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Abstract

The current study seeks to implement a
deep learning classification algorithm us-
ing argument-structure level representation of
metaphoric constructions, for the identifica-
tion of source domain mappings in metaphoric
utterances. It thus builds on previous
work in computational metaphor interpretation
(Mohler et al. 2014; Shutova 2010; Bolle-
gala & Shutova 2013; Hong 2016; Su et al.
2017) while implementing a theoretical frame-
work based off of work in the interface of
metaphor and construction grammar (Sullivan
2006, 2007, 2013). The results indicate that it
is possible to achieve an accuracy of approx-
imately 80.4% using the proposed method,
combining construction grammatical features
with a simple deep learning NN. I attribute
this increase in accuracy to the use of con-
structional cues, extracted from the raw text of
metaphoric instances.

1 Introduction

Lakoff’s theory of conceptual metaphor has been
highly influential in cognitive linguistic research
since its initial publication (Lakoff & Johnson
1980). Conceptual metaphors represent fine-
grained mappings of abstract concepts like ”love”
to more concrete, tangible phenomena, like ”jour-
neys” which have material and culturally salient
attributes like a PATH, various LANDMARKS,
and a THEME which undergoes movement from
a SOURCE to a GOAL (Lakoff & Johnson 1980).
These tangible phenomena then serve as the basis
for models from which speakers can reason about
abstract ideas in a culturally transmissible manner.
For example, consider the following metaphoric
mappings for the metaphor LOVE IS MAGIC, as
shown in figure 1.

To date, while automatic metaphor detection
has been explored in some length, computational

metaphor interpretation is still relatively new, and
a growing number of researchers are beginning to
explore the topic in greater depth. Recently, work
by the team behind Berkeley’s MetaNet has shown
that a constructional and frame-semantic ontol-
ogy can be used to accurately identify metaphoric
utterances and generate possible source domain
mappings, though at the cost of requiring a large
database of metaphoric exemplars (Dodge et al.
2015; Hong 2016). Researchers from the Depart-
ment of Cognitive Science at Xiamen University
(Su et al. 2017) report that, using word embed-
dings, they have created a system that can reliably
identify nominal-specific conceptual metaphors as
well as interpret them, albeit within a very lim-
ited scope–the nominal modifier metaphors that
they work with only include metaphors in which
the source and target domain share what they
refer to as a ”direct ancestor”, such as in the
case of ”the surgeon is a butcher”, limiting re-
searchers to analyzing noun phrases with modi-
fiers that exist in a single source and target do-
main. Other approaches have included develop-
ing literal paraphrases of metaphoric utterances
(Shutova 2010; Bollegala & Shutova 2013), and,
as an ancestor to the current study, clustering the-
matic co-occurents–the AGENT, PATIENT, and
ATTRIBUTE of the metaphoric sentence–which
allowed researchers to predict a possible source
domain label–think: ”The bill blocked the way
forward”, where for the word ”bill” the system
predicted that it mapped to a ”PHYSICAL OB-
JECT” role in the source domain (Mohler et al.
2014).

2 Construction Grammatical
Approaches to Metaphor

The constructional makeup of metaphoric lan-
guage has been explored at some length by a
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LOVER is a MAGICIAN She cast her spell over me
ATTRACTION is a SPELL I was spellbound
A RELATIONSHIP is BEWITCHMENT He has me in a trance

Figure 1: Metaphoric Mapping & Example

handful of researchers to date. Karen Sullivan,
for example, has done considerable work on both
how syntactic structures (i.e. constructions) re-
strict the interpretation of metaphoric utterances
in predictable ways by both instantiating a seman-
tic frame and mapping the target domain referent
to a semantic role within the instantiated frame
(Sullivan 2006, 2009, 2013). Notable examples of
computational implementations of Sullivan’s the-
ories include Stickles et al. (2016) and Dodge
et al. (2015), who have compiled a database
of metaphoric frames–MetaNet–organized into an
ontology of source domains for researchers to
use in analyzing metaphoric utterances, similar to
FrameNet.

