
Proceedings of the Workshop on Generalization in the Age of Deep Learning, pages 24–27
New Orleans, Louisiana, June 5, 2018. c©2018 Association for Computational Linguistics

The Fine Line between Linguistic Generalization and Failure in
Seq2Seq-Attention Models

Noah Weber∗, Leena Shekhar∗, Niranjan Balasubramanian
Stony Brook University, NY

{nwweber, lshekhar, niranjan}@cs.stonybrook.edu

Abstract

Seq2Seq based neural architectures have be-
come the go-to architecture to apply to se-
quence to sequence language tasks. Despite
their excellent performance on these tasks, re-
cent work has noted that these models usually
do not fully capture the linguistic structure re-
quired to generalize beyond the dense sections
of the data distribution (Ettinger et al., 2017),
and as such, are likely to fail on samples from
the tail end of the distribution (such as inputs
that are noisy (Belinkov and Bisk, 2018) or of
different lengths (Bentivogli et al., 2016)). In
this paper, we look at a model’s ability to gen-
eralize on a simple symbol rewriting task with
a clearly defined structure. We find that the
model’s ability to generalize this structure be-
yond the training distribution depends greatly
on the chosen random seed, even when per-
formance on the standard test set remains the
same. This suggests that a model’s ability to
capture generalizable structure is highly sensi-
tive. Moreover, this sensitivity may not be ap-
parent when evaluating it on standard test sets.

1 Introduction

It is well known that language has certain struc-
tural properties which allows natural language
speakers to make “infinite use of finite means”
(Chomsky, 1965). This structure allows us to gen-
eralize beyond the typical machine learning defini-
tion of generalization (Valiant, 1984) (which con-
siders performance on the distribution that gener-
ated the training set), permitting the understand-
ing of any utterance sharing the same structure,
regardless of probability. We refer to this notion
as linguistic generalization 1.

Many problems in NLP are treated as sequence
to sequence tasks with solutions built on seq2seq-

∗*These authors contributed equally to this work.
1From here on, mentions of generalization refer to the lin-

guistic kind.

attention based models. While these models per-
form very well on standard datasets and also ap-
pear to capture some linguistic structure (Williams
et al., 2018; Belinkov et al., 2017; Linzen et al.,
2016), they also can be quite brittle, typically
breaking on uncharacteristic inputs (Lake and Ba-
roni, 2018; Belinkov and Bisk, 2018).

Due to the high capacity of these models, it
is not unreasonable to expect them to learn some
structure from the data. However, learning struc-
ture is not a sufficient condition to achieving lin-
guistic generalization. If this structure is to be us-
able on data outside the training distribution, the
model must learn the structure without addition-
ally learning patterns specific to the training data.

In this work, we look at the feasibility of train-
ing seq2seq-attention models so they generalize in
this linguistic sense. We train models on a symbol
replacement task with a well defined generalizable
structure. The task is simple enough that all mod-
els achieve near perfect accuracy on the standard
test set, i.e., where the inputs are drawn from the
same distribution as that of the training set. We
then test these models for linguistic generalization
by creating test sets of uncharacteristic inputs, i.e.,
inputs that are not typical in the training distribu-
tion but still solvable given that the generalizable
structure was learned. Our results show that gen-
eralization is highly sensitive2; even changes in
the random seed can drastically affect the ability
to generalize. This suggests that the line between
generalization and failure is quite fine, and may
not be feasible to reach by tuning alone.

2 Symbol Rewriting Task

Real world NLP tasks are complex, and as such,
it can be difficult to precisely define what a model

2The sensitivity of generalization is also hinted at in Mc-
Coy et al. (2018) who additionally note performance varia-
tions across initializations

24

should and should not learn during training. As
done in previous work (Lake and Baroni, 2018;
Rodriguez and Wiles, 1998), we ease analysis by
looking at a simple formal task. The task is set up
to mimic (albeit, in an oversimplified manner) the
input-output symbol alignments and local syntac-
tic properties that models must learn in many nat-
ural language tasks, such as translation, tagging
and summarization. The task is defined over se-
quences of symbols, {x1, ...xn|xi ∈ X}, where
X is the input alphabet. Each symbol x ∈ X
is uniquely associated with its own output alpha-
bet Yx. Output is created by taking each indi-
vidual symbol xi in the sequence and rewriting
it as any sequence of k symbols from Yxi . To
do the task, the model must learn alignments be-
tween the input and output symbols, and preserve
the simple local syntactic conditions (every group
of k symbols must come from the same input al-
phabet Yx). As an example, let X = {A,B},
YA = {Consonants}, YB = {Vowels}, and k = 2.
Then a valid output for the input BA would be
aupt. For our task, |X| = 40 and each xi has a
corresponding output alphabet Yxi of size 16.

