its context.

6 Conclusions

We have examined the automatic classification of
language identification in mixed-language texts
on limited datasets of Algerian Arabic, in par-
ticular a small unbalanced labelled dataset and
a slightly larger unlabelled dataset. We tested
whether the inclusion of a pre-trained LM on
the unlabelled dataset and bootstrapping the un-
labelled dataset can leverage the performance of
the systems. Overall when using only the small
labelled data, DNNs outperformed the HMM and
the State-of-the-art system. However, DNNs per-
formed better on the majority categories and strug-
gled with the minority ones in comparison to the
State-of-the-art system. Bootstrapping improved
the performance of all models, both DNNs and not
DNNs for all categories.

Adding a background knowledge in the form of
a pre-trained LM to DNNs had a different effect
per category. While it boosted the performance
of the minority categories, its effect on the major-
ity ones was not clear. Despite the generative be-
haviour of the LM, tested in Section 5.1.2, which
showed that LM did learn the underlying struc-
tures of the unlabelled data, the effect of the en-
coded knowledge maybe was not suitable for our
main task. This could be also caused by the high
noise level in the data, even though deep learning
is generally thought to handle noise well.

In our future work, we will focus on exploring
(i) different DNN configurations to investigate the
best ways of injecting background knowledge as
well as (ii) different data pre-processing methods
to normalise spelling and remove misspellings for
MSA, and deal with word segmentation errors.
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Abstract

Most modern approaches to computing word
embeddings assume the availability of text cor-
pora with billions of words. In this paper,
we explore a setup where only corpora with
millions of words are available, and many
words in any new text are out of vocabu-
lary. This setup is both of practical inter-
est – modeling the situation for specific do-
mains and low-resource languages – and of
psycholinguistic interest, since it corresponds
much more closely to the actual experiences
and challenges of human language learning
and use. We evaluate skip-gram word em-
beddings and two types of character-based
embeddings on word relatedness prediction.
On large corpora, performance of both model
types is equal for frequent words, but character
awareness already helps for infrequent words.
Consistently, on small corpora, the character-
based models perform overall better than skip-
grams. The concatenation of different embed-
dings performs best on small corpora and ro-
bustly on large corpora.

1 Introduction

State-of-the-art word embedding models are rou-
tinely trained on very large corpora. For example,
Mikolov et al. (2013a) train word2vec on a corpus
of 6 billion tokens, and Pennington et al. (2014)
report the best GloVe results on 42 billion tokens.

From a language technology perspective, it is
perfectly reasonable to use large corpora where
available. However, even with large corpora, em-
beddings struggle to accurately model the meaning
of infrequent words (Luong et al., 2013). Moreover,
for the vast majority of languages, substantially
less data is available. For example, there are only
4 languages with Wikipedias larger than 1 billion
words,1 and 25 languages with more than 100 mil-

1https://en.wikipedia.org/wiki/List_
of_Wikipedias#Detailed_list (as of 9 Jan 2018)

lion words. Similarly, specialized domains even
in very high-resource languages are bound to have
much less data available.

From a psycholinguistic point of view, current
models miss the crucial ability of the human lan-
guage faculty to generalize from little data. By
seventh grade, students have only heard about 50
million spoken words, and read about 3.8 million
tokens of text, acquiring a vocabulary of 40,000–
100,000 words (Landauer and Dumais, 1997). This
also means that any new text likely contains out-
of-vocabulary words which students interpret by
generalizing from existing knowledge – an ability
that plain word embedding models lack.

There are some studies that have focused on
modeling infrequent and unseen words by captur-
ing information at the subword and character levels.
Luong et al. (2013) break words into morphemes,
and use recursive neural networks to compose word
meanings from morpheme meanings. Similarly,
Bojanowski et al. (2017) represent words as bags of
character n-grams, allowing morphology to inform
word embeddings without requiring morphological
analysis. However, both models are still typically
applied to large corpora of training data, with the
smallest English corpora used comprising about 1
billion tokens.

Our study investigates how embedding models
fare when applied to much smaller corpora, con-
taining only millions of words. Few studies, except
Sahlgren and Lenci (2016), have considered this
setup in detail. We evaluate one word-based and
two character-based embedding models on word
relatedness tasks for English and German. We find
that that the character-based models mimics hu-
man learning more closely, with both better results
on small datasets and better performance on rare
words. At the same time, a fused representation
that takes both word and character level into ac-
count yields the best results for small corpora.
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WL

Window size 5
Negative samples 15
Word embedding dim. 300
Minimum word count as
inclusion as target

5 for full, 1 for small corpora

Starting learning rate 0.025
Training epochs 5 for full, 15 for 100 MiB, 75

for 10 MiB corpora

FT

Word embedding dim. 300
Training epochs 5
Learning rate 0.05
Minimum n-gram length 3
Maximum n-gram length 6
Negative samples 5

CL

Word length 16 characters
Character embedding dim. 15
Convolution filter widths 〈1, 2, 3, 4, 5, 6, 7〉
Convolution filter units 〈200, 200, 200, 200,

250, 300, 350〉
Word embedding dim. 300
Minimum word count for
inclusion as context

5

Batch size 100
Learning rate 0.05
Training epochs as above

CAT

Word embedding dim. 300 + 300 + 300 = 900

Table 1: Hyperparameters (dim. = dimensionality). For
WL and FT, software defaults were used for all hyper-
parameters unless otherwise specified.

2 Models

We examine four models for generating our word
embeddings. All of the use a skip-gram objective
function but differ in the granularity of linguistic
input that they model: the first model works at the
word level (WL); the second model, fastText (FT),
works at the character n-gram level; the third model
is character-based (CL); the forth model is a fusion
of the first three (CAT). The hyperparameters of
the models are shown in Table 1.

2.1 Word-level Skip-gram Model

As a character-agnostic model, we use a stan-
dard, word-level skip-gram model (WL, Mikolov
et al. 2013a), with negative sampling loss. All
in-vocabulary words are assigned an embedding;
out-of-vocabulary words are assigned the vector
average of all in-vocabulary embeddings. We use
the word2vec software for our WL model2.

2https://code.google.com/archive/p/
word2vec/

2.2 fastText
The fastText (FT) model was introduced in Bo-
janowski et al. (2017). This model is based upon
the word-level skip-gram model. However, while
WL explicitly stores vectors for each word in the
vocabulary, FT learns vector representations for
character n-grams which appear within words. The
embedding for an individual word is then identified
with the sum of that word’s n-gram vectors. As un-
seen words are still composed of familiar n-grams,
this model is capable of assigning embedding vec-
tors to words not seen in the training data. We used
the fastText software package for this model3.

2.3 Character-aware Skip-gram Model
Our character-aware skip-gram model (CL) mod-
els word meaning by learning representations for
individual characters. It consists of two compo-
nents: the embedding subnet generates embeddings
for individual words using a convolutional neural
network (CNN). The NCE loss layer uses a skip-
gram loss function to score the embeddings. This
architecture allows character-level sequence infor-
mation to inform word embeddings, while using a
loss function similar to those of more traditional
embedding architectures.

Embedding Subnet. The embedding subnet is a
CNN that takes as input a character sequence (rep-
resenting a word), and outputs an embedding vector
for that word. The architecture of this network was
adapted from Kim et al. (2016), with modifications
to use a skip-gram loss function and to produce
low-dimensional embedding vectors.

Figure 1 provides a schematic overview of the
embedding subnet. First, input words are normal-
ized to a length of 16 characters, truncating longer
words and appending null characters to the end of
shorter ones. Each character in this input sequence
is then assigned a character-embedding vector. The
values of these character embeddings are trainable
parameters of the model. The resulting sequence
of character embeddings is then used as the input
for a convolution layer, with a sigmoid activation
function. A max-pooling layer is applied to all
outputs of the convolution layer. The results of
this pooling are all concatenated to form a single
vector, which is then passed through two succes-
sive highway networks (Srivastava et al., 2015).
Since highway networks preserve dimensionality,

3https://github.com/facebookresearch/
fastText
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Figure 1: Embedding subnet

the output of the second highway network depends
directly on the number of convolution filters used.
As we would like a word embedding of relatively
small dimensionality, we use a linear projection
layer to yield our final embedding vector.

NCE Loss. In order for the embedding subnet
to produce semantically-meaningful embeddings,
we use it in a skip-gram model (Mikolov et al.,
2013a) using noise-contrastive estimation (NCE)
loss (Gutmann and Hyvärinen, 2012; Mnih and Teh,
2012). This is rather similar to the NEG models
of Mikolov et al. (2013b), but with “input” vectors
coming from our embedding subnet, and with NCE
in the place of negative sampling. As in Mikolov
et al. (2013b), we still depend on a fixed vocabu-
lary of context words for the “output” vectors. All
model parameters are optimized to minimize NCE
loss using stochastic gradient descent.

2.4 Fusion model

CAT assigns each word the concatenation of its
CL, WL, and FT embeddings, i.e., performs late fu-
sion (Bruni et al., 2014). As the individual models
produce vectors of different average magnitudes,
we rescale the embeddings produced by individual
models prior to this concatenation, such that, af-
ter rescaling, each constituent model has the same
average vector magnitude, when averaged over all
words present in the training data. Experiments

Corpus Articles Tokens Vocab Size

en-full 4,280,642 1,699M 8,745K 8.69 GiB
en-100M 48,430 19,211K 468K 100 MiB
en-10M 4,833 1,924K 106K 10.0 MiB

de-full 1,539,077 587M 6,323K 3.50 GiB
de-100M 43,078 16,507K 720K 100 MiB
de-10M 4,362 1,645K 153K 9.99 MiB

Table 2: Statistics for training corpora.

Benchmark Mean
Freq.

Morphemes
per word

Portion
OOV

WS353 44.7K 1.27 0/437
RW 1.91K 1.53 19/2951

WS353-de 8.36K 1.30 2/455
GUR350 3.11K 1.46 13/469

Table 3: Statistics for evaluation benchmarks (com-
puted on full-size corpora). Frequencies averaged geo-
metrically (on lemmas with non-zero frequency); mor-
phemes/word averaged algebraically.

with joint training of the models did not yield supe-
rior results.

3 Experimental Setup

We evaluate our models for two languages, English
and German. These are clearly not low-resource
languages, but the availability of corpora and evalu-
ation datasets makes them suitable for experiments.

Training data. All models were trained on the
standard Wikipedia corpora for English and Ger-
man preprocessed by Al-Rfou et al. (2013).4

In addition, we sampled two (sub)corpora with
10 and 100 million characters to evaluate the mod-
els’ effectiveness on limited training data. To gen-
erate a subcorpus of a particular size, articles were
sampled uniformly at random (without replace-
ment) from that language’s Wikipedia until the tar-
get size was reached. Table 2 presents all corpora
and subcorpora used, and their sizes. Our 100M
corpora account for around 1% (for English) and
3% (for German) of the full Wikipedia corpora, and
10M corpora for .1% and .3%, respectively. We
picked these sizes because they cover the “typical”
Wikipedia sizes for low-resource languages.

Evaluation benchmarks. We evaluate our mod-
els on a standard task in lexical semantics, predict-
ing human word relatedness ratings. Compared to
relation prediction, this task has the advantage of

4https://sites.google.com/site/rmyeid/
projects/polyglot
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Test Benchmark size WL FT CL CAT

[en] WS353 353 .73 .74 .51 .72
[en] RW 2034 .44 .50 .31 .46
[de] WS353 350 .64 .64 .47 .64

al
li

te
m

s

[de] GUR350 350 .61 .72 .52 .65

[en] WS353 353 .73 .73 .51 .72
[en] RW 1977 .45 .50 .32 .47
[de] WS353 348 .64 .64 .47 .64

IV
ite

m
s

[de] GUR350 324 .64 .72 .55 .67

[en] WS353 0 – – – –
[en] RW 57 -.24 .64 -.04 .15
[de] WS353 2 1.00 1.00 -1.00 1.00

O
O

V
ite

m
s

[de] GUR350 26 -.11 .61 .00 .25

Table 4: Spearman correlations of embedding simi-
larity and human judgments (full training sets: en 9G,
de 3.5G). Top: full benchmarks; middle: in-vocabulary
items; bottom: out-of-vocabulary items. Best model
for each benchmark and training bolded.

being graded instead of categorical (Landauer and
Dumais, 1997). We use two relatedness datasets in
both languages. For comparison to prior work, and
for a rough comparison across languages, we utilize
the WordSim353 benchmark (WS353) (Finkelstein
et al., 2001) for English and the German version of
the Multilingual WordSim353 benchmark (WS353-
de) for German (Leviant and Reichart, 2015).

As we are specifically interested in modeling
rare words, we also use the Stanford Rare Word
Dataset (RW, Luong et al. 2013) for English. It
was designed with these goals in mind. While no
parallel to this benchmark exists for German, the
GUR350 benchmark (Zesch et al., 2007) shows
similar properties: As Table 3 shows, the words
in GUR350 are less frequent and longer than in
WS353-de. Thus, many more words are out of
vocabulary in GUR350 even in the full corpus.

4 Results

Tables 4 to 6 show the results for the three different
training corpus sizes. We report results for all items,
just in-vocabulary items, and just out-of-vocabulary
items (i.e., one or both elements of the word pair
unseen in training).

Full corpus results. The results by WL on full
corpora for all items (top part of Table 4) outper-
form results reported in the literature5, indicating
that the word-level embeddings are competitive

5For WordSim, Leviant and Reichart (2015) obtain 0.652
(en) and 0.618 (de) using our “full” corpora. For RW, Sahlgren
and Lenci (2016) report 0.285 on 1G words, and for GUR350,
Utt and Padó (2014) report 0.42 using 3G words.

Test Benchmark size WL FT CL CAT

[en] WS353 353 .65 .66 .42 .67
[en] RW 2034 .22 .43 .29 .40
[de] WS353 350 .49 .50 .30 .52

al
li

te
m

s

[de] GUR350 350 .32 .56 .51 .47

[en] WS353 353 .65 .66 .42 .67
[en] RW 1413 .30 .45 .33 .42
[de] WS353 347 .48 .49 .29 .52

IV
ite

m
s

[de] GUR350 290 .42 .55 .52 .51

[en] WS353 0 – – – –
[en] RW 621 .15 .41 .21 .35
[de] WS353 3 .50 1.00 .50 .50

O
O

V
ite

m
s

[de] GUR350 60 .14 .62 .41 .41

Table 5: Spearman correlations of embedding similar-
ity and human judgments (100M training sets).

Test Benchmark size WL FT CL CAT

[en] WS353 353 .48 .42 .26 .53
[en] RW 2034 .16 .32 .16 .28
[de] WS353 350 .16 .22 .16 .29

al
li

te
m

s
[de] GUR350 350 .11 .34 .42 .38

[en] WS353 333 .52 .44 .29 .56
[en] RW 687 .21 .34 .16 .30
[de] WS353 305 .16 .24 .21 .28

IV
ite

m
s

[de] GUR350 218 .29 .40 .32 .48

[en] WS353 20 .52 .05 -.05 .10
[en] RW 1347 .19 .30 .16 .29
[de] WS353 45 .16 .18 .18 .24

O
O

V
ite

m
s

[de] GUR350 132 .08 .25 .40 .31

Table 6: Spearman correlations of embedding similar-
ity and human judgments (10M training sets).

with the state of the art. FT performs as well or
even better than WL on the full corpora, indicating
that character n-grams can learn well even from
large datasets, while the individual character-based
CL model cannot profit from this situation. Nev-
ertheless, the fusion model CAT is robust: it per-
forms generally on par with WL.

On full corpora, almost all items in all bench-
mark datasets are seen; therefore, the separate re-
sults on IV and OOV items are not particularly
interesting (middle and bottom parts of Table 4).

