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Abstract

This paper describes multiple solutions de-
signed and tested for the problem of word-
level metaphor detection. The proposed sys-
tems are all based on variants of recurrent neu-
ral network architectures. Specifically, we ex-
plore multiple sources of information: pre-
trained word embeddings (Glove), a dictio-
nary of language concreteness and a trans-
fer learning scenario based on the states of
an encoder network from neural network ma-
chine translation system. One of the archi-
tectures is based on combining all three sys-
tems: (1) Neural CRF (Conditional Random
Fields), trained directly on the metaphor data
set; (2) Neural Machine Translation encoder of
a transfer learning scenario; (3) a neural net-
work used to predict final labels, trained di-
rectly on the metaphor data set. Our results
vary between test sets: Neural CRF standalone
is the best one on submission data, while com-
bined system scores the highest on a test subset
randomly selected from training data.

1 Introduction

1.1 Shared Task
This paper is focused on the problem of au-
tomated metaphoricity classification of verbs.
It describes a system aimed at the Shared
Task https://competitions.codalab.
org/competitions/17805 on metaphoric-
ity classification co-organized with the Workshop
on Figurative Language Processing.

The task is based on VUA Metaphor corpus
(Steen et al., 2010). The data set, as its au-
thors claim, is the largest available corpus hand-
annotated for all metaphorical language use, re-
gardless of lexical field or source domain. The
method of metaphor labeling is consistent with
systematic and explicit metaphor identification
protocol MIPVU. The corpus consists of alto-
gether 117 texts covering four genres (academic,
conversation, fiction, news).

Our submissions and results are for the all POS
(part-of-speech) part of the task.

2 Existing Work

2.1 Predicting Metaphoricity

The VUA Metaphor Corpus has been previously
used to automatically predict the metaphoricity
of verbs. In the baseline paper (Klebanov et al.,
2016) authors explore multiple feature spaces,
based on VerbNet and WordNet databases, cluster-
ing distributional similarity data of verbs. Tested
classifiers included Logistic Regression, Random
Forest and Linear SVM. The best of reported F1
scores averaged over four document types in the
VUA corpus reach 0.60 for a feature space com-
bined of lemma unigrams and WordNet data.

In another study (Rai et al., 2016) authors use a
Conditional Random Field algorithm and a feature
space of MRC and WordNetAffect dictionaries.

In Do Dinh and Gurevych (2016) a neural net-
work based on word embeddings is used to detect
metaphorical words. The network is a multi-layer
one, but not sequential as in our approach.

In a similar manner, (Sun and Xie, 2017)
use four sequential recurrent neural networks (bi-
LSTM) to predict metaphors. The first three mod-
els use a sub-sequence as the input to BiLSTM
network, each with a special kind of sub-sequence
extracted from the input sentence. The last model
is an ensemble model which aggregates the out-
puts from the first three models.

2.2 Transfer Learning

The idea of transfer learning has not been
widely explored in the context of predicting the
metaphoricity, especially in the context of verbs.
We do not consider the method described in Biz-
zoni et al. (2017) to be fully transfer learning.

In our understanding, the term transfer learning
refers not only to finding representations of words
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Figure 1: System design

in some vector space, but also to training full mod-
els that solve some non-trivial sequential problem,
in order to apply them later to another one. Our
approach is similar to Conneau et al. (2017) where
authors investigate transfer learning to find univer-
sal sentence representation. The concept is to use
datasets originally compiled for different applica-
tions, such as question answering, textual entail-
ment or sentiment analysis, to finally apply them
to some other task (in Conneau et al. (2017), to
find sentence representation).

3 System Design

We test multiple systems and components on the
task of word-level metaphor recognition. The ar-
chitecture is based on multiple components that
constitute input space for a recurrent neural net-
work, which produces output labels. It combines
the following elements: (1) Neural CRF (Con-
ditional Random Fields), trained directly on the
metaphor data set; (2) Neural Machine Translation
encoder, used in the transfer learning scenario; (3)
a neural network to predict final labels, trained on
the metaphor data set. Figure 1 illustrates the sys-
tem. Elements (1) – the neural CRF and (3) – the
recurrent network can be used to predict the out-
put labels and we test them both in subsequent sec-
tions.