To generalize to any input sequence, a model
must: (1) learn the generalizable structure - the
alignments between input and output alphabets,
and (2) not learn any dependencies among input
symbols or sequence length. To test the extent
to which (2) is met, we train3 seq2seq-attention
models with 100,000 randomly generated samples
with inputs uniformly generated with lengths 5-10
and no input symbol appearing more than once in
a single sample. If the model learned alignments
without picking up other dependencies among in-
put symbols or input lengths then the resulting
model should have little problem in handling in-
puts with repeated symbols or different lengths,
despite never seeing such strings.

For evaluation we trained 50 different models
with the same configuration, chosen with a valida-
tion set, but with different random seeds. We cre-
ated 4 different test sets, each with 2000 randomly
generated samples. The first test set consists of
samples that are characteristic of the training set,
having lengths 5-10 and no repeats (Standard).
The second set tests the model’s ability to gener-
alize to repeated symbols in the input (Repeat).
The third and fourth sets test its ability to general-

3A detailed account of model training, regularization, and
tuning is provided in the supplementary material.

0 20 40 60 80 100
Accuracy

Standard

Repeat

Short

Long

Figure 1: Accuracy % distribution across 50 runs
with different random seeds on the four test sets.

ize to different input lengths, strings of length 1-4
(Short) and 11-15 (Long) respectively.

3 Results and Conclusions

The distribution of model accuracy4 measured at
instance level on the four test sets across all the
50 seeds is given in Figure 1. All models perform
above 99% on the standard set, with a deviation
well below 0.1. However, the deviation on the
other two sets is much larger, ranging from 13.39
for the repeat set to 20.63 for the long set. In gen-
eral, the model performs better on the repeat set
than on the short and long sets. Performance on
the short and long sets is not always bad, some
seeds giving performances of above 95% for either
the short or long set. Ideally, we would like a seed
which performs good on all the test sets; however,
this seems hard to obtain. The highest average per-
formance across the non standard test sets for any
seed was 79.52%. Learning to generalize for both
the repeated and longer inputs seems even harder,
with the Pearson correlation between performance
on the repeat and long sets being -0.71.

The variability in generalization on uncharac-
teristic inputs (and thus, the extent of linguistic
generalization) given different random seeds is
alarming, particularly given the fact that the stan-
dard test set performance remains mostly the same
regardless. The task presented here was easy and
simple to analyze, however, future work may be
done on natural language tasks. If these proper-
ties hold it might indicate that a new evaluation
paradigm for NLP should be pushed; one that em-
phasizes performance on uncharacteristic inputs in
addition to the data typically seen in training.

4We compute accuracy as # times the model produced a valid output
samples .

25

References
Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic

and natural noise both break neural machine trans-
lation. 6th International Conference on Learning
Representations .

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2017. What do neural ma-
chine translation models learn about morphology?
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, pages 861–872.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and
Marcello Federico. 2016. Neural versus phrase-
based machine translation quality: a case study. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 257–267.

Noam Chomsky. 1965. Aspects of the Theory of Syn-
tax. The MIT Press, Cambridge.

Allyson Ettinger, Sudha Rao, Hal Daum III, and
Emily M Bender. 2017. Towards linguistically gen-
eralizable nlp systems: A workshop and shared task.
In Proceedings of the First Workshop on Building
Linguistically Generalizable NLP Systems.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–
1780.

Brenden Lake and Marco Baroni. 2018. Still not sys-
tematic after all these years: On the compositional
skills of sequence-to-sequence recurrent networks.
ICLR 2018 .

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. TACL 4:521–535.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In EMNLP. The Asso-
ciation for Computational Linguistics, pages 1412–
1421.

R. Thomas McCoy, Robert Frank, and Tal Linzen.
2018. Revisiting the poverty of the stimulus: hier-
archical generalization without a hierarchical bias in
recurrent neural networks. CoRR abs/1802.09091.