100M corpora results. The results on the 100M
corpora (Table 5) confirm that model performance
correlates with training set size: Without excep-
tion, the models’ performance decreases for smaller
corpora. However, this effect is much more pro-
nounced for WL than for the character-based mod-
els, FT and CL. For the first time, on these corpora,
the fusion model CAT is able to outperform FT,
indicating that there is some degree of complemen-
tarity between the predictions (and the errors) of
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the individual models.
On the 100M corpora, the RW and GUR350

datasets both have a significant number of pairs
containing OOV words. As expected, WL per-
formed particularly poorly on these pairs. How-
ever, it is notable that FT also outperforms WL
on every IV benchmark. This shows that the ad-
vantage of character-based over word-based mod-
els is not restricted to unseen words. The perfor-
mance gap between FT and WL on IV is small
on the two WS353 datasets (with the highest mean
item frequency, and the lowest morphological com-
plexity – cf. Table 3) but substantial for RW and
GUR350 (which contain low-frequency, morpho-
logically complex words). This indicates that WL
struggles in particular with infrequent, complex
words.

10M corpora results. Finally, Table 6 shows the
results for the 10M corpora. Here, we see a rela-
tively heterogeneous picture regarding the individ-
ual models across benchmarks: WL does best on
WS353-en; FT does best on RW and WS353-de;
CL does best on GUR350. This behavior is consis-
tent with the patterns we found for the 100M cor-
pora, but more marked. Due to the inhomogeneity
among models, the fusion model CAT does particu-
larly well, outperforming FT on 3 of 4 benchmarks,
often substantially so.

As with the 100M corpora, the character aware
models perform much better than WL for OOV
pairs. For 10M, however, FT’s dominance is not
as clear – CL substantially outperforms FT on
GUR350. This may indicate that modeling indi-
vidual character embeddings rather than n-grams
is more suitable for the lowest-data setups.

Model choice recommendations. Based on our
results, we can formulate the following recommen-
dations: (a) FastText is a good choice for both
medium- and large-data situations and is likely to
outperform plain word-based models overall, and
in particular for low-frequency words; (b) for low-
data situations, there is sufficient complementarity
among models that model combination, even by
simple concatenation, can yield further substantial
improvements.

5 Conclusion

This paper argues that it is worthwhile, both from
applied and psycholinguistic perspectives, to evalu-
ate embedding models trained on much smaller cor-

pora than generally considered, and have compared
a standard word-level skip-gram model against
a character n-gram based and a single character-
based embedding model.

Even at corpus sizes of billions of words, we find
that the character n-gram based model performs at
or above the level of the word-level model. This
result is in contrast to the findings of Sahlgren and
Lenci (2016), who found the best performance for
a dimensionality-reduced word embedding model
across all corpus sizes. However, all of the models
they considered were word-based, indicating that
character awareness is what makes the difference.
The success of the character n-gram based model
can also be interpreted as support for a morpheme-
based representation in the mental lexicon (Smolka
et al., 2014) in the sense that character n-gram
appear to be represent a very informative level of
representation for semantic information.

As we move to smaller corpus sizes, we also see
more competitive performance for the model based
on individual character embeddings. Its forte is
to deal with low-data situations, predicting mean-
ings for unfamiliar words by utilizing familiar mor-
phemes and other subword structures, in line with
Landauer et al.’s (1997) claim of “vast numbers of
weak interrelations that, if properly exploited, can
greatly amplify learning by a process of inference”.
In the future, we will evaluate our character-based
model for other languages, and assess other aspects
of its psycholinguistic plausibility, such as match-
ing human behavior in performance and acquisition
speed (Baroni et al., 2007).
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Abstract

Subword-level information is crucial for cap-
turing the meaning and morphology of words,
especially for out-of-vocabulary entries. We
propose CNN- and RNN-based subword-level
composition functions for learning word em-
beddings, and systematically compare them
with popular word-level and subword-level
models (Skip-Gram and FastText). Addition-
ally, we propose a hybrid training scheme in
which a pure subword-level model is trained
jointly with a conventional word-level embed-
ding model based on lookup-tables. This in-
creases the fitness of all types of subword-
level word embeddings; the word-level em-
beddings can be discarded after training, leav-
ing only compact subword-level representa-
tion with much smaller data volume. We
evaluate these embeddings on a set of intrin-
sic and extrinsic tasks, showing that subword-
level models have advantage on tasks related
to morphology and datasets with high OOV
rate, and can be combined with other types of
embeddings.

1 Introduction

Word embeddings are used in many natural lan-
guage processing tasks (Collobert et al., 2011;
Socher et al., 2013; Kim, 2014). In word em-
bedding models, words are mapped or “embed-
ded” into low-dimensional real-valued vectors.
Such mapping is based, implicitly or explicitly, on
word co-occurrence statistics (Levy and Goldberg,
2014b).

Naturally, frequent words provide a better rep-
resentation of their distributional properties; thus

the quality of word embeddings is in direct rela-
tion to the frequency of words (Drozd et al., 2015).
However, even in large corpora, most words oc-
cur very few times. For example, Baroni (2009)
shows that the words occurring 3 times or less
constitute almost 70% of the vocabulary. Conse-
quently, most of the in-vocabulary words (for a
given task/corpora) have to be discarded or em-
bedded into low-quality vectors. Therefore, word-
level models suffer from data sparsity.

Another issue with word-level models is that
they do not make use of morphological infor-
mation. Different forms of the same word are
treated as completely unrelated entities. For ex-
ample, as shown in Section 4.2, we find that the
word “physicist” and “physicists” are not close to
each other in a well-know word embedding model
Skip-Gram (Mikolov et al., 2013).

These two issues are addressed by the emerging
methodology of subword-level representations, as
discussed in Section 2. The most notable example
of such representations is FastText (Bojanowski
et al., 2017). It represents each word as a bag-
of-character n-grams. Representations for charac-
ter n-grams, once they are learned, can be com-
bined (via simple summation) to represent out-of-
vocabulary (OOV) words.

This paper contributes to the discussion of com-
position functions for constructing subword-level
embeddings and their evaluation. We propose
and evaluate several models (including convolu-
tional and recurrent neural networks) that can em-
bed arbitrary character sequences into vectors.
Our models do not rely on any external resource.
We also propose a hybrid training scheme, which
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makes these neural networks directly integrated
into Skip-Gram model. We train two sets of word
embeddings simultaneously: one is from a lookup
table as in traditional Skip-Gram, and another is
from convolutional or recurrent neural network.
The former is better at capturing semantic similar-
ity. The latter is more focused on morphology and
can learn embeddings for OOV words. We con-
duct experiments on five tasks, and compare our
models with original Skip-Gram and the state-of-
the-art performer FastText.

2 Related Work

2.1 Morphology-based Models

Morphology has long been considered as an im-
portant feature for word representations. For ex-
ample, Lazaridou et al. (2013) investigate sev-
eral algebraic composition functions (e.g. addition
or multiplication) for morphologically complex
words, which generate better representations com-
pared to traditional distributional semantic mod-
els. Luong et al. (2013) train a recursive neural
network for morphological composition, and show
its effectiveness on (rare) word similarity task.
Qiu et al. (2014) propose Morpheme CBOWs for
word similarity and word analogy tasks, which im-
proves on CBOW model (Mikolov et al., 2013)
by learning morphology embeddings and word
embeddings simultaneously. Alexandrescu and
Kirchhoff (2006) take morphological tags as fea-
tures (one-hot representation) for training a lan-
guage model, which reduce the perplexity on rare
word language modeling scenarios.

For both language modeling and machine trans-
lation tasks, LBL++ Botha and Blunsom (2014)
show the effectiveness of summing morphology
vectors in log-bilinear model (Mnih and Hinton,
2007) on 6 morphologically rich languages. Sim-
ilarly, Morph-LBL (Cotterell and Schütze, 2015)
improves on LBL model by predicting both con-
text words and words’ morphological tags in a
semi-supervised fashion, which outperforms both
Word2Vec and LBL on German morphological
analysis.

However, all the above models rely on prior
morphological knowledge, which is obtained by
morphology analysis tools such as Morfessor
(Creutz and Lagus, 2007), or an annotated mor-
phology corpus such as CELEX (Baayen et al.,
1995) and TIGER (Brants et al., 2004).

2.2 Subword-level Word Embeddings
Another line of work is focused on end-to-end
word embedding learning based on subword-level
information. FastText (Bojanowski et al., 2017)
is probably the most influential and effective re-
cent model. It represents each word as a bag-of-
character n-grams. The models proposed in this
paper are conceptually derived from FastText, i.e.
we also operate on character n-grams level and
predict context words from the target word, as in
Skip-Gram approach.

Similarly to our proposed RNN, Cao and Rei
(2016) train a bi-directional LSTM based on sub-
word information. Instead of using character
ngrams, their model feeds the word’s prefixes and
suffixes into each direction of LSTM respectively.
This model is mainly designed to solve morpho-
logical boundary recovery task, it performs com-
parably with dedicated morphological analyzers.
Pinter et al. (2017) also utilize BiLSTM to con-
struct word embeddings. However, their model re-
lies on pre-trained word embeddings by minimiz-
ing the squared Euclidean distance. In contrast,
our proposed RNN requires only a plain text cor-
pus.

2.3 Other Subword-level Models
There are also various task-specific NLP models
that utilize character-level information for train-
ing deep neural networks in an end-to-end fash-
ion. They often surpass the word-level baselines
on language modeling (Mikolov et al., 2012; Sperr
et al., 2013; Bojanowski et al., 2015; Kim et al.,
2016), part-of-speech tagging (Ling et al., 2015;
dos Santos and Zadrozny, 2014), text classifica-
tion (Zhang et al., 2015), and machine translation
(Sennrich et al., 2016; Luong and Manning, 2016),
etc. However, these models do not produce repre-
sentations that could be used in other tasks.

3 Models

3.1 Skip-Gram
Due to its popularity, simplicity, and state-of-the-
art performance on a range of linguistic tasks,
Skip-Gram (Mikolov et al., 2013) has been widely
used as baseline in the word embedding literature
(Levy and Goldberg, 2014a; Faruqui et al., 2015;
Bojanowski et al., 2017; Zhao et al., 2017). In
particular, we use Skip-Gram with negative sam-
pling technique (Figure 1-a). For a vocabulary V
of size |V |, Skip-Gram learns two set of vectors
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Figure 1: Illustration of original Skip-Gram and subword-level models.

W,C ∈ R|V |∗N , namely word vectors and con-
textual word vectors. N is the dimension of vec-
tors. Given a training corpus, Skip-Gram iterates
through all words w and their contexts c, and max-
imizes the objective function p(c|~w), which is de-
fined as:

log σ (~w · ~c) +
K∑

k=1

Eci∼Nw,c [log σ (−~w · ~ci)]

(1)

where σ is the sigmoid function. ~w ∈ W and
~c ∈ C are the vectors for word w and context c re-
spectively. K is the negative sampling size. Nw,c

is the negative example that sampled from the vo-
cabulary V . The negative sampling probability is
empirically defined as the unigram probability of

a word raised to the power of 3/4.

3.2 Utilizing Subword Information
In order to make use of subword information,
we first generalize the objective function of Skip-
Gram by replacing word vector ~w with a compo-
sition function f(w). f(w) takes word w as an
input and outputs a vector of length N . Overall,
the objective function of generalized Skip-Gram
is defined as:

p(c|f(w)) = log σ (f(w) · ~c)

+

K∑

k=1

Eci∼Nw,c [log σ (−f(w) · ~ci)]
(2)

In the original Skip-Gram model, the function
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f(w) is simply a lookup table, which projects
word w to its corresponding vector ~w in the ta-
ble. Depending on the definition, f(w) could also
take the subword information of w into considera-
tion. Naturally, composition functions, especially
neural networks, can be considered.

3.2.1 A Hybrid Training scheme for
Subword-level Models

Intuitively, compared to Skip-Gram, subword-
level models should be better suited for capturing
morphology instead of similarity. In order to take
advantage of both representations, we incorporate
Skip-Gram into subword-level models. Formally,
in our hybrid training scheme we define the objec-
tive function of subword-level models as:

p(c|~w + f(w)) (3)

In this case, each word will have two embed-
dings: one from the lookup table (the same as
Skip-Gram), and another from the composition
function f . These two types of embeddings are
learned simultaneously. We denote the embed-
ding model from the word-level lookup table as
Modelword, and the one from composition func-
tion as Modelsubword. As a baseline we addition-
ally train embeddings using only subword-level
composition function; these models will be re-
ferred to as Modelvanilla.

3.2.2 FastText (Summation)
Probably the most simple and intuitive way of uti-
lizing subword information is to sum all vectors
of characters and character ngrams belonging to
a word (Figure 1-b), which is pioneered by Bo-
janowski et al. (2017). Formally, the composition
function is defined as f(w) =

∑
g∈Gw ~g, where g

is the character n-gram, and ~g is its correspond-
ing n-gram vector with length N . Gw is the set
of character n-grams for word w. For example,
when n = 3, Gw for word “bigger” is defined
as <bi, big, igg, gge, ger, er>. The
angle brackets are padding at the start and end of
the word.

Note that the original FastText (FastTextvanilla)
does not have the hybrid training scheme. As
later shown in our experiments, FastTextword

from the hybrid training scheme works better
than FastTextvanilla in some semantic relatedness
datasets. Moreover, hybrid training scheme is es-
sential for other types of composition functions.

For fair comparison, in the following models,
we use the same padding and the same length of
character n-grams’ vector.

3.2.3 Convolutional Neural Network

Despite its simplicity and efficiency, there is no
clear evidence that simple summation as in Fast-
Text is the best choice for composing subword in-
formation.

This paper investigate two neural network. We
first consider the Convolutional Neural Network
(CNN) as composition function f(w). CNN (Le-
Cun, 1998) is able to capture local features auto-
matically, and has been applied to a wide range of
NLP tasks (Kim et al., 2016; Zhang et al., 2015;
Luong and Manning, 2016).

The CNN architecture introduced in this paper
is inspired by the model used for language model-
ing in Kim et al. (2016). As illustrated in Figure 1-
c, similarly to FastText, the vectors of characters
are first extracted from a lookup table. Those vec-
tors form a matrix with size N ∗ L, where L is
the number of characters. The 1D convolution fil-
ters are used to extract local features. We apply
1D convolutions of size ranging from 1 to 7 in
parallel, perform max-pooling and concatenate the
output. Each of the convolutions uses 200 filters.
The output of this model is a fully-connected layer
with the number of units corresponding to the de-
sired size of embeddings. The resulting vector is
used for predicting contextual words using nega-
tive sampling, the same as the negative sampling
in Skip-Gram.

3.2.4 Recurrent Neural Network

Another neural network that is worth considering
is Recurrent Neural Network (RNN). It takes a se-
quence of arbitrary length as an input, and out-
puts a vector that represents this sequence. Among
all the different variations, the Long Short-Term
Memory based recurrent neural network (LSTM)
(Hochreiter and Schmidhuber, 1997) and its bi-
direction version (Schuster and Paliwal, 1997) are
easier to train, and better capture long-distance in-
formation. As illustrated in Figure 1-d, for each
direction, an LSTM runs over all the vectors of
characters in the word w. The hidden layers at
each position are then summed together, and the
resulting vector is fed into a fully connected layer
to form the final vector w. We empirically set the
hidden layer size of LSTM to N ∗ 2.
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Skip-Gram FastTextsubword RNNsubword CNNsubword

geneticists cosmologists musicologists classicists psychologists physiologist protists physicians
logicians historians biophysicist physicians trombonists pharmacists cryonicists physician

humanists geographers physicalism physicist aerodynamicists physiocrats artists physicality
zoologists philosophers mathematicians publicists physicist microeconomists physiocrats publicists
astrologers astronomers ethicists eugenicists physicality physicians physics physicist

Table 1: Illustration of the top-10 most similar words of target word “physicists”.

