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Abstract

We present and compare two alternative deep
neural architectures to perform word-level
metaphor detection on text: a bi-LSTM model
and a new structure based on recursive feed-
forward concatenation of the input. We dis-
cuss different versions of such models and the
effect that input manipulation - specifically, re-
ducing the length of sentences and introducing
concreteness scores for words - have on their
performance. !

1 Paper’s contribution

This paper describes our contribution to the shared
task on metaphor detection published by NAACL
2018’s First Workshop on Figurative Language
Processing.

In this paper, we will:

1. Present and compare two neural network
models, (1) a bidirectional recurrent neural
networks for long distance compositions and
(2) a novel bigram based model for local
compositions.

Show the results of ablation experiments on
these two models.

. Present some input manipulations and feature
enrichment to improve their performance.

The implementation code and additional supple-
mentary material is available here: https://
github.com/GU-CLASP/ocota

2 Introduction

Automatic metaphor detection is the task of auto-
matically identifying metaphors in a text or dataset
!The model product of this paper competed in The Work-

shop on Figurative Language’s Shared Task with team name
OCOTA.
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(Veale et al., 2016). Traditionally, the main ap-
proaches to this problem have been of two kinds:
either a set of manually crafted rules was applied
to a text, or a machine learning algorithm was
trained on a source dataset to identify patterns of
features identifying metaphoricity. In the latter
case, typically used features were “psycholinguis-
tics” features such as abstractness or imageability
2: hypernym-hyponym coercions as modeled by
resources like WordNet; sequence probabilities as
given by language models; and semantic spaces
or word embeddings. Similar trends can also be
observed in works dealing with other figures of
speech (Zhang and Gelernter, 2015).

The use of word embeddings in metaphor pro-
cessing - both in detection and interpretation -
is particularly widespread, and distributional se-
mantic spaces may represent the single most con-
sistently used “tool” in this task. Su et al.
(2017) combine word embeddings and WordNet
hypernym/hyponym information to detect nominal
predicative metaphors of the kind “X is Y” and to
select a more literal target - thus producing a para-
phrase of the metaphor.

Shutova et al. (2017) use unsupervised and
weakly supervised learning to detect metaphors,
exploiting syntax-aware distributional word vec-
tors.

Gong et al. (2017) use figurative language de-
tection - sarcasm and metaphor - as a way to ex-
plore word vector compositionality and try to use
simple cosine distance to tell metaphoric from lit-
eral sentences: a word being out of context in a
sentence has a likelihood of being metaphoric.

The reason why semantic spaces are consis-

Recent trends tend to see metaphoricity as a nuanced
rather than binary property, and to take into consideration the
correlation between figurativity and affective scoring (Koper
and im Walde, 2016), an umbrella term usually including four
psycolinguistic properties: abstractness, arousal, imageabil-
ity and valence (K6per and Im Walde, 2016).
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tently used in metaphor detection lies in the con-
ception that metaphor, like metonymy and other
figures of speech (Nastase and Strube, 2009), is
a mainly contextual phenomenon. In this view, a
metaphor is fundamentally composed of two dif-
ferent semantic domains, in which one domain
acts as source - and is used literally - while the
other acts as target - and is used figuratively.

In this frame, semantic spaces appear to be a
very flexible and powerful frame to model such
semantic domains in terms of words’ cluster-
ing and distributional similarity (Mohler et al.,
2014). Also, semantic spaces are relatively easy
to build and handle, giving them an advantage
over more time-consuming resources, such as very
large knowledge bases and “is A” bases from web
corpora, as in Li et al. (2013).

Gutierrez et al. (2016) use the flexibility of
word vectors to study the compositional nature of
metaphors and the possibility of modeling it in a
semantic space.

Tsvetkov et al. (2014) use distributional spaces,
together with several other resources such as
imageability scores and abstractness to detect
metaphors in English and apply a transfer learning
system through pivoting on bilingual dictionaries
to detect metaphors in multiple language.

A composite approach using both distributional
features and psycho-linguistics scores for lexical
items is also used by Rai et al. (2016) to per-
form metaphor detection using conditional ran-
dom fields.