Paul Rodriguez and Janet Wiles. 1998. Recurrent
neural networks can learn to implement symbol-
sensitive counting. In Advances in Neural Informa-
tion Processing Systems. pages 87–93.

L. G. Valiant. 1984. A theory of the learnable. Com-
mun. ACM 27(11):1134–1142.

Adina Williams, Andrew Drozdov, and Samuel R.
Bowman. 2018. Do latent tree learning models iden-
tify meaningful structure in sentences? Transac-
tions of the ACL (TACL) abs/1709.01121.

A Supplemental Material

A.1 Model and Training Details

The models we use are single layer, unidirec-
tional, seq2seq LSTMs (Hochreiter and Schmid-
huber, 1997) with bilinear attention (Luong et al.,
2015) and trained with vanilla SGD. To determine
the epoch to stop training at, we create a valida-
tion set of 2000 samples with the same character-
istics as the training set, i.e., of length 5-10 with
no repeated symbols. Training is stopped once ac-
curacy5 on the validation set either decreases or
remains unchanged. The size of the hidden state
and embeddings were chosen such that they were
as small as possible without reducing validation
accuracy, giving a size of 32.

Tuning hyperparameters is often done on a val-
idation set drawn from the same distribution as
the training set (as we often don’t know the ex-
act form of uncharacteristic inputs, with the ex-
ception of noisy inputs) which motivated our de-
cision to use a validation set of characteristic in-
puts to decide the epoch to stop at. However, we
noticed only small variation in the validation per-
formance upon using different learning rates and
dropout probabilities (where dropout was applied
to the input and output layers). In order to fine tune
these parameters to avoid extreme overfitting, we
created another validation set consisting of 5000
samples of ”uncharacteristic” inputs, i.e., inputs
with repeated symbols and varying from length 3-
12. These two hyperparameter values were set to
0.125 and 0.1, respectively, according to the per-
formance on this validation set, averaged across
a set of randomly chosen random seeds. Further
training details are listed in Table 1.

A.2 Symbol Rewriting Task Examples

Here we provide a simple example of the task.
If the input symbol A maps to any permutations
of a1, a2, or a3, and B maps to permutations of
b1, b2, or b3. Each ai and bi has 2 possible val-
ues, ai1 or ai2 and bi1 or bi2 respectively. Thus,
mapping an input symbol to 48 (8 ∗ 3!) possible
permutations. A possible valid output for the in-
put AB is a21a32a11b32b11b22. Note that any such
permutation is valid and permutations are selected
at random when generating the data. We allow this
stochasticity in the outputs in order to prevent the
model from resorting to pure memorization. Ta-

5Defined in section 3

26

LSTM Layers 1
WE/LSTM size 32
Attention Bilinear
Batch size 64
Optimizer SGD
LR 0.125
Max gradient norm 5
Dropout 0.1

Table 1: Model details.

Standard Repeat Short Long
Size 2k 2k 2k 2k
Src Length 5-10 5-10 1-4 11-15
Tgt Length 15-30 15-30 3-12 33-45

Table 2: Details about the four test sets used in our
experiments.

ble 2 provides further information on the 4 differ-
ent test sets.

A.3 Model Performance
We provide the summary statistics across all runs
(50 different random seeds) in Table 3, which
gives the mean, standard deviation, minimum, and
maximum accuracies across all random seeds. We
additionally provide a sample of performances for
some individual random seeds in Table 4, with
the highest and lowest accuracies in each column
highlighted.

Standard Repeat Short Long
Mean 99.85 86.67 64.36 32.09
Std. 0.03 13.39 18.61 20.63
Min. 99.73 45.70 32.80 0.15
Max. 99.88 99.85 96.35 97.60

Table 3: Accuracy % summarized across all 50
runs with different random seeds.

Seed Standard Repeat Short Long
2787 99.88 94.65 42.05 23.05
5740 99.86 45.70 56.55 97.60

10000 99.86 98.55 32.80 0.15
14932 99.73 87.05 42.20 29.75
28897 99.87 99.85 47.40 1.40
30468 99.87 86.35 96.35 12.90

Table 4: Accuracy % on the test sets for selected
runs out of 50 with different random seeds.

27