4 Experiments

4.1 Implementation Details

We implemented all models described in section
3 using Chainer deep learning framework (Tokui
et al., 2015). Since the proposed CNN and RNN
architectures significantly increase computational
requirements for training, we choose a relatively
small TEXT81 corpus for this evaluation. This
corpus contains the first 109 bytes of the English
Wikipedia dump from Mar. 3, 2006. The word
embedding size N is set to 300. The batch size
is fixed to 1000. The negative sampling size is
set to 5, and the window size is set to 2. Follow-
ing Chainer’s original word2vec implementation,
we use Adam (Kingma and Ba, 2014) as the opti-
mization function. Words which appear fewer than
five times are directly discarded, which results in
vocabulary size of 71290. For character ngrams,
we follow the FastText’s best configuration and
use 5-grams for FastText. We also discard char-
acter ngrams which appear fewer than five times,
which results in character ngrams vocabulary size
of 143207. Word embedding models are trained
for 5 epochs on Nvidia Tesla K80 or P100 GPU.

We also download the state-of-the-art FastText
embeddings (denoted as FastTextexternal) 2, which
are trained on a much larger full Wikipedia corpus.
Note that since CNN and RNN require approxi-
mate 45 and 65 days of training on K80, we didn’t
train on this corpus.

For the fair comparison, we ensure that all em-
beddings used in evaluations use exactly same vo-
cabulary. Unlike most of the benchmarks, where
only embeddings of encountered words affect re-
sulting accuracy, analogical reasoning benchmark
is sensitive to the entire vocabulary in terms of size
and embeddings of individual words. For exam-

1http://mattmahoney.net/dc/textdata.
html

2https://github.com/facebookresearch/
fastText

ple it is hard to make a mistake when looking for
”Paris” as the pair for ”France” if the whole vocab-
ulary contains only these two words. Furthermore,
accuracy depends on how close the target word is
to the source words (Rogers et al., 2017), which
could also be affected by a larger vocabulary.

This issue is especially pronounced for embed-
dings with dynamic vocabulary, such as subword-
level models evaluated in this study. In our pi-
lot experiments, models with large vocabulary
like FastTextexternal result in poor performance
on word analogy tasks since large vocabulary in-
creases the number of options.

Skip-Gram FastTextvanilla FastTextexternal
85.6M 171.9M 8493.6M

CNNvanilla RNNvanilla

7.5M 19.1M

Table 2: Memory footprint of different models (For
Skip-Gram and FastText, it will increase on larger
vocabulary. For CNN- and RNN-based models, it
is constant.

Note that the sizes of these models are different,
as shown in Table 2. Due to the large number of
character ngrams, FastText requires the most data
among these models, while CNN needs only a few
megabytes of data.

4.2 Qualitative Analysis

Before looking into the performance of mod-
els on specific tasks, we first conduct qualita-
tive analysis. We choose several target words
and analyze their nearest neighbors in Skip-Gram,
FastTextsubword, CNNsubword, and RNNsubword.
We find that subword-level models, especially
CNN- and RNN-based models, tend to cluster
words with the same morpheme together. Taking
target word “physicists” as an example (Table 1),
the word “physicist” is within the top-10 near-
est neighbors in subword-level models, but not in
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Model
Word Similarity Word Analogy

Rare WS WS Sim
MEN

Mech BATS Google
Words sem. rel. 999 Turk inf. der. enc. lex. sem. syn.

Skip-Gram .059 .658 .586 .285 .555 .577 .652 .096 .280 .098 .427 .534
FastTextword .065 .708 .619 .285 .610 .596 .622 .102 .274 .078 .424 .530

CNNword .058 .670 .584 .245 .554 .584 .628 .108 .250 .074 .416 .489
LSTMword .063 .697 .623 .284 .600 .599 .666 .134 .264 .080 .427 .597
Concatword .712 .184 .316 .130 .492 .649

FastTextsubword .085 .707 .566 .273 .620 .582 .790 .580 .290 .082 .374 .812
CNNsubword .051 .581 .417 .190 .478 .509 .758 .682 .076 .028 .019 .789
RNNsubword .063 .664 .532 .282 .566 .579 .798 .672 .114 .028 .061 .786

Concatsubword .846 .696 .326 .078 .290 .914
FastTextword+subword .792 .578 .350 .104 .439 .856

CNNword+subword .832 .638 .242 .084 .160 .859
RNNword+subword .832 .606 .244 .086 .240 .875

FastTextsubword+OOV .344 .715 .575 .277 .619 .599 .842 .824 .254 .096 .340 .776
CNNsubword+OOV .234 .564 .409 .224 .490 .497 .880 .948 .094 .044 .023 .786
RNNsubword+OOV .299 .670 .540 .286 .566 .587 .908 .906 .134 .040 .061 .796

Concatsubword+OOV .962 .960 .328 .116 .298 .917
FastTextvanilla+OOV .348 .717 .579 .283 .630 .624 .840 .834 .252 .116 .347 .799

CNNvanilla+OOV .212 .535 .400 .185 .474 .556 .874 .918 .104 .042 .015 .773
RNNvanilla+OOV .273 .638 .542 .250 .576 .568 .856 .866 .112 .034 .050 .748

Concatvanilla+OOV .958 .958 .314 .126 .275 .895
FastTextexternal .096 .674 .604 .332 .600 .574 .746 .446 .528 .194 .779 .872

FastTextexternal+OOV .431 .682 .607 .341 .600 .587 .834 .672 .562 .214 .798 .879

Table 3: Results on word similarity and word analogy datasets. For hybrid training scheme, we denote
the embeddings that come from word vector lookup table as “Modelword”, and the embeddings which
come from the composition function as “Modelsubword”. We denote the vanilla (non-hybrid) models as
“Modelvanilla”. The “FastTextexternal” is the public available FastText embeddings, which are trained
on the full Wikipedia corpus. We also test the version where OOV words are expanded, and denote as
“Model+OOV ”. Model combinations are denoted as gray rows , and best results among them are marked

bold. Rare words dataset in blue column have 43.3% OOV rate, while other word similarity datasets
have maximum 4.6% OOV rate. Morphology related categories are denoted as almond columns . The
results of model combination for word similarity task are simply the average of results from each single
models, which are not listed in this table.

Skip-Gram. Moreover, subword models tend to
cluster words with the same morphology form (af-
fix) together, especially for RNN and CNN.

4.3 Quantitative Analysis

4.3.1 Word Similarity

Word similarity task aims at producing semantic
similarity scores of word pairs, which are com-
pared with the human scores using Spearman’s
correlation. The cosine distance is used for gen-
erating similarity scores between two word vec-
tors. In order to test the effectiveness of captur-
ing word similarity for rare word, we choose the

Rare Words dataset (Luong et al., 2013). For sys-
tematical comparison, we also test our models on
the WordSim353 (WS) (Finkelstein et al., 2001)
dataset, divided into similarity (sem.) and related-
ness (rel.) categories (Zesch et al., 2008; Agirre
et al., 2009), Sim 999 dataset (Hill et al., 2016),
MEN dataset (Bruni et al., 2012), and Mech Turk
dataset (Radinsky et al., 2011).

Table 3 shows that on word similarity tasks
FastText models perform the best in all datasets
except Sim 999. CNNsubword and RNNsubword

are more focused on word morphology, and thus
do not perform well on word similarity task.
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Figure 3: Visualization of learned word embeddings, each dot represents a word, different colors represent
different affixes.

However, compared to Skip-Gram, CNNword and
RNNword (the versions with word vector lookup
table) achieve comparable or even better results.
Their word vector lookup tables in these models
are affected by the composition function, which
results in better performance.

Note that the Rare Words dataset has 43.3% of
words which are OOV. In this dataset, the vocab-
ulary expanded models (FastTextsubword+OOV ,
CNNsubword+OOV , and RNNsubword+OOV ) per-
form a lot better than others. This highlights the
necessity of expanding vocabulary and the effec-
tiveness of subword-level models.

4.3.2 Word Analogy
The word analogy task aims at answering ques-
tions generalize as “a is to a’ as b is to ?”, such
as “London is to Britain as Tokyo is to Japan”.
We follow the evaluation protocol by Drozd et al.
(2016) who proposed the LRCos method of solv-
ing word analogies, which significantly improves
on the traditional vector offset method. We use
Google analogy dataset (Mikolov et al., 2013)
along with a much bigger and balanced BATS
analogy dataset (Gladkova et al., 2016).

On word analogy datasets (Table 3), the in-
flectional and derivational morphology categories
demonstrate the effectiveness of subword-level
word models. It is especially obvious on deriva-
tion morphology category, where Skip-Gram only
achieves 9.6% accuracy and subword-level mod-
els achieve minimal 57.8% accuracy (excluding
the lookup table versions). Furthermore, when the
vocabulary is expanded, the minimal accuracy of
subword-level models reaches 82.4%.

Morphology-related analogy questions also
benefit a lot from the model combination. No-

tably, Concatsubowrd+OOV achieves an accuracy
of 96.2% and 96.0% on inflection and derivation
morphology, which is by far the highest accuracies
on this two categories. We also observe that CNN
is less sensitive to semantic word analogy, while
performing the best on derivational word analogy.

4.3.3 Affix Prediction
In this section we test the ability of subword-
level embeddings to predict what affix is present
in a morphologically complex word. We use
the dataset gathered by (Lazaridou et al., 2013),
which contains 6549 stems and derived word
pairs, such as “name”-“rename” and “sparse”-
“sparsity”. There are 18 affixes, such as “re-”
and “-ity”, and the task is to predict which one is
present in a given word. We use the embeddings
of derived words as input, and feed them to a lo-
gistic regression classifier for predicting their af-
fixes. The accuracy, recall, and F1-score are used
for measurement. We also follow Lazaridou et al.
(2013) in using the default training/test data split.

Figure 3 shows a t-SNE projection of the words
with different affixes in the dataset. It is clear that
both CNN and RNN are able to distinguish differ-
ent derivation types, with the advantage of the for-
mer. This also confirms the good performance of
CNN on derivational analogy task. Note that Fast-
Text does not fare much better than Skip-Gram,
although it is a subword-level model. This par-
tially explains its low accuracy compared to other
subword-level models on morphological analogy
categories.

The prediction results in Table 4 reflect the clus-
ter visualization in Figure 3. Moreover, as in the
word analogy task, the concatenation (especially
with the expanded vocabulary version) performs
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Model
AP SL

P R F1 POS Chunk NER
Skip-Gram .324 .270 .251 .878 .881 .915

FastTextword .346 .267 .250 .880 .883 .917
CNNword .344 .289 .270 .877 .882 .912

LSTMword .354 .298 .280 .878 .882 .915
Concatword .359 .301 .298 .890 .891 .921

FastTextsubword .527 .430 .433 .830 .822 .910
CNNsubword .878 .622 .694 .845 .850 .870
RNNsubword .864 .614 .684 .866 .872 .897

Concatsubword .900 .628 .705 .892 .890 .919
FastTextword+subword .520 .426 .428 .886 .887 .920

CNNword+subword .886 .621 .696 .890 .888 .913
RNNword+subword .839 .607 .670 .890 .888 .919

FastTextsubword+OOV .564 .481 .493 .834 .804 .929
CNNsubword+OOV .912 .687 .765 .909 .895 .909
RNNsubword+OOV .890 .674 .751 .925 .912 .929

Concatsubword+OOV .928 .694 .777 .945 .925 .948
FastTextvanilla+OOV .574 .489 .502 .833 .803 .929

CNNvanilla+OOV .920 .689 .770 .907 .894 .906
RNNvanilla+OOV .897 .683 .757 .924 .912 .926

Concatvanilla+OOV .914 .701 .768 .945 .926 .948
FastTextexternal .521 .411 .414 .888 .882 .929
FastTextexternal .636 .707 .659 .941 .919 .940

Table 4: Results on affix prediction (AP) and sequence labeling (SL) tasks. Sequence labeling tasks have
16.5%, 27.1%, 28.5% OOV rate respectively.

the best among all the other models.

4.3.4 Sequence Labeling
Sequence labeling task consists in assigning labels
to elements of texts. We evaluate word embedding
models on Part-of-Speech Tagging (POS), Chunk-
ing3 and Named Entity Recognition (NER) tasks
4. Following the evaluation protocol used in Kiros
et al. (2015); Li et al. (2017), we restrict the pre-
dicting model to Logistic Regression Classifier 5.
The classifier’s input for predicting the label of
word wi is simply the concatenation of word vec-
tors ~wi−2, ~wi−1, ~wi, ~wi+1, ~wi+2. This ensures that
the quality of the embedding models is directly
evaluated, and their strengths and weaknesses are
easily observed.

Subword-level models on sequence labeling
tasks clearly demonstrate the effectiveness of ex-
panding OOV words. As shown in Table 4,

3CoNLL 2000 shared task http://www.cnts.ua.
ac.be/conll2000/chunking

4CoNLL 2003 shared task http://www.cnts.ua.
ac.be/conll2003/ner

5http://scikit-learn.org/

expanding vocabulary boosts the performance
by a large margin. For example, on NER
task, FastTextsubword+OOV , CNNsubword+OOV ,
and RNNsubword+OOV achieve 1.9%, 2.1%, 3.2%
absolute gains over the versions of the same mod-
els without expanded vocabulary.

4.3.5 Text Classification

For text classification task, we choose the
movie review sentiment (MR) (Pang and Lee,
2005), customer product reviews (CR) (Nakagawa
et al., 2010), subjectivity/objectivity classification
(SUBJ) (Pang and Lee, 2004), and IMDB movie
review (IMDB) (Maas et al., 2011) datasets. The
classification is performed by Logistic Regression
Classifier. The input of this classifier is the sum of
word embeddings that belonging to the text.

As shown in Table 5, the input word embed-
dings do not considerably affect the final accu-
racy. This is especially obvious when compar-
ing subword and subword + OOV models. It’s
hard to draw any insightful conclusion from this
experiment. This is in line with the observations
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of Li et al. (2017), who showed that Skip-Gram,
CBOW, and GloVe trained with different context
types perform similarly on text classification task.

5 Discussion

The evaluation showed that despite being trained
on a relatively small corpus, CNN- and RNN-
based (model-based) approaches outperform con-
ventional (trained on word-level) embeddings as
well as FastText embeddings, which are claimed
to better capture morphological information (Bo-
janowski et al., 2017). In some cases, the perfor-
mance of model-based embeddings is even higher
than that of FastText embeddings that were trained
on much larger corpus.

Moreover, such performance is achieved with
very compact representations: it is possible to gen-
erate an embedding for any given word on demand
with only network weights, and these weights re-
quire an order of mere kilobytes of data (Table 2).
Naturally, these compact representations do not
have enough capacity to capture semantic infor-
mation well. However, besides merely indicat-
ing a possibility for improvement/limitations of
more “heavy-weight” models (like original Skip-
Gram or FastText), model-based embeddings can
be used together with other approaches to improve
their sensitivity to morphological information.

One such approach is to combine embed-
dings from different models after training, as
demonstrated in our experiments (“concat” lines
in Table 3). Simple concatenation of lookup-
table-based and model-based embeddings main-
tain high accuracy on morphology-related bench-
marks, while elevating performance on semantic
tasks to comparable level.

Additionally, subword-level models can be
trained jointly with models based on lookup-
tables, which improves their performance on dif-
ferent tasks. After training, either part can be used
independently or jointly (e.g. by concatenation) in
down-stream tasks.

6 Conclusion

We have implemented and evaluated several types
of composition functions for subword-level ele-
ments (characters and character n-grams) in the
context of training word embeddings in Skip-
Gram-like model.