3.1 Neural CRF
We used a sequence tagging model (Ma and Hovy,
2016) to generate scores (logits) for each tag. We
used those logits for directly predicting the out-
put labels as well as for input features into an-
other recurrent network. The model is based on
both word representation and contextual word rep-
resentation. The former uses pre-trained word em-
beddings (GloVe (Pennington et al., 2014) trained
on Wikipedia 2014 and Gigaword-5 corpus) as
well as features on the character level extracted us-
ing bidirectional LSTM (Hochreiter and Schmid-
huber, 1997). The latter is based on bidirectional

LSTM on the word level, which captures informa-
tion about the context. In the decoding phase, the
vector of scores corresponding to each tag is gen-
erated with a fully connected neural network. Fi-
nally, predictions are made with linear-chain CRF
which, in contrast to a simple softmax function,
make use of the neighboring tagging decisions.

We fed the presented model with training data
from the VUAMC corpus. The model has been
used in two settings: standalone, to directly pre-
dict the output labels, and in another mode, where
we used the extracted logits (the output of a fully
connected neural network on an encoded state of
bidirectional LSTM on words level) as an input for
another recurrent neural network, as illustrated in
Figure 1.

3.2 Concreteness Score
We used the concreteness score from Brysbaert
et al. (2014) database, which provides ratings for
nearly 40,000 words. For each word, its mean con-
creteness rating, ranging from 1 to 5, was com-
puted based on at least 25 observations. In the task
instructions, concreteness was defined as a feature
of words related to things and actions which can be
experienced directly through senses. In addition,
the task designers put stress on all 5 modalities,
providing examples of concrete words connected
with different senses.

In our data set we found concreteness scores for
nearly 66% of words. For those that could not be
found in Brysbaert et al. (2014) database we as-
sumed a mid value of 2.5 as a neutral score. We
later normalized these values.

MIPVU (Metaphor Identification Procedure
VU University Amsterdam) (Steen et al., 2010) is
based on investigating if there is a more basic, con-
crete, body-related, precise or historically older
meaning of a given word compared to its contex-
tual meaning. The concreteness score may indi-
cate if the contextual meaning of a token is also its
basic meaning.

3.3 OpenNMT encoded VUA Sentences
OpenNMT (Klein et al., 2017) http:
//opennmt.net is an initiative for neural
machine translation and neural sequence model-
ing. It offers a set of tools dedicated for machine
translation, which enable end-to-end translation
process are offered.

In our solution the OpenNMT implementation
is used in a transfer learning fashion: a model
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Measures Features

P R F1 Conc. Logits
Encoder
states

GloVe
100

GloVe
300

bi-GRU
3 layers

0.57 0.67 0.62 x x x x

bi-GRU
3 layers

0.61 0.51 0.55 x x x

bi-GRU
2 layers

0.61 0.63 0.62 x x x x

bi-GRU
2 layers

0.59 0.5 0.54 x x x

bi-GRU
2 layers

0.66 0.52 0.58 x x

bi-GRU
2 layers

0.57 0.58 0.57 x

neural CRF 0.58 0.57 0.57 x

Table 1: Best training phase scores (all POS).

trained for machine translation is used to generate
a representation of an input sentence. Then, in-
stead of translating the sentence into another out-
put language, we use the intermediate representa-
tion for metaphor recognition.

Thus, the overall procedure was to (1) train the
translation model; (2) translate Metaphor Shared
Task sentences and capture the hidden states of a
machine translation encoder for each sentence and
(3) extract the hidden vector for every word.

1. Training translation model

With the aim to maximize usability of the
model and consequently, quality of the ex-
tracted encoder states, we decided not to use
pre-trained models available in the web but
rather to use an open source dataset of paral-
lel sentences instead. The corpora are pro-
vided by Tiedemann (2012) and are com-
monly used in the machine translation tasks.

The translating model is trained on one mil-
lion English sentences with their French
translations.

2. Translation and hidden states

The translating model consists of a encoder-
decoder approach. The model used in the
solution is built with simple unidirectional
LSTM. The hidden states of the LSTM were
captured during the translation process. Typ-
ically, the outputs of the encoder play the role
of an intermediate layer in the translation pro-

cess. The encoded states capture the meaning
of a sentence.