One of the advantages of construction gram-
mar with respect to figurative language interpre-
tation lies in the regularity with which construc-
tions establish form-meaning pairings. The var-
ious meanings of constructions rely heavily on
particular ”cues”–cues including the verb, as well
as the syntactic template and argument-structure–
which point speakers in the direction of a spe-
cific interpretation (Goldberg 2006). For the pur-
pose of the current study, I will be focusing on
the argument-structure of metaphoric utterances
which, though it supplies a rather course-grained
view of the meaning of an utterance, provides an
excellent and stable constructional cue with re-
spect to its interpretation (Goldberg 2006). As an
example of how this might work, consider the dif-
ference between ”the Holidays are coming up on
us” and ”we’re coming up on the Holidays.” In the
first sentence, ”the Holidays” is established as be-
ing mapped to a MOVING OBJECT in the source
domain by virtue of its position in the argument-
structure of the sentence. Meanwhile, in the sec-
ond utterance ”the Holidays” is mapped to a LO-
CATION or GOAL in the source domain due to its
change in position in the argument-structure of the
construction. Implicitly, this means that important
information about the interpretation of a construc-
tion can be gleaned through extracting the argu-
ments that fill its argument-structure and analyz-
ing these arguments’ relationships to one another,

independent of cues beyond the sentence itself.

3 Data Collection

All the examples in this experiment were taken
from the EN-Small LCC Metaphor Dataset, com-
piled and annotated by Mohler et al. (2016).
The corpus contains 16,265 instances of concep-
tual metaphors from government discourse, in-
cluding immediate context sentences preceding
and following them. Each sentence is given a
metaphoricity score, ranging from ”-1” to ”3”,
where ”3” indicates high confidence that the sen-
tence is metaphoric, ”0” indicates that the sen-
tence was not metaphoric, and ”-1” indicates an in-
valid syntactic relationship between the target and
source domain referents in the sentence (Mohler
et al. 2016). Additionally, the corpus is annotated
for polarity (negative, neutral, and positive), inten-
sity, and situational protagonists (i.e.: the ”gov-
ernment”, ”individuals”, etc.). Though not anno-
tated for every sentence, the most important an-
notations for this study were the annotations for
source-target domain mappings. There was a total
of 7,941 sentences annotated for these mappings,
with 108 source domain tags, annotated by five an-
notators (Mohler et al. 2016). Each annotator in-
dicated not only what they thought the source do-
main was, but also gave the example an additional
metaphoricity score based on their opinion.

For the purposes of this study, I only used
the metaphoric instances that were annotated for
source-target domain mappings. For the source
domain labels, I selected the labels made by the
annotator who had marked the example for having
the highest metaphoricity. I initially attempted to
select the metaphoric source domain annotations
that had the highest agreement amongst the an-
notators who had annotated the sentence, but this
proved trickier than I had anticipated. After cal-
culating the average Cohen Kappa score (54.4%),
I decided that selecting labels based on their asso-
ciated metaphoricity would be better. This effec-
tively removed two annotators from the pool, who
consistently ranked each metaphoric sentence as
having a metaphoricity score of 1 or less.

103



I further restricted the training and test data by
excluding multi-word expressions from the dataset
for simplicity, though in the future I would very
much like to re-test the methods outlined in the
rest of this paper including the omitted MWEs. Fi-
nally, I removed any source domain annotations
that included only a single example and split the
data in training and testing data sets, using 85%
as training data, and 15% as testing data. Be-
cause of my exclusion of MWEs and metaphoric
source domain tags that were used only once, this
left me with a total of 1985 sentences used in this
experiment–1633 of those were used in the train-
ing data, and 352 reserved for test data–with 77
source domain labels. The source labels were con-
verted to integers and used as classes in the follow-
ing Deep Neural Net (DNN) classifier.

4 The Neural Network Approach to
Source Domain Interpretation

4.1 Feature Generation

The task in this study is to predict the source do-
main of a metaphoric utterance using only features
extracted from the sentence text. For example,
from a sentence like ”So, you advocate for the
ability to deny people the vote by pushing them
into poverty?”, and given the target domain refer-
ent (in this sentence, ”poverty”), can we accurately
predict the source domain label ”ABYSS” (as an-
notated in the LCC dataset) using only the text
from the sentence? To do so, we wanted to extract
from the sentence a representation of its argument
structure, and use that to classify the source do-
main label. The argument structure of a construc-
tion is represented by the verb and the arguments it
accepts to fulfill the roles defined by both the verb
and its semantic frame (Goldberg 2006; Michaelis
2012; Sag 2012; Pustejovsky 2011). Though there
are subtle differences between construction gram-
mar and dependency grammar, it is possible to
reconstruct the argument-structure of a construc-
tion from grammatical dependencies (Osborne &
Gross 2012; for a computational implementation
of a theoretically similar system to ours, see Hong
2016). For the purposes of this study, I first gen-
erated a representation of all the dependency rela-
tionships in each sentence from the LCC dataset
using the Stanford NLP dependency parser (Chen
& Manning 2014). Second, I searched the out-
put list dependencies from the dependency parser
for the target domain referent as identified in the