We have shown that morphological information
can be captured efficiently by extremely compact

Model Text Classification
MR CR SUBJ IMDB

Skip-Gram .688 .765 .881 .797
FastTextword .690 .756 .878 .796

CNNword .690 .764 .876 .796
LSTMword .687 .752 .881 .794

FastTextsubword .691 .758 .867 .798
CNNsubword .670 .759 .857 .784
RNNsubword .689 .758 .872 .796

FastTextsubword+OOV .693 .759 .869 .797
CNNsubword+OOV .675 .763 .858 .785
RNNsubword+OOV .692 .760 .872 .795

FastTextword+subword .693 .759 .869 .797
CNNword+subword .675 .763 .858 .785
RNNword+subword .692 .760 .872 .795

Table 5: Results on text classification datasets.

models. Embeddings generated dynamically from
just a few megabytes of parameters significantly
outperform conventional (word2vec and FastText)
models on morphology related tasks. Addition-
ally, this indicates the vast limitation of the ability
of conventional models to capture morphological
information.

To model both morphological and semantic in-
formation, we propose two methods for combining
strength of compact subword-level- and lookup-
table based models: merging trained embeddings
and training jointly. The resulting embeddings
achieved high accuracy on a range of benchmarks
and are particularly promising for datasets with
high OOV rate.

The source code of those models, along with the
pretrained word embeddings, has been integrated
into an open-source project, and will be publicly
available.
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Abstract
We introduce a simple method for extract-
ing non-arbitrary form-meaning representa-
tions from a collection of semantic vectors.
We treat the problem as one of feature selec-
tion for a model trained to predict word vec-
tors from subword features. We apply this
model to the problem of automatically discov-
ering phonesthemes, which are submorphemic
sound clusters that appear in words with sim-
ilar meaning. Many of our model-predicted
phonesthemes overlap with those proposed in
the linguistics literature, and we validate our
approach with human judgments.

1 Introduction

Linguists have long held that language is arbi-
trary, or that a word’s phonetic and orthographic
forms have no relation to its meaning (de Saus-
sure, 1916). For example, there is nothing about
an apple that suggests that apple is the proper word
for it—this link between meaning and the repre-
sentation in language is arbitrary. Arbitrariness is
a defining feature of human language, and it is a
key component of the design features of language
proposed by Hockett (1960).

Despite this, work over the last decades has re-
vealed several exceptions to the arbitrariness of
language. One such exception is iconicity, where
the form of a word directly resembles its meaning.
For example, Ohala (1984) showed that speakers
tend to associate vowels with high acoustic fre-
quency with smaller objects, while vowels with
low acoustic frequency are associated with larger
objects. In this case, speakers make a link between
the phonetic form of a word and its perceived
meaning because of an innate belief that smaller
entities emit higher-frequency vowels while larger
entities tend to emit low-frequency vowels.

Similarly, Köhler (1929) and Ramachandran
and Hubbard (2001) observed a non-arbitrary con-

nection between the shapes of objects and speech
sounds. American college undergraduates and
Tamil speakers were presented with a jagged
shape and a rounded shape and asked which is
“kiki” and which is “bouba”. In both groups,
95% to 98% selected the jagged shape as “kiki”
and the rounded shape as “bouba”, demonstrating
that the human brain connects sounds to shapes
in a consistent way. D’Onofrio (2014) posits that
the rounded shape is commonly named “bouba”
since the mouth forms a rounded shape in pro-
ducing the word, whereas pronouncing “kiki” re-
quires a tighter, more angular mouth shape that
seems more apt for the jagged object. In this case,
there is a strong, non-arbitrary link between the
articulatory properties of the sound and their per-
ceived meaning.

Phonesthemes are another exception to the ar-
bitrariness of language. Phonesthemes are non-
compositional, submorphemic phonetic units that
consistently occur in words with similar mean-
ings. For example, the word-initial gl-, occurs at
the beginning of many English words relating to
light or vision, like glint, glitter, gleam, glamour,
etc. (Hutchins, 1998; Bergen, 2004). The work
of Hutchins (1998) includes a compilation of 46
phonesthemes proposed by linguists.

There is a body of previous work suggesting
that phonesthemes are units in the mental lexi-
con of native speakers. For example, the work
of Hutchins (1998), Magnus (2000), and Bergen
(2004) uses priming experiments and other meth-
ods from psycholinguistics to demonstrate that
phonesthemes significantly affect native speaker
reaction times in a range of language processing
tasks. In another line of work, Otis and Sagi
(2008) and Abramova and Fernández (2016) ver-
ify phonesthemes by analyzing whether the words
containing a given phonestheme are more seman-
tically similar than expected by chance, where se-
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mantic similarity is derived from a distributional
semantic model.

While there has been much work in verifying
previously proposed phonesthemes, there has been
little work on automatically discovering new ones.
In this work, our goal is to identify the likely phon-
esthemes of a language from a collection of se-
mantic vectors. We do this by identifying the char-
acter or phoneme sequences that are predictive of
word meaning by training a model to predict word
vectors from subword features. Then, we use stan-
dard feature selection techniques to find a subset
of features that best predict the vectors; this subset
of features contains the model-predicted phones-
themes. Lastly, we validate the model-predicted
English phonesthemes with human judgments and
also find that many of our predicted phonesthemes
overlap with those documented in previous work.

2 Method

To extract phonesthemes from a set of vectors, we
want to find submorphemic units (e.g., character
or phoneme n-grams) that are highly predictive of
word meaning. We approach this problem through
the lens of feature subset selection: given a model
capable of predicting semantic vectors from sub-
morpheme information, our goal is to select the
subset of submorphemes (model features) that are
most predictive. Intuitively, if a submorpheme is
especially predictive of the word vectors, then it
may be a meaning-bearing phonestheme.

We use linear regression to predict word vec-
tors from binary feature vectors that encode the
submorphemes occurring in a surface form. We
use sparse regularization to select relevant features
from this model, which enables it to automatically
choose a subset of the submorpheme features that
predict the vectors (our predicted phonesthemes).

Specifically, we regularize our linear regres-
sion model with the elastic net (Zou and Hastie,
2005). We used scikit-learn (Pedregosa
et al., 2011) to train our models, and we tune the
L1 and L2 regularization strengths on held-out er-
ror in 5-fold cross-validation.

Mitigating the Effect of Morphemes A prin-
cipal concern is that the model will detect mor-
phemes rather phonesthemes. Many past stud-
ies on the relationship between form and mean-
ing in language (Shillcock et al., 2001; Monaghan
et al., 2014; Gutiérrez et al., 2016; Dautriche et al.,
2017) mitigated this concern by only considering

monomorphemic words, discarding a large frac-
tion of the lexicon in the process.

We take a different approach to this problem by
proposing a two-step model designed to mitigate
the effect of morphemes. We begin by training
an unregularized linear regression model to pre-
dict semantic vectors from morpheme-level fea-
tures. Then, we use the residuals of this first stage
morpheme-level model as the new target vectors
for the sparsely regularized phonestheme extrac-
tion model. This removes the components of the
word vector that are predictable from morpheme-
level information, leaving only the aspects of word
meaning not covered by morphology.

We use the the morphological analyses in the
CELEX lexical database (Baayen et al., 1996) to
compile a list of morphemes, which is used to cre-
ate the morpheme-level feature vectors. We also
use this list to remove any morphemes that may
appear in the final model output.

3 Data

For our experiments, we use 300-dimensional
GloVe (Pennington et al., 2014) English word em-
beddings trained on the cased Common Crawl.
Many of the terms in the set of pretrained vectors
are not English words. As a first attempt toward
removing non-English words and named entities,
we discard types that are not alphabetical or not
completely lowercased. In addition, it’s unlikely
that rare words or very common words will con-
tribute to the formation of sound-meaning associ-
ations (Hutchins, 1998). To further filter these rare
or common words (and remove additional non-
English types), we remove types that either occur
less than 1000 times in the Gigaword corpus or in
more than half of all Gigaword documents. Lastly,
we remove types that share the same lemma if the
lemma is also in the set of filtered word vectors.
After this process, we are left with 7889 types out
of the original 2.2 million.

We phonemicize our vectors by associating
each word’s vector to the word’s ARPAbet symbol
sequence, as provided in the CMU Pronouncing
Dictionary (Carnegie Mellon University, 2014). If
multiple types have the same ARPAbet symbol
sequence (and are thus homophones), we discard
them all. We also do not use types that are not in
the CMU Pronouncing Dictionary. Phonemicizing
the filtered set of vectors results in a set of 6633
vectors.
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Note that our model can be applied using ei-
ther orthographic or phonemicized vectors. Phon-
esthemes are an inherently phonetic phenomenon,
which suggests that it is ideal to model the
features at the phoneme level. However, us-
ing character-level features, in some cases, will
be a reasonable approximation, especially since
many of our extracted phonesthemes have a
consistent orthographic representation. We re-
lease code for preprocessing data and train-
ing the models at http://nelsonliu.me/
papers/phonesthemes/.

4 Experiments and Results

The candidate phonesthemes considered by the
model are the word-initial phoneme bigram se-
quences that occur more than five times in our
set of phonemicized vectors; we set a frequency
threshold for feature inclusion since rare prefixes
are unlikely to carry meaning. Each word’s fea-
ture vector is a one-hot encoding of its bigram
phoneme prefix. We choose to focus on word-
initial bigrams since the bulk of prior work in
linguistics has also focused on phonesthemes in
this position. However, our method easily extends
to larger subword units (e.g., trigrams), candi-
date phonesthemes within or at the end of a word,
even other languages; we leave analysis of phon-
esthemes of other sizes, in different positions, and
of different languages for future work.

We train our two-stage model on the phone-
micized vectors; the features that are assigned
a nonzero weight are our model-predicted phon-
esthemes. The features of our morpheme-level
model are binary indicator features correspond-
ing to 181 different morphemes extracted from
the CELEX2 database. In total, our phonestheme
extraction model considers 307 candidate phon-
esthemes; tuning the regularization strength on
held-out error in 5-fold cross-validation results in
a model that selects 123 candidate phonesthemes
as predictive. The phoneme bigrams correspond-
ing to the 30 features with the highest absolute
model weight are in Table 1. Qualitatively, the
words with the lowest error under the model con-
taining each selected phonestheme candidate seem
semantically coherent.

Many of the phonesthemes identified by our
model have been proposed and validated by past
work. 13 of the top 15 model-predicted phones-
themes were in Hutchins’ set of 17 proposed word-

ARPAbet
Sequence

Character
Sequence Model Example Words

† * S N sn- sneaks, snubs, sniffs
* S K sc-/sk- screwing, squelched, scurry
* K R cr- crunched, cringed, crummy
* S P sp- spiffy, splendidly, spunky
B R br- brags, brouhaha, brutish

* G R gr- griping, grumbles, grandly
* T R tr- tryst, trounce, truism
* S T st- stupendous, startlingly, stunner
† * B L bl- blase, blithely, blankly

* F L fl- flaunted, flowered, fluff
† * G L gl- glossed, gleam, glamor

* S L sl- slouch, slogged, slime
† * D R dr- droll, dreamer, drifter
† * S W sw- swoon, swoops, swipes

W IH1 wi- wimpy, willy, wince
K AE1 ca- candied, caffeinated, cataclysm
P AE1 pa- pantry, pathogen, pancake
S IH1 sy-/si- syllable, simulators, synchronize
F R fr- froth, frock, freaks
M AE1 ma- mallet, masts, manor
P EH1 pe- pendant, pelt, petulant
M EH1 me- meld, meditate, memorized
M AH1 mu- mumbled, mummies, mutter

* K L cl- clumsily, clunky, claustrophobic
S EH1 se-/ce sensuous, celibate, celebrants
AH0 B ob- obliterate, abridged, obliquely
B AA1 ba-/bo- barbarous, bogs, barbers
P L pl- pled, pliable, platoons
K AO1 co- corset, coroners, corduroy
F EH1 fe- fairest, fender, feds

Table 1: The 30 model-predicted phonesthemes with
the highest absolute model weight and their typical or-
thographic representation. The model example words
were selected from the 10 phonestheme-bearing words
with the lowest model error. ∗ indicates a phonestheme
identified by Hutchins (1998). † indicates a phon-
esthemes with statistical support from Otis and Sagi
(2008).

initial phoneme bigram phonesthemes. This is an
improvement over past work; Otis and Sagi (2008)
identified 8 as statistically significant, with a hy-
pothesis space restricted to 50 pre-specified word
beginnings and endings. Gutiérrez et al. (2016)
also identified 8, but with a much larger hypoth-
esis space of 225 candidates. Our model consid-
ers an even larger hypothesis space of 307 can-
didate phonesthemes, which are all automatically
extracted from the set of word vectors.

Validating Phonesthemes with Human Judg-
ments Following the method of Hutchins (1998)
and Gutiérrez et al. (2016), we empirically evalu-
ate our phonesthemes by soliciting naı̈ve human
judgments about how well-suited a word’s form is
to its meaning.

We randomly selected 5 words containing each
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of the top 15 model-selected phonesthemes and 5
words containing 15 random phonestheme candi-
dates that were not selected by the model, for a
total of 150 words.

We recruited native English-speaking partici-
pants through Mechanical Turk, and asked them
to judge how well each word fits its meaning on a
Likert scale from 1 to 5. 150 words is too many
judgments for a single HIT (annotators would be-
come fatigued and words might start to lose mean-
ing). As a result, we randomly divided the task
into 10 different HITs, each with 15 of the words
to be tested. We required Amazon Mechanical
Turk Masters status for the crowdworkers and
compensated them $0.20 per HIT; each word re-
ceived 30 ratings.

Following Hutchins (1998), we compute rat-
ings for each candidate phonestheme by averag-
ing the rating of the words that contain it. On av-
erage, model-predicted phonesthemes were rated
0.58 points higher than unselected phonestheme
candidates (3.66 versus 3.08, respectively). To as-
sess whether this difference is statistically signifi-
cant, we use the one-tailed Mann-Whitney U test
(Mann and Whitney, 1947) since the data is or-
dinal and unpaired. Based on the results of the
test, we reject the null hypothesis that the average
rating of words containing model-selected phon-
esthemes is not greater than the average rating of
words that contain phonesthemes not selected by
the model (p < 10−9).

Figure 1 plots the human ratings of the top 15
model-selected phonesthemes against their abso-
lute weight under the model; there is a weak posi-
tive correlation (r = 0.081).

2 of the 15 model-predicted phonesthemes with
the highest absolute weight were not previously
proposed by (Hutchins, 1998): br- and wi-. Both
of these sound clusters seem like plausible phones-
themes. To the authors, the br- cluster evokes the
idea of a raw, almost uncultured force, with words
like “brags,” “brutish,” and “brusque” appearing
among the words with the lowest error under the
model. The types containing the word-initial wi-
cluster with the lowest error under the model seem
to convey fragility: “wimpy,” “wince,” and “weak.”

From Figure 1, we can see that the br- phon-
estheme candidate received a very high model
weight, but received lower ratings on average from
human annotators. On the other hand, the aver-
age human rating of the wi- phonestheme candi-

date seems in line with its assigned model weight.
Future work could further explore whether br- and
wi- have psychological reality to native speakers.

Figure 1: Average human rating versus the absolute
model weight for the 15 selected phonesthemes with
the highest absolute model weight.

5 Related Work

Several psycholinguistic studies have shown that
native speakers associate certain sounds with a
particular meaning, and phonesthemes have been
identified in languages from English (Wallis,
1699; Firth, 1930) to Swedish (Abelin, 1999) and
Japanese (Hamano, 1998). Bergen (2004) ad-
ditionally demonstrates that phonesthemes affect
online implicit language processing, and Parault
and Schwanenflugel (2006) suggest that they play
a role in language acquisition.