3. Word vectors extraction

Extracting word vectors is the last step of the
process. Finally, each word is represented by
a 500-dimensional vector.

3.4 Bidirectional GRU
To predict metaphors in a given text we used
bidirectional Gated Recurrent Units (GRU). Previ-
ously described features - concreteness score, log-
its from neural CRF and OpenNMT hidden states -
as well as pre-trained words embeddings (GloVe)
served as an input to our neural network.

4 Results

All reported results were obtained for all part-of-
speech data.

4.1 Training Phase
Initially, we evaluated different versions of our
model on the provided training set - randomly
shuffled and divided into three subsets (15% test
/ 15% - validation / 70% - training). The results on
this test set (not the Shared Task official test set)
are presented in Table 1.

We tested the models with a different number
of layers and sets of features. Models with all fea-
tures showed the best performance. Omitting any
of them led to a considerable decrease in F1 score.
We also tried class weighting which slightly in-
creased the performance. Finally, we tested neural
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Measures Features

P R F1 Conc. Logits
Encoder
states

GloVe
300

GloVe
100

class
weighting

bi-GRU
3 layers

0.722 0.312 0.435 x x x

bi-GRU
3 layers

0.705 0.343 0.461 x x x x

bi-GRU
3 layers

0.675 0.371 0.479 x x x x x

bi-GRU
2 layers

0.655 0.237 0.348 x

bi-GRU
2 layers

0.638 0.407 0.497 x x x x x

bi-GRU
2 layers

0.621 0.362 0.457 x

neural CRF 0.547 0.575 0.561 x

Table 2: Best submission scores (all POS).

CRF and bidirectional GRU with GloVe embed-
dings. Those more basic models served as a point
of reference.

The best score was generated by a bidirectional
GRU with all the features. A difference in lay-
ers number did not show any significant change in
performance.

Batch sizes for all models were set to 64 or 128
during experiments. Models were trained using
Adam optimizer and a binary cross-entropy loss
function.

The network named ‘bi-GRU 2 layers’ in Ta-
ble 1 contained two bi-directional LSTM layers.
Dropouts were applied after each layer with rates
in range from 0,5 to 0,6. Bi-directional layers
were followed by two dense layers of size 500 with
dropouts (rate 0,5) placed after each of them. The
last layer of this network was a sigmoid one. All
GRU layers had ‘tanh’ activation functions, dense
layers ‘relu’ activation functions.

The network named ‘bi-GRU 3 layers’ in Ta-
ble 1 contained three bi-directional LSTM layers
followed by a sigmoid layer. Dropouts were ap-
plied after each bidirectional layer, with rates in
range from 0,5 to 0,6 as before.

4.2 Submission Phase

Table 2 shows our submission scores obtained by
the best performing models chosen in the previous
step. We tested them on the all part-of-speech task.

Interestingly, scores from submission differ sig-
nificantly from those observed in the training

phase. Here, the Neural CRF model applied stan-
dalone came out as the best solution. Three layer
bidirectional GRU generated a better F1 score
than two layers model. However, both models
gained much lower scores than noted in the train-
ing phase.

This discrepancy can be possibly explained by
different character of our test set (random sub-part
of the training data set), compared to the official
test set in the shared task.

5 Conclusions

In this paper we have discussed solutions for
metaphor detection built for Metaphor Detection
Shared Task. We described different features and
architecture combinations along with their scores,
measured on a test set randomly sampled from
training data and on official submission procedure.

Due to discrepancies between scores obtained
in from the training set and scores obtained in sub-
mission, it is not easy to draw straightforward con-
clusions.

When tested on a subset of training data, our re-
sults indicate that all proposed features: those cap-
tured in OpenNMT encoder states, concreteness
ratings and tag scores from neural CRF, all had an
impact on the performance of our system, which
resulted in a better F1 score than simple models
using GloVe. These results seem to go along the
lines of results reported in Do Dinh and Gurevych
(2016).

Submission results, as measured on the official
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test set of the Shared task, provide an entirely
different picture. They also show the advantage
of bidirectional GRU including all features over
one trained on GloVe only. Yet, it is neural CRF
standalone, which included only pre-trained em-
beddings, that outperformed other more complex
models.
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