corpus example, and found the verb that it was
directly dependent on in the sentence. This en-
sured that the target domain referent was in its
immediate context. Once the verb was found, I
then built a representation of the argument struc-
ture of the sentence by extracting the following
dependencies–(1) the verb for which the target do-
main referent was a dependency, (2) the subject of
the verb in 1, (3) the object of the verb in 1, and
if the target domain referent was not included in
the subject or direct object, (4) the target domain
referent as a nominal modifier and (5) any prepo-
sitional arguments that it had as a dependency.
Additionally, I extracted (6) the universal depen-
dency tags for each of the arguments in the verb’s
argument-structure, and converted that into a list
of tags that I simply labeled ”syntax”, or ”SYN”,
based off the assumption that knowing what the
dependencies were might help in identifying the
exact relationships between the lexemes that had
been collected. Finally, these elements along with
(7) the target domain referent itself were compiled
into a list to be used in the training or test data,
and labeled with the pre-identified source domain
label assigned to the sentence in the LCC dataset.
The output of this process is visually represented
in figure 2. The branch of the dependency tree in
blue indicates the direct context of the target do-
main referent–in this case, ”poverty”.

While these strings provided a representation
of the arguments as a set, they did not provide
enough information a priori to predict the source
domain on their own. Sullivan (2013) explains that
the backbone of metaphoric utterances is the rela-
tionship of the target domain referent to the frame
evoked by the construction. Additionally, Gold-
berg (2006) describes the semantic meaning of
constructions as arising from both the nouns con-
tained in their argument-structure, and the mean-
ing implied by the construction’s syntactic tem-
plate. The following features combined Sullivan’s
relationships of the target domain referent to the
construction, with the two observations made by
Goldberg about constructional meaning. For the
interaction of the target domain referent with the
nouns contained in the argument structure I used
the following interactions as features: (8) the tar-
get domain referent and the subject of the local
dependency tree (again, in blue in figure 2), (9)
the target domain referent and the direct object,
and (10) the target domain referent and the nom-
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Figure 2: Raw text sentence input to dependency parsed output from Stanford Core NLP’s dependency parser.
The syntactic roles in order of their index in the dependency parsed sentence are as follows: (0) the target domain
referencing noun, (1) the subject, (2) the direct object, (3) the syntactic sisters of the target domain referencing
noun, (3) the verb, (4) the preposition/case of a nominal modifier, (5) the head of a nominal modifier. The word in
bold was annotated as the target domain referent by annotators.

inal modifier from 4 in the previous paragraph. I
then augmented these with the following interac-
tions to represent the interaction of the target do-
main referent with the syntactic template: (11) the
target domain referent, the verb, and the subject
of the verb, (12) the target domain referent, the
verb, and the object of the verb, and (13) the tar-
get domain referent, the preposition preceding the
nominal modifier, and the nominal modifier. I pre-
dicted that these six interactions would approxi-
mate the relationship between the target domain
referent and its construction-based context, as in-
spired by previous work in semantic role labeling
(Wang et al. 2009; Matsubayashi et al. 2014;
and especially Gildea & Jurafsky 2002, where re-
searchers automatically labeled the semantic role
of a specific target noun in a given frame). A list
of these complex interactions can be seen in figure
3.

These 13 features were then converted into
embeddings to be used as inputs in the DNN
via the following process. The strings extracted
from the dependency parsed, raw text sentence
were first lemmatized, then converted from strings
into numeric representations in Tensorflow us-
ing the tf.contrib.layers sparse column with hash
bucket function. The interactions indicated in 8-
13 in the prior paragraph were defined using the
tf.contrib.layers crossed column function, return-
ing a numeric representation of the interaction. Fi-
nally, these numeric representations for all of the
features described above were then converted into
an embedding layer in order to represent the con-
text of the features as they appeared per each sen-
tence that they extracted from. This was done us-

ing the tf.contrib.layers embedding column func-
tion, and the number of dimensions for each em-
bedding layer was set uniformly at 13 dimensions.

4.2 Feed Forward DNN Network
Architecture

These embedding layers were then used as the
inputs into the DNN. In order to quickly proto-
type the model, I used the tf.contrib.learn library
in Tensorflow. The activation function in the net-
work was set to a relu function (tf.nn.relu). The
network included a single, fully connected hid-
den layer, with 77 hidden units which were ran-
domly initialized during training. I implemented a
dropout rate of .4 during training to prevent over-
fitting. Information from the hidden layer was
passed to a Softmax layer, and then passed to an
output layer for the 77 labels in the train and test
data. The reason behind using a single hidden
layer was in part because the model training was
initially done on a single MacBook Air, and so the
model needed to be sufficiently small to train effi-
ciently on that computer. The network was trained
for 500 epochs, or until the model reached a train-
ing loss less than .006 after the 498th epoch. The
early cut-off was decided upon after having run
the model 20 times, and having discovered that
accuracy was improved by approximately 1.2% if
training was cut off immediately after reaching a
loss less than .006. The full network architecture
can be seen in figure 4.