Metaphor detection with semantic spaces has
also been explored in a multimodal frame by
Shutova et al. (2016), where systems using only
text-based distributional vectors are compared
against systems using distributional vectors en-
riched with visual information.

The link between distributional information and
metaphors appears so relevant that some studies
presenting new general distributional approaches
have elected metaphor detection as a benchmark to
test their models (Srivastava and Hovy, 2014), and
studies using diversified sets of resources for their
classifiers report that distributional vectors are the
best performing single device to tackle metaphor
detection (Koper and im Walde, 2016).

Finally, Bulat et al. (2017) present a differ-
ent kind of semantic space, not context-based
but attribute-based, to detect and generalize over
metaphoric patterns. In such spaces, words are
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represented by the attributes of the concepts they
represent, so that for example ant is represented by
elements such as an insect, is black etc. The au-
thors describe a system to map conventional dis-
tributional spaces to pre-existent attribute-based
spaces and show that such approach helps detect-
ing metaphoric bigrams.

A recent approach is that of using neural net-
works for metaphor detection with pretrained
word embeddings initialization. Bizzoni et al.
(2017) and Rei et al. (2017) proved that this is
a valuable strategy to predict metaphoricity in
datasets of bigrams without any extra contextual or
explicit world knowledge representations. While
Bizzoni et al. (2017) show how a simple fully con-
nected neural network is able to learn pre-existing
a dataset of metaphoric bigrams with high ac-
curacy and to achieve a better performance than
previous approaches, Rei et al. (2017) present an
ad-hoc neural design able to compose and detect
metaphoric bigrams in two different datasets.

Do Dinh and Gurevych (2016) apply a series
of perceptrons to the Amsterdam Corpus com-
bined with word embeddings and part-of-speech
tagging, reaching a f-score of .56.

Interestingly, a similar approach - a combina-
tion of fully connected networks and pre-trained
word embeddings - has also been used as a pre-
processing step to metaphor detection, in order
to learn word and sense abstractness scores to
be used as features in a metaphor identification
pipeline (Koper and im Walde, 2017).

3 Corpus

Metaphor processing suffers from a problem of
data scarcity: annotated corpora for metaphor de-
tection are relatively rare and of modest propor-
tions.

In this work we will use the VU Amsterdam
Metaphor Corpus (Krennmayr and Steen, 2017)
train and test our models. To this date, the
VU Amsterdam Metaphor Corpus (VUAMC) the
largest publicly available annotated corpus for
metaphor detection.

Metaphor corpora in other languages do exits,
but, to the best of our knowledge, suffer of the
same problem of data scarcity.

The VUAMC is divided into four sub-categories
representing four different genres: news texts, fic-
tion, academic texts and conversations. Every
word in the corpus is manually annotated by sev-



eral annotators for metaphoricity. In the corpus,
metaphor, simile and personification are equated,
while also implicit metaphors are taken into con-
sideration. For example, in the sentence 7o em-
bark on such a step is not necessarily to succeed
immediately in realizing it the word it is consid-
ered an implicit metaphor since it refers to the
words step that was used metaphorically.

The corpus covers about 190,000 lexical units,
randomly selected from the BNC Baby corpus.

According to Krennmayr and Steen (2017), the
genre with a higher percentage of manually de-
tected metaphors is academic texts (18.5%), fol-
lowed by news (16.4%), fiction (“only” 11.9%)
and conversation (7.7%). Given the very fine-
grained nature of metaphor annotation applied to
the corpus, the authors also find that the parts of
speech that tend to be used metaphorically most
often are prepositions and verbs, followed adjec-
tives and nouns.

Due to its dimensions, diversity and accessi-
bility, the VU Amsterdam Metaphor Corpus has
been used in a number of studies. Using it can
provide a direct comparison to important previous
works and proposed models. This makes of the
VUAMC a valuable resource for metaphor detec-
tion and processing.

Nonetheless, the VU Amsterdam Metaphor
Corpus presents some difficulties: the semantic
annotation of metaphor can be extremely fine-
grained and cross the boundaries with word sense
disambiguation.