In recent years, the work of Otis and Sagi
(2008) and Abramova and Fernández (2016)
used computational methods to automatically de-
tect and validate phonesthemes by examining
whether words that contain a candidate phones-
theme are more semantically similar than pre-
dicted by chance, according to a distributional se-
mantic model. Dautriche et al. (2017) analyze
lexicons of Dutch, English, German, and French
and find that the space of monomorphemic word
forms is clumpier than what would be expected
by chance, according to lexical, phonological, and
network measures.

Most similar to our work is that of Gutiérrez
et al. (2016), who introduce an algorithm for learn-
ing weighted string edit distances that minimize
kernel regression error and use it to detect system-
atic form-meaning relationships within language.
Our model uses linear regression between can-
didate phonestheme features and semantic vec-
tors. In addition, our model directly selects the
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predicted phonesthemes with sparse regulariza-
tion; their model instead provides a systematicity
score for each type, and they extract phonesthemes
by taking the word-beginnings with mean errors
lower than predicted by a random distribution of
errors across the lexicon.

6 Conclusion

In this work, we present a simple model for
extracting non-systematic form-meaning relation-
ships from a collection of word vectors. Our
model is a sparsely regularized linear regression
model that seeks to predict a word’s semantic vec-
tor from a feature vector that encodes information
about the candidate phonesthemes it contains; the
sparse solutions of the regression problem have the
effect of automatically selecting the features that
are most predictive of word meaning, which we
take as predicted phonesthemes.

We also develop a simple and effective two-
stage approach for mitigating the effect of mor-
phemes in the model. We initially train a model to
map from morpheme-level features to word vec-
tors, and then use the residuals of the morpheme-
level model as the targets for the downstream
phonestheme extraction model.

We empirically compare our model’s predicted
phonesthemes and find that many were previously
proposed by linguists. We verified our results
with human judgments of proposed and unse-
lected phonesthemes, and annotators believe that
words with a model-selected phonestheme “fit
their meaning” more than words that contain a
candidate phonestheme that was not selected by
the model.
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Abstract

We explore the use of two indepen-
dent subsystems, namely Byte Pair En-
coding (BPE) and Morfessor as basic
units for subword-level neural machine
translation (NMT). We have shown that
for linguistically distant language-pairs
Morfessor-based segmentation algorithm
produces significantly better quality trans-
lation than BPE. However, for close
language-pairs BPE-based subword-NMT
may translate better than Morfessor-based
subword-NMT. We have proposed a com-
bined approach of these two segmenta-
tion algorithms Morfessor-BPE (M-BPE)
which outperforms these two baseline sys-
tems in terms of BLEU score. Our results
are supported by experiments on three
language-pairs: English-Hindi, Bengali-
Hindi and English-Bengali.

1 Introduction

Subword-level NMT is an NMT approach that
can tackle OOV problem. In order to train an
NMT (Cho et al., 2014; Sutskever et al., 2014;
Bahdanau et al., 2015) model for a language-
pair, the size of vocabularies for source and
target languages should be constant. But in
reality, the vocabulary of a natural language is
open. Some words in test data may be absent
in system vocabulary. NMT model cannot in-
terpret the semantics of these OOV words. So,
translation quality deteriorates as the num-
ber of unseen (rare) words increases (Sutskever
et al., 2014).

OOV words are mainly of three types de-
scribed in Table 1. The first type of OOV
words needs transliteration. But for translat-
ing the second type of OOV words, we need
to look deeper. A word based NMT sys-
tem treats ‘house’ and ‘houses’ as two com-

Type Example
Named entities ‘िदŦी’ Delhi
Compound words and
inflected words ‘moonlight’, ‘examined’
Rare words in reality ‘serendipity’

Table 1: Types of OOV words with example.

pletely different words, which limits the cov-
erage of vocabulary. Morphological analyzers
tackle this problem by segmenting ‘houses’ as
‘house’ and ‘s’. This way it can cover many
words and their inflections too. The third type
of OOV words are dealt by leveraging lexi-
cal similarity between language-pairs. Lexi-
cally similar languages share many words (cog-
nates, loan words) with similar spelling, pro-
nunciation and meaning. Subword-level ap-
proaches are effective ways for translation of
such shared words.
A character n-gram of a word is called a

subword. It may or may not be mean-
ingful. On the other hand, a morpheme
is the smallest grammatical meaningful unit
of a language. If we segment ‘houses’ as
‘hou’+‘ses’, then ‘hou’ and ‘ses’ will be mean-
ingless subwords. But if we segment ‘houses’
as ‘house’+‘s’, then ‘house’ and ‘s’ will be
subwords as well as morphemes.

2 Related work

A word can be segmented as BPE (Sen-
nrich et al., 2016), orthographic syllable
(Kunchukuttan and Bhattacharyya, 2016),
character (Chung et al., 2016; Costa-jussà and
Fonollosa, 2016), Huffman encoding (Chitnis
and DeNero, 2015). In our experiment we
show that, for translation between linguisti-
cally close language-pair BPE subword seg-
mentation is suitable, whereas for transla-
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tion between linguistically distant language-
pair Morfessor-based segmentation is suitable.
Our proposed subword segmentation approach
utilizes benefit of both BPE and Morfessor
(Creutz and Lagus, 2006; Smit et al., 2014;
Grönroos et al., 2014) and performs well for
both linguistically close and distant language-
pairs.

3 BPE algorithm

BPE (Gage, 1994) is originally a data com-
pression technique. The main idea behind
BPE is- “Find the most frequent pair of con-
secutive two character codes in the text, and
then substitute an unused code for the occur-
rences of the pair.” (Shibata et al., 1999)

3.1 BPE as subword unit
BPE works as subword segmentation method
for both NMT (Sennrich et al., 2016) and SMT
(Kunchukuttan and Bhattacharyya, 2017). In
this method, two vocabularies are used: train-
ing vocabulary and symbol vocabulary.
Words in training vocabulary are character-
sequences followed by an end-of-word symbol.
At first, all characters are added to symbol vo-
cabulary. This step is followed by adding the
most frequent symbol bigram to the vocabu-
lary, and all its occurrences are replaced by
a new symbol (merged symbol bigram). This
step is repeated for a number of times, which
is a hyperparameter.

Starting from character level as the num-
ber of merge operations is increased, primar-
ily frequent character-sequences and then full
words are also added as a single symbol. So,
the number of merge operations balances be-
tween the NMT model vocabulary size and the
length of training sentences. Symbol ‘@@’ is
used here to indicate the places of segmenta-
tions.

3.2 Hyperparameter selection of BPE
Higher number of merge operations adds al-
most all words to symbol vocabulary. It will
prevent the NMT system to translate on sub-
word level segmentation of words.

Using BPE subword segmentation, the av-
erage length of sentences is increased as words
are broken into subwords. Larger the sentence
size, more difficult it becomes for NMT to

learn well from them (Bahdanau et al., 2015).
So, proper tuning of this hyperparameter is
needed. Higher number of merge operations
makes the elements more word-like. Lower
number of merge operations makes the ele-
ments more character-like, where sometimes
character-to-character mappings add translit-
erated words in the translation output.

3.3 Comparison of BPE segmentation
with Morfessor

The goal of morphological analyzers such
as Morfessor is to segment a word into its
morphs, the surface forms of morphemes.
Comparison between BPE subword segmenta-
tion and Morfessor is described below.

• BPE is a greedy approach. Morfessor
takes highest probable segmentation of
words and deals with local optima by re-
moving and adding word tokens. So, Mor-
fessor produces more acceptable morpho-
logical segmentation than BPE.

• Main advantage of BPE is solving OOV
problem in two ways: i) some segmenta-
tions are almost morphological segmen-
tation, and ii) some segmentations are
nearly character-level segmentations. As
a result, OOV words are either transliter-
ated or produce partially correct transla-
tions. But in absence of some morphs in
the dictionary, Morfessor does not pro-
duce character-level segmentations. In
such cases, it faces OOV problem.

Our Morfessor-based segmentation algo-
rithm takes all the valid words from the cor-
pora and passes these through morfessor. Af-
ter getting their morphological segmentation,
we replace them in data at their respective
places. Like BPE, ‘@@’ is used here to indicate
the places of segmentation. That means while
decoding from subwords we need to join sub-
words having ‘@@’ signs with next subword.

4 Our approach

The idea behind our proposed combined ap-
proach M-BPE comes from comparing BPE
and Morfessor. The hypothesis of this ap-
proach is- “Words should be segmented into
real morphs. After that, segmentation of
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morphs into subwords may be beneficial to han-
dle open vocabulary.” Words can be morpho-
logically segmented by using Morfessor. BPE
will be helpful for OOV morphs of type 1 and
3 described in section 1. Work-flow of this ap-
proach is described below.
Step 1: Use Morfessor on the set of all words

from the dataset.

Step 2: Find and replace all occurrences of
these words with their segmented form
(symbol ‘**’ is used to keep information
of segmenting positions). For example-
‘googling’ will be segmented into two
morphs ‘googl**’ and ‘ing’.

Step 3: Learn and apply BPE on that morph-
segmented data. Use symbol ‘@@’
for these segmentations. For example,
this may segment the word ‘googl**’ as
‘go@@’, ‘og@@’ and ‘l**’, if ‘googl**’ is
rarely occurring word in data. It will not
merge already segmented subwords fol-
lowed by symbol‘**’, because it’ll treat
already segmented subwords as different
elements.

Step 4: Replace symbol ‘**’ with the symbol
‘@@’. Finally, the word ‘googling’ will be-
come ‘go@@ og@@ l@@ ing@@’.

4.1 Hyperparameter selection of
M-BPE

With increasing average number of elements
per sentence, performance of an NMT model
degrades (Bahdanau et al., 2015). Using the
same number of merge operations for both
BPE and M-BPE produces a higher number of
elements per sentence in case of M-BPE than
BPE because the Morfessor part of M-BPE in-
creases the number of elements of a sentence
before applying the BPE part on it. In or-
der to get a fair comparison between BPE and
M-BPE, we have adjusted their hyperparame-
ter in such a way that average numbers of ele-
ments per sentence after segmentation become
almost same. So, for maintaining that crite-
rion, here we have kept the number of merge
operations of M-BPE higher than that of BPE.

5 Experimental setup
There are three systems of subword segmenta-
tion in our experiment, namely- BPE, Mor-

fessor and M-BPE. We have used subword-
nmt1 for BPE segmentation, Flatcat (Grön-
roos et al., 2014) and NLP Indic Library2 for
producing morphological segmentation of En-
glish and Indian words.

5.1 Datasets
We have used data from English-Hindi (En-
Hi), English-Bengali (En-Bn) and Bengali-
Hindi (Bn-Hi) language-pairs from health and
tourism domain multilingual parallel Indian
Language Corpora Intitiative (ILCI) corpus
(Jha, 2010). We clean and tokenize the train-
ing corpus. English data was tokenized us-
ing the Stanford tokenizer (Klein and Man-
ning, 2003) and then true-cased using true-
case.perl provided in MOSES toolkit3. For
Hindi and Bengali data, we tokenized us-
ing NLP Indic Library (Kunchukuttan et al.,
2014). Then parallel sentences were divided
into three parts for training, testing and tun-
ing/validation. For each language-pair, we
have 44,777 sentence-pairs in training data,
1,000 sentence-pairs in tuning data and 2,000
sentence-pairs in test data.

5.2 System details
After tokenization, words of source sentences
are broken into subwords using a segmenta-
tion algorithm. NMT system receives a se-
quence subwords of a sentence as input and
produces the output of a subword-sequence in
target language. Then, subwords are com-
bined to produce words in order to get an
actual sentence in target language. We have
used NEMATUS (Sennrich et al., 2017) as an
attention-based encoder-decoder NMT system
in our experiment.

6 Results and discussion

The example given below shows the difference
among three segmentations:
Example:
Word level: focusing your mind
BPE level: foc@@ us@@ sing your mind
Morfessor level: focus@@ ing your mind
M-BPE level: foc@@ us@@ ing your mind

1https://github.com/rsennrich/subword-nmt
2anoopkunchukuttan.github.io/indic_nlp_library/
3http://www.statmt.org/moses/
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Fig 1 shows changes in BLEU scores (Pap-
ineni et al., 2002) when we train NMT mod-
els using sentences with increasing average
number of elements (by tuning hyperparam-
eters). Here, two paths indicate two different
approaches of segmentation: i) from word level
to BPE level, ii) from word level to M-BPE
level via Morfessor level.

(a) Pair: English-Hindi

(b) Pair: English-Bengali

(c) Pair: Bengali-Hindi

Figure 1: Translation accuracies of NMT sys-
tems for various translation units (BLEU
scores reported).

Table 2 compares among word-level,
Morfessor-level, BPE-level and M-BPE level
NMT output accuracies for three language-
pairs. Tuned numbers of merge operations
of BPE and M-BPE, for Bn-Hi, are 3k and
6k. In case of En-Hi, these are 10k and 90k
respectively, and for En-Bn these are 7k

and 15k respectively. Translation between
lexically close language-pairs like Bn-Hi has
more character-to-character mappings than
En-Hi. For that reason, Bn-Hi language-pair
needs a lower value of hyperparameter than
English-Hindi.

Pair W M BPE M-BPE
Bn-Hi 30.71 32.74 33.09 34.21
En-Hi 26.22 27.87 27.16 27.81
En-Bn 14.44 15.18 14.89 15.57

Table 2: Translation accuracies for vari-
ous translation units (BLEU scores reported).
The reported scores are:- W: word-level, M:
Morfessor-level, BPE: BPE-level, M-BPE: M-
BPE-level. The values marked in bold indicate
the best score for a language pair.

Some findings from the results are listed be-
low.

• For En-Hi and En-Bn language-pairs,
Morfessor produces better quality trans-
lation than BPE.

• For Bn-Hi language-pair, BPE is capa-
ble of producing better translation than
Mofessor as segmentation algorithm.

• M-BPE can maintain translation quality
for all language-pairs.

In case of Bn-Hi language-pair, BPE helps in
improvement of baseline (word-level) transla-
tion quality. But in case of En-Hi and En-Bn,
it fails to show a considerable amount of im-
provement. En-Hi and En-Bn language-pairs
are quite different from each other in terms of
syntactical (word-order, morphology) and lex-
ical similarities. Bengali and Hindi are much
closer to each other in comparison with En-Hi
and En-Bn. This property of Bn-Hi language-
pair helps their translation model to figure out
mappings between source and target n-grams.
Grammatical rules of languages may not be re-
vealed due to morphologically wrong segmen-
tations. But it hardly affects Bn-Hi transla-
tion quality because of their syntactic similar-
ities. Moreover, small subwords add translit-
erated words in output which is favorable for
Bn-Hi translation.
In case of En-Hi and En-Bn, translation

models do not easily find mappings between
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source and target random subwords. It will be
useful, only if these subwords are real morphs.
For these language-pairs, correct segmenta-
tion of word is necessary, not only for getting
an accurate translation of word, but also for
understanding its grammar (word order and
function words). En-Hi and En-Bn language-
pairs do not have much lexical similarity; small
meaningless subwords do not help in that case;
these can even degrade the translation quality.

M-BPE can segment words correctly. It
can also produce small subwords by further
segmenting morphs. So, by tuning its hyper-
parameter, we can make it suitable for all lan-
guage pairs, i.e. linguistically close and lin-
guistically distant language-pairs.