4.3 Accuracy and Evaluation

The DNN architecture as described accurately pre-
dicted the source domain label from the LCC
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Figure 3: Diagram of the interactions as derived from the previous dependency parsed inputs.

Figure 4: Diagram of the full DNN architecture from input features to output layer.

dataset 80.4% of the time, with a testing loss value
of 1.51. I compared the output of the feedforward
network to a similar DNN build without the inter-
actions from figure 3 (essentially, only using the
extracted argument structure as seen in figure 2). I
then also compared the DNN architecture with the
interactions in figure 3, to an LSTM neural net-
work without those same constructional features.
The results for the highest and lowest accuracy in
a set of five test runs for each of these networks
are compared in figure 5.

5 Discussion

The results reported indicates that the addition of
construction grammatical relations to the feature
set used by deep learning algorithms significantly
increases the accuracy of metaphoric source do-
main prediction tasks.

Whilst the inclusion of the lexical units from the
dependency parsed sentence are important to build
sufficient context for the DNN classifier, the inter-
actions as seen in Figure 3 provide the real predic-
tive power of this system by approximating the re-
lationship between the target domain referent and
the interactions of items in the argument-structure
of the construction. While we can take for granted
from work in both VerbNet and FrameNet (Verb-
Net: Kipper, Korhonen, Ryant & Palmer 2008;
FrameNet: Fillmore et al. 2001; Fillmore, John-
son, & Petruck 2002) proving that the verb is a
strong cue for the semantic frame, a stronger pre-
dictor for the metaphoric source domain is the
interaction of the verb with the arguments in its
argument-structure.

In theory, the pipeline from dependencies, to
usage-based constructional features, to embed-
dings for input into the DNN described, would
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Network Architecture Lowest acc Highest acc
Feed Forward DNN without constructional cues as inputs 77.6% 78.9%
LSTM without constructional cues as inputs 72.1% 73.0%
Feed Forward DNN with constructional cues as inputs 79.2% 80.4%

Figure 5: Highest and lowest accuracy for the three network builds.

appear to assume that the utterance being ana-
lyzed has already been identified as metaphoric.
In practice, by focusing on the relationship of
the target domain referent to a small set of inter-
actions (representing a construction’s argument-
structure), one could feasibly use a known set of
target domain referents in order to identify the
source domains that they are mapped to, skip-
ping entirely the need to identify an example as
metaphoric. Think of it like this: if a researcher
is interested in the kinds of metaphors used to talk
about ”poverty” in a text, a simple query coupled
with the DNN described can find and accurately
predict possible source domain labels for all ut-
terances in which ”poverty” is used. Coupling
the DNN here with a system designed to iden-
tify metaphors or even target domain referents in
a text, however, would be ideal, and would greatly
add to the described DNN’s power and utility as a
predictive tool.

An additional confound limiting the final ac-
curacy in this experiment was the wide range of
conceptual metaphor source domain annotations
given by annotators per each utterance in the LCC
dataset. Despite it being an excellent resource for
researchers interested in metaphor source domain
interpretation due to its CMSource annotations,
the average inter-annotator agreement for source
domain mappings in the corpus was on average
approximately 54.4% for the dataset, as calculated
by averaging the Cohen-Kappa scores for annota-
tors. While annotators agreed about the related-
ness of the source and target domain referents dur-
ing the annotation process (agreement for ”Source
Relatedness” and ”Target Relatedness” in the LCC
dataset were calculated as of 2014 as 95.1% and
94.3% respectively (Mohler et al. 2014)), several
of the source domain mappings provided were dif-
ferent from one another in incredibly subtle, but
crucial, ways. Take ”LMInstance” 22920 from the
dataset for example–”This prison is the prison of
poverty.” Where as one of the annotators labeled
the sentence as evoking ”CRIME” as the source
domain mapping, another indicated that it evoked

the thematically related concept of ”CONFINE-
MENT” as the source domain. Neither label in
this instance appears, at least on first glance, to be
intrinsically better than the other.

Adding to this, I actively avoided using exam-
ples in which MWEs were identified as the tar-
get domain referent–a decision which limited the
number of examples used, and thus likely lim-
ited the number of times that a specific argument-
structure construction in the dataset showed up
alongside of an accompanying source-domain la-
bel.

In all, the current experiment serves as an ex-
ample not only of the usefulness of construction
grammar to NLP tasks, but of the utility of a cog-
nitive theory of language understanding to compu-
tational linguistic inquiry.
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