For example, in the sentence:

The 63-year-old head of Pembridge
Investments, through which the bid is
being mounted says, ‘rule number one
in this business is: the more luxuri-
ous the luncheon rooms at headquarters,
the more inefficient the business’.[ale-
fragment01-5]

three words were annotated as metaphoric: head,
through, mounted, rule, in, this and headquarters.

Sometimes the annotation itself can be puzzling
or questionable. In the sentence:

There are other things he has, on his
own admission, not fully investigated,
like the value of the DRG properties,
or which part of the DRG business he
would keep after the break up . [ale-
fragment01-7]
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the following words are annotated as metaphoric:
things, on, admission, part, keep and after.

While the very fine-grained metaphoricity of
things, part and keep is to some extent still un-
derstandable - these terms are not used in their
physical sense to indicate material objects, such
as a concrete slice of something, or the act of
physically keeping something with oneself - the
metaphoric nature of admission remains quite
opaque. At the same time, it is not clear why
the annotators ignored the metaphoric interpreta-
tion of the break up.

There are also harder to explain examples, at
least from our perspective. The sentence

Going to bed with Jean fucking,
fucking shite! [kbd-fragment07-2586]

is annotated as completely literal - no metaphoric
usage is detected by the annotators.
In the sentence

Take that fucking urbane look off
your face and face reality, Adam [fpb-
fragment01-1343)

the following words are annotated as metaphoric:
take, that, off, face.

All the remaining terms have to be considered
as literal, which looks slightly incoherent with the
previous fine-grained metaphoricity annotations.

4 Models

4.1 Architectures

In this work we present two alternative neural ar-
chitectures to process sentences as input and pre-
dict words’ metaphoricity as output.

The first model we discuss is composed of a
bi-directional LSTM (Schuster and Paliwal, 1997)
and two fully connected or dense layers, having
respectively dimensionality of 32, 20 and 1. We
will also show results for deeper and more shal-
low alternative versions of this model.

Sun and Xie (2017) recently tried to tackle verb
metaphor detection on the TroFi corpus (Birke and
Sarkar, 2006) using Bi-LSTMs with word embed-
dings. For their study they tried different kinds
of input: using the whole sentence; using a sub-
sequence composed of the target verb and all its
dependents; using a sub-sequence composed of
the target verb, its subject and its object. Inter-
estingly, they show that the simplest approach -



taking into consideration the whole sentence - re-
turns the best results, with an F score only slightly
lower than that achieved by a composite approach
taking into consideration all of the previous differ-
ent inputs together.

The main difference with our architecture is the
presence of the final Perceptrons (fully connected
networks). Sun and Xie (2017) don’t mention fur-
ther hidden layers beyond the bi-LSTM.

We also don’t have any form of syntactic pre-
processing and we only use the sequence of the
standard word embeddings to represent the whole
sentence. Finally, we are interested in considering
the different performances of bi-LSTMs on dif-
ferent part-of-speech elements: metaphor recog-
nition on functional words is supposedly harder,
since these words have a more complex semantic
signature in distributional spaces.

In this spirit we find worth it approaching the
problem with a relatively “standard” neural frame-
work.

The second model we discuss is a simple se-
quence of fully connected neural networks.

We present the design of this architecture in Fig-
ure 1.

This model is a generalization of neural ar-
chitectures for bigram phrase compositions as
tested on Adjective-Noun phrases in Bizzoni et al.
(2017). While a similar approach is already at-
tempted in Do Dinh and Gurevych (2016), we
introduce a recursive variant which can make
the compositions deeper and while allowing wide
window sizes. There have been more sophisticated
architectures such as Kalchbrenner et al. (2014),
which take a similar approach for sentence repre-
sentation with convolutional neural networks, but
we propose a simpler method only using dense
compositions.

We built our architecture using the Python li-
brary Keras (Chollet et al., 2015).

For both our models we used Adam optimizer.

4.2 Input manipulation

We compare two different features representa-
tions: 1. different word embeddings, 2. concrete-
ness scores as word representations. In addition
to ablation test for feature representations, we ex-
amined the effect of breaking sentences in shorter
sequences.