7 Conclusion and future work
As a subword segmentation algorithm, M-
BPE outperforms baseline BPE in case of
both lexically close and distant language-
pairs. However, when compared with base-
line Morfessor, improvement due to M-BPE
depends on lexical closeness. For lexically
close language-pair the improvement is signifi-
cant. In that case, meaningless BPE subwords
play a meaningful role in improving transla-
tion quality. Future investigation will be fo-
cused on the automatic tuning of hyperparam-
eter for M-BPE.
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Abstract

We present early results from a system un-
der development which uses sub-word em-
beddings for query expansion in the pres-
ence of mis-spelled words and other aberra-
tions. We work for a company which cre-
ates accounting software and the end goal is
to improve customer experience when they
search for help on our “Customer Care” por-
tal. Our customers use colloquial language,
non-standard acronyms and sometimes mis-
spell words when they use our Search por-
tal or interact over other channels. How-
ever, our Knowledge Base has curated con-
tent which leverages technical terms and is
in language which is quite formal. This re-
sults in the answer not being retrieved even
though the answer might actually be present in
the documentation (as assessed by a human).
We address this problem by creating equiva-
lence classes of words with similar meanings
(with the additional property that the map-
pings to these equivalence classes are robust
to mis-spellings) using sub-word embeddings
and then use them to fine tune a Search index
to improve recall.

1 Introduction

Accounting and taxation is a complex domain-
especially for small businesses who might not
have the necessary accounting skills but yet need
to be compliant with regulations. Hence con-
sumers of accounting software frequently seek ad-
vice both about accounting as well as about the
product itself.

During an audit process when we started to an-
alyze customers’ queries with the help of internal
experts, we realised that for a significant number
of queries the answers were already available but
not retrieved by the search engine because it relies
only on keyword based search.

This is primarily due to the following reasons:

1. Self employed and small business owners use
colloquial language and terms like I didn’t re-
ceive the money customer XYZ owes to me in-
stead of I didn’t receive my receivables from
XYX

2. Even when customers use accounting terms
there are misspellings or structural variants
(Form1040 vs Form1040-ES)

1.1 Previous Work

While there have been earlier approaches which
deal with these problems through methods like
lemmatization, fuzzy matching etc. details of
which are given in (Gormley and Tong, 2015), we
wanted a method that could be fine-tuned to our
dataset without creating hand-crafted rules. Re-
cent progress in creating distributional representa-
tions of words has found applications in Informa-
tion Retrieval (IR) due to work by Zamani and
Croft (2017), Korpusik et al. (2017) and Cao and
Lu (2017) among others. Some of these models
provide the query as an input to a neural network at
prediction time while others rely on using the em-
beddings for query expansion. Our work is in-line
with some of these earlier efforts but with a goal
of creating an end-end working system that is ro-
bust to mis-spellings and other aberrations around
the composition of words. Thus in this paper we
focus on how we integrated sub-word embeddings
with Search systems to create a real-life retrieval
system which is currently under development. We
demonstrate how this can solve a very practical
problem around Information Retrieval from ac-
counting/taxation related corpora.

2 Approach

Our basic approach is to create a search index
to enable searching for either the exact word
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or it’s synonyms if they are present in the cor-
pus/vocabulary. In addition our approach is able to
map mis-spelled (and hence OOV) words to their
“correct” versions on the fly at query time. It in-
volves the following steps:

1. Our expert Customer Care Agents (CCA)
create a hand-curated list of “important”
words including named entities, actions that
customers perform with our products etc.

2. We generate word and sub-word embeddings
from our own data and then use these embed-
dings to create nearest neighbors for the im-
portant words. The procedure is similar to
that used by Bojanowski et al. (2016) so we
don’t reproduce it here. Hyperparameter set-
tings that were varied by us are mentioned in
Section 3.3.

3. We use the “synonym contraction” mech-
anism of Elasticsearch to update the in-
dex with “synonyms”. Since this is a
standard procedure we refer the reader
to Gormley and Tong (2015) for details.
During search, the query is also “ana-
lyzed” using the same “analyzer”. This
can be seen as a kind of query re-
formulation where word is replaced by
OR(word, synonym1, synonym2...). Note
that for Out of Vocabulary (OOV) words at
query time we get “synonyms” by relying on
the embeddings of the sub-words, following
the procedure in Bojanowski et al. (2016).

3 Experiments

In this section we discuss the overall objective of
the experiment and then mention details about the
dataset, pre-processing, training and hyperparam-
eter tuning.

3.1 Objective

As mentioned in Section 2, we wish to under-
stand if an Elasticsearch “Synonyms” file based
on sub-word embeddings can lead to a higher re-
call during search compared to a “Synonyms” file
based purely on word embeddings (without sub-
word embeddings) especially in the presence of
mis-spellings and other perturbations. See Fig-
ure 1 for a high level overview of how the “Syn-
onyms” files are created.

Algorithm 1 Offline: Create Nearest Neighbours
Require: Set: RootWords . Hand-crafted set of

the core/important words
Require: Hashmap H: RootWord→ ListofWords
Require: Set: V . Vocabulary
Require: Integer K . # neighbours to retrieve
Require:

function NN(rootWord,V, K)
return {w|w ∈ K NN(rootWord) ∩ V }

end function
function POPULATENN(H,Rootwords,V,K)

for rootWord ∈ RootWords do
. Insert word and it’s neighbours into H
H[rootWord]= NN(rootWord, V, K)

. Remove assigned words from V
V← V \ Set(NN(rootWord,V,K) )

end for
end function

Ensure: H . Hashmap with root words as keys
and K-Nearest Neighbours as values

3.2 Dataset and Pre-processing

We realised that the dataset for validating the ben-
efit from this system had to have the following
properties:

1. For each query we had to know the matching
answer. This was to be used as ground truth.

2. We wanted the answer to be relevant to the
matching query but did not want the words in
the query to be a subset of words in the an-
swer. This is because had there been good
word overlap there wouldn’t be a need for
query expansion.

After failing to find a well-researched corpus
around accounting we decided to use (IRS, 2017),
which is a manual written by the Internal Rev-
enue Service (IRS), USA to provide information
about personal income tax to taxpayers. While
we have also performed experiments on our pro-
prietary knowledge base, for this paper we chose
(IRS, 2017) because it is a widely used document
and is also available in the public domain. This
will enable the larger NLP community to verify
and expand upon our findings. Figure 2 shows
the layout of a typical page in books like (IRS,
2017). Our basic idea was to use perturbed ver-
sions of “headings” (see Section 3.2.1) as queries
(perturbed to mimic mis-spellings/typos from real
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Figure 1: Starting with raw data from (IRS, 2017),
a skipgram model (see Section 3.3) was trained, fol-
lowed by identifying and indexing 10 nearest neighbors
per word. This set of nearest neighbors was then pro-
vided to Elasticsearch (ES) as a ”Synonyms” file which
was internally incorporated into the ES index.

users) and to use content in the “body” as docu-
ments. Since several downstream models depend
on tokenization, we wish to state that for all ex-
periments in this paper we tokenized words using
whitespace and using punctuation symbols.

3.2.1 Mis-spelling synthesizer
Our objective here is to compare sub-word em-
beddings with word embeddings and understand
how the robustness to small character level pertur-
bations affects the final recall after search. Since
“headings” in books are well formatted and don’t
have mis-spellings we had to either synthetically
generate mis-spelled words or collect statistics
around how users mis-spell words in real life. We
describe both approaches below.

1. Synthetic word-level perturbations: We
assume that a word w is a sequence of
k characters indexed as ci so that w =
{c1, c2, .., ci, .., ck} and a sentence S is a se-
quence of n words, indexed as wj . We se-
lect 10% of the queries uniformly at ran-
dom and create perturbed versions of them.
Then for each such query we synthesize
perturbed/mis-spelled versions of words by
choosing one word uniformly at random (say
wj) to perturb from each sentence and then
substitute a random selection of d0.20|wj |e
adjacent characters by random alphanumeric

characters different from the original.

2. Mis-spelling statistics learned from user
data: Ideally we wanted to generate per-
turbed versions of all queries from real-world
user data. However because we had limited
access to human agents 1, we were able to
get only word-level perturbations as against
full query level-perturbations from human
editors. We followed a process where we
first picked the most frequent 200 words
out of 903 distinct words forming the vo-
cabulary for queries . Let’s call the set of
these words as set T . For each such word
wi ∈ T we asked 5 human annotators to
type in these words at a targeted pace of 33
words per minute 2 to simulate the pace at
which users type in the real world. This
allowed us to collect the set of typed ver-
sions Si of each word wi (which includes
mis-spelled versions as well as the correct
word itself) and thus compute a distribu-
tion Di = Pr(x|correct word is wi) where
x ∈ Si for each wi. Finally, we used these
distributions to perturb queries by sampling
from Di for each word in the query that oc-
curred in the top 200. Note that this method
does not create true query-level perturbations
since whether a word is mis-spelled or not
might depend on factors like length of the
query, presence of other words etc. Here
we look at word mis-spellings when they are
typed out in isolation.

3.3 Training skipgram model

A skipgram model was trained on the entire cor-
pus from (IRS, 2017) (using original, unperturbed
headings). While in a conventional ML setting this
procedure (of using the entire dataset for training
without holding out a test sample) might be inap-
propriate, in our case the main objective is to un-
derstand the retrieval systems’ robustness to mis-
spellings and other character level perturbations.
In our setup, such perturbations are not present
anywhere in the corpus which is clean and free
of all mis-spellings. This means that training the

1We performed this experiment based on suggestions
from reviewers and hence had less than a week to gather and
process input from human editors

2The average pace for typing is 33 words per minute based
on some studies. See https://en.wikipedia.org/
wiki/Typing
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Figure 2: “A: Page from a book” illustrates how a page
in a book consists of a heading and some body of text
beneath it. This raw corpus was used for training sub-
word skipgram models.
“B: Generating mis-spelled headings”” illustrates how
we generate misspelled versions of words in ”head-
ings” by passing them through a ”Mis-spelling synthe-
sizer” (See Section 3.2.1). Mis-spelled headings were
used only during search and not for training the skip-
gram model.

skipgram model on the entire corpus does not pre-
vent us from drawing valid conclusions about the
generalization ability of the system as far as ro-
bustness to mis-spelled words is concerned. We
largely followed the process employed by (Bo-
janowski et al., 2016) and also leveraged their
open-source code 3. Additionally, because we
wanted to retrieve nearest neighbors, we experi-
mented with different settings for the number of
neighbors retrieved and sub-word sizes. We relied
on internal domain experts to help us determine
the configuration with the best synonyms. Details
of the experiments and the best configuration cho-
sen are given in Table 1

4 Results

To achieve the objective mentioned in Section 3.1
and in-line with details in Section 3.2, we sent
the same set of 805 queries (in our case “head-
ings” perturbed through Section 3.2.1 are queries)
to two different Elasticsearch instances: 1) an ES
instance having a “Synonyms” file derived from
word-level embeddings, called ESbase and 2) an

3https://github.com/facebookresearch/
fastText

Sub-
word
size

#
neigh-
bours

Comments

3-6 10 Good quality neighbours.
This is the best configura-
tion

2-8 10 Quality worsened
3-6 20 Irrelevant synonyms
2-4 10 Some non-sensical words

in synonyms

Table 1: Hyperparameter tuning for generating em-
beddings

instance having a “Synonym” file derived from
sub-word embeddings, called ESsub−word (see
Figure 3).

4.1 Metrics
We use following notation and metrics:

• correctESbase
: number of questions for

which ESbase returned correct results. This
is denoted as “# correct baseline” as per the
legend in Figure 3

• correctESsub−word
: number of questions for

which ESsub−word returned correct results.
This is denoted as “# correct sub-word” as per
the legend in Figure 3

• Recall Ratio (x 100)= 100
correctESsub−word

correctESbase

In Figure 3 we report results based on queries gen-
erated using the “Synthetic word-level perturba-
tions” method in Section 3.2.1. The primary re-
sult from this dataset and from some of our experi-
ments on internal proprietary corpora indicate that
the Recall Ratio (x 100) metric varies from 110
to 114 depending on how many top results are re-
trieved and other parameters. This means that we
get between a 10% to 14% lift 4 in the number of
questions for which correct answers are retrieved
when using sub-word embeddings vs when using
word embeddings.

Another insight from Figure 3 is that the in-
crease in recall does not come for free. For K =

4Following a suggestion from an anonymous reviewer
we also collected statistics on word-level errors by human
users and used them to generate perturbed queries (See ”Mis-
spellings statistics learned from user data” in Section 3.2.1).
The lift was 8% with this more realistic dataset but we could
perturb only the top 200 words due to limited availability of
editors. Note that this dataset also has some synthetic ele-
ments.
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10, ESbase gives an empty response 30 times
compared with 6 times for ESsub−word. Note that
in Figure 3 the total of #correct baseline and #null
baseline does not equal total number of queries
because for some queries the result set was not
empty but contained all “wrong” answers. Similar
connotation holds for the corresponding sub-word
versions.

Figure 3: Comparison of the Elasticsearch index us-
ing sub-word embeddings, called ESsub−word with
the one using word level embeddings, called ESbase.
X-axis indicates how many results (say K) from Elas-
ticsearch are considered. E.g: if K = 10, we consider
only the top 10 results. Y-axis denotes for how many of
the 805 queries fired, we received the correct answer in
the top K. Because queries are just the perturbed head-
ings, note that for this dataset we assume there’s only 1
correct answer per query-the one that appears beneath
the heading in (IRS, 2017).

5 Discussion

To test the hypothesis that sub-word embeddings
are more robust to spelling error and other pertur-
bations we conducted an experiment with search
retrieval as the end goal.

• Through a comparison of sub-word and word
level embeddings on a dataset (IRS, 2017)
in the public domain, we have demonstrated
that using sub-word embeddings for creating
the “Synonyms” file for Elasticsearch indeed
leads to better recall.

• Since we work in industry we also wish to
emphasize that our solution has several fea-
tures which make it attractive from a prac-
tical perspective. In particular, because our
solution integrates well with IR systems like
ES or Solr, we have very low latency ( 50ms)

compared to query expansion systems utiliz-
ing ML model predictions at query time.

• One of the limitations of this study is that
while we have demonstrated a system which
increases recall through query expansion, we
need to complement it with a layer which can
re-rank the retrieved results in a more mean-
ingful way. The default ranking module used
by ES does not work well for our use case.
Adding such a layer will allow us to measure
and track ranking based metrics (like DCG)
once the solution goes live and we start re-
ceiving user feedback.
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Abstract

The positive effect of adding subword infor-
mation to word embeddings has been demon-
strated for predictive models. In this paper we
investigate whether similar benefits can also
be derived from incorporating subwords into
counting models. We evaluate the impact of
different types of subwords (n-grams and un-
supervised morphemes), with results confirm-
ing the importance of subword information
in learning representations of rare and out-of-
vocabulary words.

1 Introduction

Low dimensional word representations (embed-
dings) have become a key component in modern
NLP systems for language modeling, parsing, sen-
timent classification, and many others. These em-
beddings are usually derived by employing the dis-
tributional hypothesis: that similar words appear
in similar contexts (Harris, 1954).

The models that perform the word embedding
can be divided into two classes: predictive, which
learn a target or context word distribution, and
counting, which use a raw, weighted, or factored
word-context co-occurrence matrix (Baroni et al.,
2014). The most well-known predictive model,
which has become eponymous with word embed-
ding, is word2vec (Mikolov et al., 2013a). Pop-
ular counting models include PPMI-SVD (Levy
et al., 2014), GloVe (Pennington et al., 2014), and
LexVec (Salle et al., 2016b).

These models all learn word-level represen-
tations, which presents two main problems: 1)
Learned information is not explicitly shared
among the representations as each word has an in-
dependent vector. 2) There is no clear way to rep-
resent out-of-vocabulary (OOV) words.

fastText (Bojanowski et al., 2017) addresses
these issues in the Skip-gram word2vec model by

representing a word by the sum of a unique vector
and a set of shared character n-grams (from hereon
simply referred to as n-grams) vectors. This ad-
dresses both issues above as learned information is
shared through the n-gram vectors and from these
OOV word representations can be constructed.