Embeddings We tried two types of pre-trained
word embeddings both with 300 dimensions: (1)
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Figure 1:
n=2.

Bigram composition networks with depth

GloVe (Pennington et al., 2014) (2) Word2Vec
(Mikolov et al., 2013). Since these vector
spaces are trained on different corpora, there are
some out-of-vocabulary words, we represent these
words with zero vectors. Additionally, Word2Vec
is using a sub-sampling technique for more effi-
ciency which consequently it doesn’t cover most
frequent words. In order to expand the word-
coverage, we also trained GloVe embeddings on
British National Corpus (Consortium et al., 2007)
from which the VUAMC corpus was sampled, and
compared it with both pre-trained Word2Vec em-
beddings on Google News corpus and standard
GloVe embeddings trained on Common Crawl
corpus.

Explicit features It has been observed in sev-
eral works that metaphoricity judgments are par-
tially related to a gap in concreteness between the
target word and its context. Koper and im Walde
(2017) try detecting all metaphoric verbs in the
Amsterdam corpus using this single feature. Biz-
zoni et al. (2017) show how a network trained for
metaphor detection on pairs of word embeddings
can “side-learn” noun abstractness.

A metaphor functioning on this axis is com-
posed of an abstract and a concrete element: in
such case, usually, the concrete element is the



metaphoric one. The expression “In a window of
5 years, between 2011 and 2016” could be consid-
ered a metaphor playing on this level, where the
more concrete word “window” has a metaphoric
sense.

There are kinds of metaphors functioning at dif-
ferent semantic levels: for example a synesthesia,
which can be considered a sub-type of metaphor,
is an expression where a word linked to a senso-
rial field is used to refer to a term that pertains to
another sensorial field.

In this case, the features used metaphorically
are usually on a similar level of abstractness.
However, for our purposes the abstract-concrete
features may be among the most important to take
into consideration.

While the abstract-concrete polarity is repre-
sented in distributional embeddings, it is possible
that taking such features more explicitly into con-
sideration would help a neural classifier. Brysbaert
et al. (2014) released a list of almost forty thou-
sand English words annotated along the concrete-
abstract axis, annotated by over four thousand par-
ticipants.

We try using such scores as an extra dimen-
sion for the distributional embeddings: we thus
obtain sequences of 301-dimensional embeddings,
the last dimension being the human rating of con-
creteness. For the out-of-vocabulary words we use
the average concreteness value of 2.5.

This resource allows us to assign to (almost) ev-
ery word in the dataset an explicit concreteness
score. When a word might have more than one
sense, the annotations seem to use the most con-
crete one: for example the word “node” has a con-
creteness score of 4 out of 5. For comparison the
words “output” and “literally” have a score of 2.48
and the word “being” has a score of 1.93.

It must be noted that the abstract-concrete gap
is not necessarily the best way to describe the kind
of metaphors represented in this specific corpus.
The network should be able to mark as metaphoric
words in this dataset that have a low level of con-
creteness, such as “approach” (2.76), in equally
abstract contexts, such as “latest corporate reveals
laid-back approach” (here “approach” was marked
as metaphoric in VUAMC).

Many of the metaphoric uses outlined here are
so ingrained in language that their actual con-
crete origins may be under-represented not only
in modern day corpora, but even in many mod-
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Concreteness score window | number of words
1-2 38 262
2-3 36 730
3-4 28 664
4-5 14 473

Table 1: Concrete and abstract tokens in VUAM corpus
according to Brysbaert et al. (2014) dataset.

ern day annotators’ minds. We discussed various
cases of this problem in the section about the cor-
pus: words that have gradually assumed a new and
main sense in the English language are often anno-
tated as metaphors in the VUAMC.

Nonetheless, the abstract-concrete polarity re-
mains one of the main semantic dimensions to in-
terpret and understand metaphors and has been ex-
plicitly used in several metaphor detection tasks
with promising results.

We can thus partly revert to feature engineer-
ing and see whether adding this dimension can im-
prove the performance of our models.