In this paper we propose incorporating subword
information into counting models using a strategy
similar to fastText. We use LexVec as the counting
model as it generally outperforms PPMI-SVD and
GloVe on intrinsic and extrinsic evaluations (Salle
et al., 2016a; Cer et al., 2017; Wohlgenannt et al.,
2017; Konkol et al., 2017), but the method pro-
posed here should transfer to GloVe unchanged.

The LexVec objective is modified 1 such that a
word’s vector is the sum of all its subword vectors.
We compare 1) the use of n-gram subwords, like
fastText, and 2) unsupervised morphemes iden-
tified using Morfessor (Virpioja, 2013) to learn
whether more linguistically motivated subwords
offer any advantage over simple n-grams.

To evaluate the impact subword information has
on in-vocabulary (IV) word representations, we
run intrinsic evaluations consisting of word sim-
ilarity and word analogy tasks. The incorporation
of subword information results in similar gains
(and losses) to that of fastText over Skip-gram.
Whereas incorporating n-gram subwords tends to
capture more syntactic information, unsupervised
morphemes better preserve semantics while also
improving syntactic results. Given that intrin-
sic performance can correlate poorly with per-
formance on downstream tasks (Tsvetkov et al.,
2015), we also conduct evaluation using the Ve-
cEval suite of tasks (Nayak et al., 2016), in which
all subword models, including fastText, show no
significant improvement over word-level models.

We verify the model’s ability to represent
1Our implementation of subword LexVec is available at

https://github.com/alexandres/lexvec
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OOV words by quantitatively evaluating nearest-
neighbors. Results show that, like fastText, both
LexVec n-gram and (to a lesser degree) unsuper-
vised morpheme models give coherent answers.

This paper discusses related word (§2), intro-
duces the subword LexVec model (§3), describes
experiments (§4), analyzes results (§5), and con-
cludes with ideas for future works (§6).

2 Related Work

Word embeddings that leverage subword informa-
tion were first introduced by Schütze (1993) which
represented a word of as the sum of four-gram vec-
tors obtained running an SVD of a four-gram to
four-gram co-occurrence matrix. Our model dif-
fers by learning the subword vectors and result-
ing representation jointly as weighted factoriza-
tion of a word-context co-occurrence matrix is per-
formed.

There are many models that use character-level
subword information to form word representations
(Ling et al., 2015; Cao and Rei, 2016; Kim et al.,
2016; Wieting et al., 2016; Verwimp et al., 2017),
as well as fastText (the model on which we base
our work). Closely related are models that use
morphological segmentation in learning word rep-
resentations (Luong et al., 2013; Botha and Blun-
som, 2014; Qiu et al., 2014; Mitchell and Steed-
man, 2015; Cotterell and Schütze, 2015; Bhatia
et al., 2016). Our model also uses n-grams and
morphological segmentation, but it performs ex-
plicit matrix factorization to learn subword and
word representations, unlike these related models
which mostly use neural networks.

Finally, Cotterell et al. (2016) and Vúlic et al.
(2017) retrofit morphological information onto
pre-trained models. These differ from our work in
that we incorporate morphological information at
training time, and that only Cotterell et al. (2016)
is able to generate embeddings for OOV words.

3 Subword LexVec

The LexVec (Salle et al., 2016a) model factorizes
the PPMI-weighted word-context co-occurrence
matrix using stochastic gradient descent.

PPMIwc = max(0, log
Mwc M∗∗
Mw∗ M∗c

) (1)

where M is the word-context co-occurrence ma-
trix constructed by sliding a window of fixed size

centered over every target word w in the subsam-
pled (Mikolov et al., 2013a) training corpus and
incrementing cell Mwc for every context word c
appearing within this window (forming a (w, c)
pair). LexVec adjusts the PPMI matrix using con-
text distribution smoothing (Levy et al., 2014).

With the PPMI matrix calculated, the sliding
window process is repeated and the following loss
functions are minimized for every observed (w, c)
pair and target word w:

Lwc =
1

2
(u>wvc − PPMIwc)

2 (2)

Lw =
1

2

k∑

i=1

Eci∼Pn(c)(u
>
wvci − PPMIwci)

2

(3)

where uw and vc are d-dimensional word and
context vectors. The second loss function de-
scribes how, for each target word, k negative sam-
ples (Mikolov et al., 2013a) are drawn from the
smoothed context unigram distribution.

Given a set of subwords Sw for a word w, we
follow fastText and replace uw in eqs. (2) and (3)
by u′w such that:

u′w =
1

|Sw|+ 1
(uw +

∑

s∈Sw

qhash(s)) (4)

such that a word is the sum of its word vector and
its d-dimensional subword vectors qx. The num-
ber of possible subwords is very large so the func-
tion hash(s)2 hashes a subword to the interval
[1, buckets]. For OOV words,

u′w =
1

|Sw|
∑

s∈Sw

qhash(s) (5)

We compare two types of subwords: simple
n-grams (like fastText) and unsupervised mor-
phemes. For example, given the word “cat”, we
mark beginning and end with angled brackets and
use all n-grams of length 3 to 6 as subwords,
yielding Scat = {〈 ca, at〉, cat}. Morfessor (Vir-
pioja, 2013) is used to probabilistically segment
words into morphemes. The Morfessor model
is trained using raw text so it is entirely unsu-
pervised. For the word “subsequent”, we get
Ssubsequent = {〈 sub, sequent〉}.

2http://www.isthe.com/chongo/tech/comp/fnv/
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4 Materials

Our experiments aim to measure if the incorpora-
tion of subword information into LexVec results
in similar improvements as observed in moving
from Skip-gram to fastText, and whether unsu-
pervised morphemes offer any advantage over n-
grams. For IV words, we perform intrinsic evalua-
tion via word similarity and word analogy tasks, as
well as downstream tasks. OOV word representa-
tion is tested through qualitative nearest-neighbor
analysis.

All models are trained using a 2015 dump of
Wikipedia, lowercased and using only alphanu-
meric characters. Vocabulary is limited to words
that appear at least 100 times for a total of 303517
words. Morfessor is trained on this vocabulary list.

We train the standard LexVec (LV), LexVec
using n-grams (LV-N), and LexVec using
unsupervised morphemes (LV-M) using the
same hyper-parameters as Salle et al. (2016a)
(window = 2, initial learning rate = .025,
subsampling = 10−5, negative samples = 5,
context distribution smoothing = .75,
positional contexts = True).

Both Skip-gram (SG) and fastText (FT) are
trained using the reference implementation3 of
fastText with the hyper-parameters given by
Bojanowski et al. (2017) (window = 5,
initial learning rate = .025, subsampling = 10−4,
negative samples = 5).

All five models are run for 5 iterations over
the training corpus and generate 300 dimensional
word representations. LV-N, LV-M, and FT use
2000000 buckets when hashing subwords.

For word similarity evaluations, we use the
WordSim-353 Similarity (WS-Sim) and Relat-
edness (WS-Rel) (Finkelstein et al., 2001) and
SimLex-999 (SimLex) (Hill et al., 2015) datasets,
and the Rare Word (RW) (Luong et al., 2013)
dataset to verify if subword information improves
rare word representation. Relationships are mea-
sured using the Google semantic (GSem) and syn-
tactic (GSyn) analogies (Mikolov et al., 2013a)
and the Microsoft syntactic analogies (MSR)
dataset (Mikolov et al., 2013b).

We also evaluate all five models on downstream
tasks from the VecEval suite (Nayak et al., 2016)4,
using only the tasks for which training and evalu-
ation data is freely available: chunking, sentiment

3https://github.com/facebookresearch/fastText
4https://github.com/NehaNayak/veceval

Evaluation LV LV-N LV-M SG FT
WS-Sim .749 .748 .746 .783 .778
WS-Rel .627 .627 .625 .683 .672
SimLex .359 .374 .366 .371 .367

RW .461 .522 .479 .481 .500
GSem 80.7 73.8 80.7 78.9 77.0
GSyn 62.8 68.6 63.8 68.2 71.1
MSR 49.6 55.0 53.8 57.8 59.6

Chunk 90.4 90.6 90.5 90.4 90.4
Sentiment 77.0 77.0 77.6 75.3 77.9
Questions 87.4 87.4 87.3 86.6 85.1

NLI 43.3 43.4 43.3 43.4 43.8

Table 1: Word similarity (Spearman’s rho), analogy
(% accuracy), and downstream task (% accuracy) re-
sults. In downstream tasks, for the same model accu-
racy varies over different runs, so we report the mean
over 20 runs, in which the only significantly (p < .05
under a random permutation test) different result is in
chunking.

and question classification, and natural language
identification (NLI). The default settings from the
suite are used, but we run only the fixed settings,
where the embeddings themselves are not tunable
parameters of the models, forcing the system to
use only the information already in the embed-
dings.

Finally, we use LV-N, LV-M, and FT to gen-
erate OOV word representations for the follow-
ing words: 1) “hellooo”: a greeting commonly
used in instant messaging which emphasizes a syl-
lable. 2) “marvelicious”: a made-up word ob-
tained by merging “marvelous” and “delicious”.
3) “louisana”: a misspelling of the proper name
“Louisiana”. 4) “rereread”: recursive use of prefix
“re”. 5) “tuzread”: made-up prefix “tuz”.

5 Results

Results for IV evaluation are shown in table 1, and
for OOV in table 2. Like in FT, the use of subword
information in both LV-N and LV-M results in 1)
better representation of rare words, as evidenced
by the increase in RW correlation, and 2) signifi-
cant improvement on the GSyn and MSR tasks, in
evidence of subwords encoding information about
a word’s syntactic function (the suffix “ly”, for
example, suggests an adverb). There seems to a
trade-off between capturing semantics and syntax
as in both LV-N and FT there is an accompany-
ing decrease on the GSem tasks in exchange for
gains on the GSyn and MSR tasks. Morphological
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Word Model 5 Nearest Neighbors

“hellooo”
LV-N hellogoodbye, hello, helloworld, helloween, helluva
LV-M kitsos, finos, neros, nonono, theodoroi

FT hello, helloworld, hellogoodbye, helloween, joegazz

“marvelicious”
LV-N delicious, marveled, marveling, licious, marvellous
LV-M marveling, marvelously, marveled, marvelled, loquacious

FT delicious, deliciously, marveling, licious, marvelman

“louisana”
LV-N luisana, pisana, belisana, chiisana, rosana
LV-M louisy, louises, louison, louiseville, louisiade

FT luisana, louisa, belisana, anabella, rosana

“rereread”
LV-N reread, rereading, read, writeread, rerecord
LV-M alread, carreer, whiteread, unremarked, oread

FT reread, rereading, read, reiterate, writeread

“tuzread”
LV-N tuzi, tuz, tuzla, prizren, momchilgrad, studenica
LV-M tuzluca, paczk, goldsztajn, belzberg, yizkor

FT pazaryeri, tufanbeyli, yenipazar, leskovac, berovo

Table 2: We generate vectors for OOV using subword information and search for the nearest (cosine distance)
words in the embedding space. The LV-M segmentation for each word is: {〈hell, o, o, o〉}, {〈marvel, i, cious〉},
{〈louis, ana〉}, {〈re, re, read〉}, {〈 tu, z, read〉}. We omit the LV-N and FT n-grams as they are trivial and too
numerous to list.

segmentation in LV-M appears to favor syntax less
strongly than do simple n-grams.

On the downstream tasks, we only observe sta-
tistically significant (p < .05 under a random per-
mutation test) improvement on the chunking task,
and it is a very small gain. We attribute this to both
regular and subword models having very similar
quality on frequent IV word representation. Statis-
tically, these are the words are that are most likely
to appear in the downstream task instances, and so
the superior representation of rare words has, due
to their nature, little impact on overall accuracy.
Because in all tasks OOV words are mapped to
the “〈unk〉” token, the subword models are not be-
ing used to the fullest, and in future work we will
investigate whether generating representations for
all words improves task performance.

In OOV representation (table 2), LV-N and FT
work almost identically, as is to be expected. Both
find highly coherent neighbors for the words “hel-
looo”, “marvelicious”, and “rereread”. Interest-
ingly, the misspelling of “louisana” leads to co-
herent name-like neighbors, although none is the
expected correct spelling “louisiana”. All models
stumble on the made-up prefix “tuz”. A possible
fix would be to down-weigh very rare subwords in
the vector summation. LV-M is less robust than
LV-N and FT on this task as it is highly sensitive
to incorrect segmentation, exemplified in the “hel-
looo” example.

Finally, we see that nearest-neighbors are a
mixture of similarly pre/suffixed words. If these
pre/suffixes are semantic, the neighbors are se-
mantically related, else if syntactic they have sim-
ilar syntactic function. This suggests that it should
be possible to get tunable representations which
are more driven by semantics or syntax by a
weighted summation of subword vectors, given we
can identify whether a pre/suffix is semantic or
syntactic in nature and weigh them accordingly.
This might be possible without supervision using
corpus statistics as syntactic subwords are likely to
be more frequent, and so could be down-weighted
for more semantic representations. This is some-
thing we will pursue in future work.

6 Conclusion and Future Work

In this paper, we incorporated subword infor-
mation (simple n-grams and unsupervised mor-
phemes) into the LexVec word embedding model
and evaluated its impact on the resulting IV
and OOV word vectors. Like fastText, sub-
word LexVec learns better representations for rare
words than its word-level counterpart. All mod-
els generated coherent representations for OOV
words, with simple n-grams demonstrating more
robustness than unsupervised morphemes. In fu-
ture work, we will verify whether using OOV rep-
resentations in downstream tasks improves perfor-
mance. We will also explore the trade-off between
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semantics and syntax when subword information
is used.
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Abstract
Brain-computer interfaces and other aug-
mentative and alternative communication de-
vices introduce language-modeing challenges
distinct from other character-entry methods.
In particular, the acquired signal of the
EEG (electroencephalogram) signal is noisier,
which, in turn, makes the user intent harder
to decipher. In order to adapt to this condi-
tion, we propose to maintain ambiguous his-
tory for every time step, and to employ, apart
from the character language model, word in-
formation to produce a more robust prediction
system. We present preliminary results that
compare this proposed Online-Context Lan-
guage Model (OCLM) to current algorithms
that are used in this type of setting. Evalua-
tions on both perplexity and predictive accu-
racy demonstrate promising results when deal-
ing with ambiguous histories in order to pro-
vide to the front end a distribution of the next
character the user might type.

1 Introduction

Augmentative and alternative communication
(AAC) devices are aimed at individuals facing
communication disabilities, and aim to enable
them to interact with their environment, assisting
with both comprehension as well as expression
of the individual (Beukelman and Mirenda, 2005;
American Speech Language Hearing Association
et al., 2004). In particular, a Brain-Computer In-
terface (BCI) has been employed as an aiding de-
vice for patients who have experienced loss of mo-
tor control, and who might struggle with produc-
ing spoken or written language (Birbaumer et al.,
1999; Sellers et al., 2010) (as in e.g. Amyotrophic
Lateral Sclerosis). A BCI system measures a
user’s brain’s electrical activity, typically using
electroencephalography (EEG), and attempts to
infer intent, often in response to stimuli such as
row-column scanning.

Communication rates in BCI systems tend to
be quite slow. To reduce the prediction time
of the next letter in the sequence, one approach
is to incorporate language models into AAC de-
vices (Vertanen and Kristensson, 2011), and BCI
in particular (Mora-Cortes et al., 2014). The po-
tential advantage of combining a language model
with EEG information in a BCI system is twofold:
achieving higher accuracy of target predictions, as
well as gains in the speed of the process of typ-
ing the user’s intended string (Speier et al., 2011;
Orhan et al., 2011). It may also help with reduc-
ing the number of necessary stimuli required for
symbol selection (Speier et al., 2016).