Sentence breaking Including long sentences in
our training dataset makes it necessary to consis-
tently pad short sentences with zero-vectors. In
our experiments we have seen that this seems to
slow down and harm training for our models, since
they will try to learn both patterns for sequences of
pre-trained embeddings and patterns for long se-
quences of vectors filled with Os.

To partly avoid this problem, we can break long
sentences into two or more shorter elements. We
assume that long distance information is not par-
ticularly important here to detect metaphoricity,
while long padding can affect performance.

4.3 Preprocessing

We chose a maximum sentence length of 50: while
the longest sentence in the dataset is 87 words, the
vast majority of the elements in the dataset is less
than 50 words long. Out of vocabulary words,
which are words that did not have a correspond-
ing vector in our embedding space, were replaced
by a mock vector of all zeros. After shuffling the
dataset, we use the first 1000 sentences of the cor-
pus as test, and the rest of the data for training
(11122 sentences). We used the same training and
test data for all reported results.



4.4 Loss function

The design of the models is to predict the
metaphoricity of each word in a sentence. The pre-
dicted value from a final layer with sigmoid acti-
vation is compared with the labeled data and usual
logarithmic loss is used. However, most words
do not have specified metaphoric or literal anno-
tations in the dataset. Instead of assigning a non-
metaphor value to unspecified tokens in a string,
we modified the loss function in order to generate
zero loss for these tokens.

4.5 Training

After shuffling the training data, 1000 samples are
taken as holdout to find the overfitting point. With
batch size 64 and and early stopping patience 3
based on validation loss we trained each model up
to 15 epochs.

5 Results

5.1 Embeddings

Through a comparison of different semantic
spaces, we found that the best performing space
was GloVe trained on 42B Common Crawl, of di-
mensionality 300.

For the rest of our experiments we used these
embeddings.

5.2 Baseline

In Table 2, we compare the results obtained from
previous works on this task, and the performance
of the “vanilla” settings of our model including a
simple LSTM as our baselines. The comparison
with Do Dinh and Gurevych (2016) shows that de-
ploying deeper and more complex architectures on
this set does not return particularly large improve-
ments: we achieve an Fl-score one point higher
than Do Dinh and Gurevych (2016)’s results on
a setting enriched with POS tags, and two points
higher than the simplest model proposed in the pa-
per.

It can be observed that our bigram composition
architecture seems to produce comparable results
considering the previous works. The influence of
LSTM architectures appears thus further dimin-
ished.

Table 3 presents precision, recall and F-score
values for several concatenation windows of our
composition model. These results can be com-
pared to the ones we obtain with deep Bi-LSTM
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models. Without external features such as con-
creteness or POS tagging, composing the input im-
proves the model’s performance up to a window of
3. Larger windows reduce the performance of the
model.

In Table 4 we report the tests with different set-
tings on depth and width of each layer.

It seems that widening the dimensionality of the
Bi-LSTM itself beyond a certain limit does not
improve - and rather harms - the model’s perfor-
mance in classification.

Regarding our first model, completely relying
on the power of the Bi-LSTM architecture is not
enough, and deeper fully connected layers are
clearly playing a role.

We can also see that inserting a fully connected
layer before the Bi-LSTM returns better results.
This layer has a number of nodes as large as the
number of dimensions of the input token embed-
dings. It can be another clue that the most rele-
vant information for this task has to be searched
in the word embeddings composing the sentence
and their immediate surrounding, rather than in the
structure of the whole sequence.

In conclusion, our results show that a quite
standard deep neural architecture fed with good
word embeddings can return promising results in
metaphor detection. The “compositional” archi-
tecture also achieves comparable results, with an
F score only a couple of points lower than that of
the Bi-LSTM, indicating that “forcing” a network
to give particular attention to the short or immedi-
ate context of each word in the data can improve
its performance all the while reducing its depth,
complexity and number of parameters. While this
approach is not the one returning the absolute best
F score, we consider the trade-off between its sim-
plicity and its performance worth noting.

Our results also show a negative aspect: while
we consider our models’ performances encourag-
ing, there is an ample room for improvement.