Mora-Cortes et al. (2014) describe different
types of EEG responses common when employing
a typing-based BCI, and in the review of Speier
et al. (2016), event-related potentials (ERP) seem
to be the prevailing choice in particular. In the
RSVP-Keyboard (Orhan et al., 2012), an ERP sig-
nal is elicited in response to a rapid display of let-
ters. Other systems such as the P300 (Farwell and
Donchin, 1988) present a user with a grid of let-
ters and the ERP signal is retrieved in response to
a flash of each row or column.

In such systems, a language model provides the
prior distribution that serves as a bias to the EEG
evidence when computing the posterior distribu-
tion of a symbol as shown in Equation 1

p(sym|EEG) = p(sym)p(EEG|sym)

p(EEG)
(1)

Traditionally, such BCI systems commit to
a single decision (given their posterior results),
which introduces a problem once the decision is
not aligned with the user. One option is to allow
for a backspace character, though this poses com-
plex modeling challenges (Fowler et al., 2013). In
our system we propose to partly commit to a de-
cision with regard to the user intent, and maintain
more than one candidate for every letter selection.
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Figure 1: EEG evidence for 6 letter selections

This way, the best path is frequently re-evaluated
and as a result can revise previously typed strings.
Maintaining more than one candidate may re-
duce frustration among users, and minimize time
spent correcting errors. We also, as recommended
by Mora-Cortes et al. (2014) and Speier et al.
(2016), explicitly incorporate word-level informa-
tion and mix word-level and character-level lan-
guage models to improve letter level prediction.
Notably, this approach allows our system to sup-
port out-of-vocabulary (OOV) words.

Ambiguous input is widely used in traditional
Automatic Speech Recognition (Jelinek, 1997)
systems along with the Viterbi algorithm (Viterbi,
1967) to find the best path of the utterance bottom-
up, from acoustic phoneme units (often triphones)
to characters and words (often represented as the
C ◦ L ◦G composition), and recently in keyboard
settings as well by swiping (Ouyang et al., 2017).
To the best of our knowledge, it has rarely been
explored in the area of BCI, with a notable excep-
tion being the work of Speier et al. (2015), who
later found it to be intractable due to complexity
issues (Speier et al., 2016).

In this work, we present the Online-Context
Language Model (OCLM) and describe the pro-
cess of producing prior distributions given EEG
evidence as part of our BCI system. Our contribu-
tions are specifically in the context of BCI as we
integrate word language models (within the sys-
tem), allow for OOV words to be typed, and op-
timize over word-level paths to compute optimal
priors. Our mixed-context approach achieves su-
perior performance in the face of noisy input com-
pared with a purely character-level model.

2 Methodology

2.1 Overview

To illustrate our method, the steps presented are
applied on the input in Figure 1, which depicts a
temporal sequence of EEG evidence. Each num-
bered state represents a selection epoch in which
a user has attempted to “type” a letter. Arcs tran-
sitioning between nodes i to i + 1 represent pos-
sible selections, and (though not drawn as such in
this figure) are weighted with the normalized EEG
likelihoods of time step i retrieved from the BCI.

Figure 2: left to right word history and trailing prefix

In this example, the OCLM is currently aiming to
provide a prior distribution for the 7th letter se-
lection given the EEG evidence. Assume that the
intended string the user wishes to type is “the mo”.

The first step taken is to split the EEG history
lattice shown in Figure 1 into two parts: one, con-
taining all strings before the last space (“#” in Fig-
ure 1), which we will call the “word history” lat-
tice, and another, containing all possible strings af-
ter the last space, called the “trailing prefix” (Ftp)
as shown in Figure 2.1

The word history (Fwh) represents all possible
complete words that the user is assumed to have
finished typing. The second part represents the
word that the user is assumed to be in the middle
of typing, and can be thought of as the set of possi-
ble prefixes for the current intended word. We can
use this to generate possible word completions.

A current in-progress word lattice (Fcw) is gen-
erated by finding all possible in-vocabulary words
that start with the “trailing prefix.” By concatenat-
ing both the word history lattice (Fwh) as well as
a lattice of possible in-progress words, and then
composing the result with a word-level language
model (FwLM ), we are able to produce a weighted
n-best list of hypothesized words that the user may
be trying to produce (Ftopn , Equation 2).

Ftopn = (Fwh‖Fcw) ◦ FwLM (2)

F char
topn = projchar(Ftopn ◦ Fspellout) (3)

Fsym = F char
topn ∪ FcharLM (4)

FOCLM = (Ftp‖σ) ◦ Fsym (5)

We next take the lattice of “current words”,
compose that with a word-to-character spellout
machine (Fspellout), project the result into charac-
ter space (Equation 3), and then take the union of
the result with a character language model to pro-
duce a “symbol language model” lattice (Fsym in
Equation 4).

We are now ready to compute probabilities for
the likely next symbol the user intends to select.
We do this by taking our original trailing prefix

1The trailing prefix shown in figure 2 is simplified for il-
lustrative purposes; in this example, it also includes other
paths from state 0 that do not include “#”. Note also
that all paths contain the same number of characters since
backspaces are omitted.
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lattice (Ftp, containing distributions over charac-
ters actually selected by the user), concatenating
it a character “wild card” machine (σ, represent-
ing the next character that the user intends to se-
lect to continue Ftp), and intersecting the resulting
machine with Fsym (Equation 5). At this point,
we are able to extract a probability distribution
over possible character selections by performing
weight pushing to the end of the machine, and
then examining the final set of arcs in FOCLM . All
of these FST operations are implemented with the
OpenFst (Allauzen et al., 2007) and OpenGRM-
NGRAM (Roark et al., 2012) libraries.

2.2 Out of Vocabulary Words
It is crucial that our system allows its users to en-
ter novel, out-of-vocabulary words, which we sup-
port in the following way. Above, we described
how we take the lattice of characters making up
the current, in-progress word and combine it with
a lexicon transducer to produce a weighted lat-
tice of possible word completions. Our approach
deals differently and distinguishes between rarely
seen words in the training set and completely un-
seen words. Infrequent words that were seen less
than five times but at least once during training are
mapped to <unk> word-symbol. In these cases,
an attempt to complete a prefix for such a word re-
sults in an <unk> word token as a possibility in
Fcw’s list. FwLM is also trained on these <unk>
representations suggesting that <unk> is treated
similarly to any other word appearing in the train-
ing after the infrequent word was mapped to it
(following the process in Equations 2 to 5). How-
ever, while the described process applies to un-
common but observed words, when a prefix is part
of an unseen word and there is no possible com-
pletion provided by the lexicon then, Fcw = ∅ and
the process is reduced to Equations 4 and 5 such
that Fsym = FcharLM . The FcharLM contains a
failure (φ) transition such that for every possible
prefix in Ftp that is not found in Fsym (which in
this situation is equivalent to FcharLM ), we back
off to a partial prefix route.

2.3 Word Completion
As described above, while computing the prior
distribution over the next character, every new
piece of evidence that is added to the system (i.e.,
each new attempt at character selection by the
user) is appended to a “trailing prefix,” Ftp, which
we use to compute hypotheses about the current

words the user might be in the middle of typing.
In Equation 2 above, Fcw contains all possible in-
vocabulary words that the user may be trying to
produce, and Ftopn is a refined list of those words.
This means that our architecture is able to produce
both word- and character-level predictions simul-
taneously, and can easily vary the number of such
predictions.

2.4 Auto-correction
While character deletion or insertion events are
not auto-corrected in our approach, we address
auto-correction to some degree. As described in
the main process of computing the prior distribu-
tion, there is a frequent re-assessment the previ-
ously typed words. This history is recalculated
as more EEG evidence of letter selections is in-
troduced; this recalculation occurs mainly when
the space character is introduced as it affects the
word-boundaries and thus the history. As a re-
sult, at each time step, the updated history is re-
scored by the word language-model (FwLM ), as
our estimated most-likely word history may have
changed. In Figure 1, for instance, we start with
“she” and “the” as possible histories. As character
selection continues, we might have “monkey” as
a strongly-predicted possible word completion; in
this case, FwLM will prioritize “the” over “she,”
as “the monkey” is more probable than “she mon-
key”. However, if “modifies” were to be judged
more likely by Ftopn , “she” would get prioritized
over “the”. Making additional and extended use of
this information is part of our future work plan.

3 Experimental Evaluation

In order to evaluate the OCLM, we constructed
a simulated character selection task to compare
the performance of three different algorithms.
The first is a smoothed character 5-gram model
(“NGRAM”),2 in which prediction is conducted
by intersecting the history (EEG evidence, plus
the wildcard σ) with the LM lattice. In this and
our other n-gram models, we used Kneser-Ney
smoothing (Kneser and Ney, 1995). The second
algorithm we evaluated against was a ”prefix lan-
guage model” that included a character language
model (PreLM, Equation 6) explicitly trained on
character prefixes of in-vocabulary words (Fwp)

2Our choice of an ngram order of 5 was for empirical rea-
sons. A larger window would be too sparse and memory-
intensive; a shorter window would not completely capture
some of the shorter words that we wanted the model to learn.
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combined with a closure over the NGRAM model.
This model used an identical prediction mecha-
nism as did the NGRAM model, but was designed
to be better-equipped to handle in-progress words.

PreLM = (FNGRAM‖Fspace)*‖Fwp (6)

The third is the OCLM described in Sec-
tion 2. All models were trained on the Brown cor-
pus (Francis and Kučera, 1979), and data split was
80% for training and 20% for testing. The results
are on the test set. The test set contained 10, 265
sentences and 176, 280 words. Our simulated task
was as follows. For each test sentence, we proceed
character by character. At each point in the sen-
tence, we provide the algorithms with some repre-
sentation of the history of the sentence up to that
point, and ask the models to predict the following
character target.

We evaluated each model in terms of the tra-
ditional average character-level perplexity. Since
our model is intended to be used to support char-
acter prediction, we also measured the reciprocal
rank of the ground-truth target letter, both overall
as well as by position within a word (to compare
performance earlier in words vs. later). We also
looked at the proportion of predictions for which
the model placed the correct target letter in the top
10 sorted guesses (ACC@10). We evaluated under
two conditions: the first simulating a “determin-
istic” history, in which we assume that the EEG
signal is reliable, and an “ambiguous” history, in
which we take the top-n letters from the EEG sig-
nal at each time point as possible selections.

3.1 Deterministic History
In this condition, the language model was pro-
vided with the “correct” character history up to
each prediction point. We refer to this as the n=1
scenario, as it describes the state of deterministic
history of unambiguous and accurate EEG selec-
tion at each time point.

Table 1 shows that NGRAM algorithm has sub-
par performance when compared to both OCLM
and PreLM as its Mean Reciprocal Rank (MRR)
as well as Perplexity (PPX) are lower and higher
respectively. ACC@10 that stands for sentence
average prediction for the target within top 10
guesses also demonstrate inferior performance for
the NGRAM method.

OCLM and PreLM appear to have similar per-
formance, which surprised us given how different

metric NGRAM PreLM OCLM
MRR 0.4 0.7 0.75
PPX 4.4 1.8 1.9
ACC@10 0.69 0.96 0.96

Table 1: Evaluation Results (n=1)
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Figure 3: Reciprocal Ranks of letter positions within
words (n=1)

their approaches are. In order to explore more
deeply, we attempted to examine the internal be-
havior within each word in the test set. In Figure 3
the Reciprocal Ranks (RR), are presented for each
letter position within a word. The OCLM algo-
rithm demonstrates has higher RR (than PreLM)
earlier in the word (position 5 vs. position 11)
which is maintained for a longer period of time
(10 positions in a row vs 7). Arguably, it is de-
sired that the algorithm would predict correctly as
early as possible, as its impact is on greater num-
ber of words (there are more words with 5 letters
than with 10) and, a longer duration of high RR
contributes to more accurate predictions as well.
An analogous analysis of perplexity found a simi-
lar pattern of lower perplexity at earlier positions,
together with similar duration, and a similar per-
formance profile in OCLM vs PreLM.

3.2 Ambiguous History

Maintaining an ambiguous history of characters
for each character selection has the potential to
preserve routes the system might have missed oth-
erwise. Erroneous decisions of the system with
regards to character predictions unfortunately ex-
ist, especially given a noisy channel to process
the data from such as the BCI system (different
to some degree than typing with a keyboard). In
this experiment we examined the performance of
OCLM and PreLM with a simulated ambiguous
history. We evaluated the OCLM and PreLM al-
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gorithms’ performance when given histories con-
sisting of the most n likely EEG characters at each
time point for n ∈ {2, 3}. In all cases, the target
character was included, but it was not always the
most “probable.” Likelihoods were drawn from a
Gaussian PDF functions of target and non-target
simulating a high performing user 3.

In BCI settings, utterances are often shorter than
those that are common in datasets such as the
Brown Corpus; therefore, we evaluated on a subset
of the test-set containing all sentences of 10 words
or less, resulting in 2, 954 sentences with 16, 519
words. For reasons of computational tractability,
we simulated an ambiguous history over a win-
dow of the immediate past 10 characters; beyond
that, we treated history as “fixed,” and provided
the models with correct targets.4

Table 2 presents the results for ambiguous in-
put of n=2 and n=3. Overall adding more history
to these type of algorithms degrades their perfor-
mance. However, the level of degradation seems to
vary between OCLM to PreLM. OCLM can pro-
duce more accurate predictions and has a higher
MRR rate for both ns. PPX also is slightly lower
than in PreLM.

nbest metric PreLM OCLM
MRR 0.29 0.51

n=2 PPX 3.5 3.0
ACC@10 0.69 0.87
MRR 0.26 0.44

n=3 PPX 4 3.9
ACC@10 0.63 0.83

Table 2: Evaluation Results (n=2, n=3)

A further inspection5 into the letter position per-
formance of n=2 shows that OCLM’s MRR re-
mains relatively high (close to 1) especially from
the fifth letter position while PreLM falls to val-
ues around 0.2. While not shown, the PPX val-
ues are consistent again with the MRR behav-
ior. The same pattern appears with a noisier his-
tory of n=3. There, OCLM experienced addi-
tional degradation, and its high MRR lasted for
a shorter term; from the seventh position to the
tenth. PreLM’s MRR revolved around slightly less
than 0.2. OCLM’s PPX was relatively low yet
higher than of n=2 and was higher for PreLM.
This, together with Table 2 indicate a performance

3The PDFs were overlapping to some degree to enable
likelihood confusions of target with non-target

4PreLM fails to run on complete ambiguous history
5Not included in this work for reasons of space.

degradation in OCLM, but a break-down in per-
formance for PreLM. These results emphasize the
durability of OCLM over PreLM when the input
has more than one possibility.

4 Conclusions

We presented the OCLM architecture for predic-
tive typing with a brain-computer interface. The
OCLM enables incorporating ambiguous histories
and word-level knowledge to improve its predic-
tions. The OCLM demonstrated improved predic-
tion quality as it takes place earlier in the process
and for a longer duration across different condi-
tions of ambiguous input to the system. Our ar-
chitecture also allows for personalization by em-
ploying another lattice to Equation 4 of a user’s
probable words.

Our future work will focus on integrating the
OCLM architecture into our group’s BCI system,
and evaluating the algorithm with real end-users to
see if it reduces the number of sequence displays
for each letter selection. Since speed is an impor-
tant component in the usability of a BCI system,
we also plan to assess total typing time as well as
accuracy; note that, as our system’s predictions be-
come more accurate, the downstream components
of our BCI system will also improve.

Another important area of future work will be to
more thoroughly investigate our system’s handling
of OOV words, and identify avenues for improve-
ment as needed. We also hope to take advantage
of our model’s architecture to provide user-level
personalization, and to explore more concrete ap-
proaches to autocorrection. Our work to date has
focused on the AAC literature, and there is current
work in areas such as spelling correction that may
prove useful here.
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