5.3 Feature experiments

Interestingly adding explicit semantic information
such as concreteness ratings in our input - which
means, somehow, reverting to feature engineering
- did produce better results for the composition ar-
chitecture, but not yet for our Bi-LSTM.

Table 5 show the results of our best perform-
ing models when the concreteness of the individ-
ual token was explicitly added to the embeddings.



Architecture

F1

Haagsma and Bjerva (2016)

.53

Do Dinh and Gurevych (2016)°

.56

Dense(1)

22

LSTM(32)

43

Bi-LSTM(32)

46

Bi-LSTM(32)+Dense(20)

.50

Dense(300)+Bi-LSTM(32)+Dense(20)

.56

Concat(n=2)+Dense(300)

.55

Table 2: Performance of different models compared to the score reported by two relevant works in the literature.
We report the performance of simpler models and their combinations as baselines. We used some abbreviations to
describe the models in the table. For example, Dense(1) represents a single, fully connected layer of output length
of 1, LSTM(32) is an LSTM with an output length of 32 and Concat represents our compositional model. Thus,
Concat(n=2)+Dense(300) represents the bigram composition model with a concatenation window of 2 combined

with a fully connected layer of 300 output units.

N | Precision | Recall | F1 score
1 627 459 530
2 .588 504 .543
3 571 531 550
4 .649 402 497

Table 3: F1 for different windows of concatenation (N)
in the composition model. N=1 is equivalent to no con-
catenation.

The results are higher than those returned by the
same models trained and tested on the same sen-
tences only with pre-trained distributional embed-
dings. It appears that simply adding the concrete-
ness feature returns a better performance on the
whole dataset. It is worth noting that in this case,
and only in this case, the “compositional” archi-
tecture is the best performing, while the bi-LSTM
has a harder time detecting metaphors in the tex-
tual data.

Finally, we try to break long sentences into
shorter sequences, as we discussed in 4.2. The
metaphors identified in the VUAM corpus do not
generally require long-distance information to be
detected. We can observe that this method im-
proves the performance of our models: this is
probably because the “noise” due to long padding
of short sentences is reduced. Having less contex-
tual information for words tagged as metaphoric or
literal does not seem to have a real negative impact
on the learning process.

As we show in Table 6, breaking sentences
longer than 20 tokens into several short sequences
reduces the number of misclassified elements in
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the set.

Not surprisingly, a combination of these two
methods - adding explicit concreteness informa-
tion and breaking long sentences - returns the best
overall results, as can be seen in Table 7.

Finally, since these experiments were originally
designed for the shared task in metaphor detec-
tion of the First Workshop in Figurative Language
(NAACL 2018), in Table 8 we report our best per-
forming models’ results on the evaluation set pro-
vided in the task.

The last line reports the result from using both
models together: as can be seen, the F score we get
from taking into consideration the output of both
architectures together is higher than the F score of
the single models.

We can suppose that the two models are learn-
ing to detect slightly different kinds of metaphors -
their true positives are not completely overlapping
- and they can thus complement each other.

6 Conclusions

In the frame of NAACL 2018’s shared task on
metaphor detection, we explored two main ap-
proaches to detect metaphoricity through deep
learning and compared their performances with
different kinds of inputs. The overall single best
performing system is a deep neural network com-
posed of a bi-LSTM preceded and followed by
fully connected layers, having access to concrete-
ness scores for each token and running on rela-
tively short sequences - thus reducing the effects
of sentence padding.

We show that adding such features, our model is



Architecture F1
Bi-LSTM(32) 46
Bi-LSTM(32)+Dense(20) .50
Bi-LSTM(400)+Dense(20) 47
Bi-LSTM(32)+LSTM(32)+Dense(20) .35
Bi-LSTM(400)+LSTM(32)+Dense(20) 43
Dense(300)+Bi-LSTM(32)+Dense(20) 56
Dense(300)+Bi-LSTM(300)+Dense(20) .56
Dense(300)+Bi-LSTM(300)+LSTM(20)+Dense(20) | .57
Dense(300)+Bi-LSTM(300)+LSTM(100)+Dense(20) | .40

Table 4: Parameter tuning, testing both deeper and wider settings of the model. We write in parenthesis the
dimensions each layer: for example Dense(20) is a fully connected layer with an output space of dimensionality
20.

N Precision | Recall | F1

Dense(300)+Bi-LSTM(32)+Dense(20) .642 498 | .561
Dense(301)+Bi-LSTM(32)+Dense(20)+Conc .580 491 | 530
Concat(n=2)+Dense(300)+Conc 554 570 | 562
Concat(n=3)+Dense(300)+Conc 567 593 | .580

Table 5: Results for different models using embeddings enriched with explicit information regarding word con-
creteness. The first line works as baseline showing a model without input manipulation. Concat(n=) represents
our compositional model, with n= representing the composition window length. Conc signifies the usage of
concreteness scores. So for example Concat(n=2)+Dense(300)+Conc represents our compositional model with
concatenation window of 2 combined with a fully connected layer of 300 output units and using the concreteness
scores as additional information.

N Precision | Recall | F1

Dense(300)+Bi-LSTM(32)+Dense(20) .642 498 | .561
Dense(300)+Bi-LSTM(32)+Dense(20)+Chunk .671 570 | .621
Concat(n=2)+Dense(300)+Chunk 571 561 | .560
Concat(n=3)+Dense(300)+Chunk 611 400 | 491

Table 6: Results for different models using sentence breaking to 20 (any sentence longer than 20 tokens is split in
two parts treated as complete different sentences). The first line works as baseline showing a model without input
manipulation. Concat(n=) represents our compositional model, Chunk signifies the usage of sentence breaking.

N Precision | Recall | F1

Dense(300)+Bi-LSTM(32)+Dense(20) .642 498 | .561
Dense(300)+Bi-LSTM(32)+Dense(20)+Chunk .670 571 | .620
Dense(301)+Bi-LSTM(32)+Dense(20)+Conc 581 490 | 531
Dense(301)+Bi-LSTM(32)+Dense(20)+Conc+Chunk .649 .624 | .636
Concat(n=3)+Dense(300)+Conc+Chunk .632 446 | 523

Table 7: Results for different models using embeddings enriched with explicit information regarding word con-
creteness and sentence breaking to 20 (any sentence longer than 20 tokens is split in two parts treated as complete
different sentences). The first lines work as baselines showing the performance of previous models (without any
input manipulation, only chunking, only concreteness scores). Concat(n=) represents our compositional model,
Chunk signifies the usage of sentence breaking, Conc represents the usage of concreteness scores.
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N Precision | Recall | F1

Dense(300)+Bi-LSTM(32)+Dense(20) .638 593 | 615
Concat(n=2)+Dense(300) .642 498 | .561
Combined results .595 .680 | .635

Table 8: Results for the evaluation set from the shared dataset competition (NAACL 2018). We used sentence

breaking and concreteness information.

able to slightly outperform two baselines recently
published.

We also found that combining these two sys-
tems gave the best results on the test set provided
by the shared task.

Considering the difficult nature of the original
annotations, we judge this a promising result. It
could be the case that adding more explicit fea-
tures further helps reduce the number of inconsis-
tent detections on the corpus, but one of the goals
of these experiments was that of keeping the fea-
ture engineering as contained as possible, reduc-
ing the number of external resources used to en-
rich the input.

We also explored a simpler neural architecture
based on the recursive composition of word em-
beddings. Yielding a slighlty worse performance
than the Bi-LSTM architecture, this model still
shows that a much simpler architecture can reach
interesting results.

7 Future Works

We think that an in depth error analysis of our
models’ shortcomings might represent an interest-
ing contribution in order to better understand what
neural networks are learning when they are learn-
ing metaphor detection. In future we would like to
perform a systematic analysis of the errors of our
networks both when used alone and when used in
combination.

We would also like to extend the range of our
comparisons to different, and simpler, machine
learning algorithms to see to what extent the in-
formation provided in input - in terms of distri-
butional information and explicit lexical scores
- contributes to the performance of our models.
While a consistent body of works on metaphor de-
tection with “traditional” machine learning means
already exists, we think that a direct comparison of
our networks with other systems might help clari-
fying the contribution of deep learning to this task.
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