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Abstract

As the community working on computational
approaches to figurative language is growing
and as methods and data become increasingly
diverse, it is important to create widely shared
empirical knowledge of the level of system
performance in a range of contexts, thus fa-
cilitating progress in this area. One way of
creating such shared knowledge is through
benchmarking multiple systems on a common
dataset. We report on the shared task on
metaphor identification on the VU Amsterdam
Metaphor Corpus conducted at the NAACL
2018 Workshop on Figurative Language Pro-
cessing.

1 Introduction

Metaphor use in everyday language is a way to
relate our physical and familiar social experi-
ences to a multitude of other subjects and con-
texts (Lakoff and Johnson, 2008); it is a funda-
mental way to structure our understanding of the
world even without our conscious realization of its
presence as we speak and write. It highlights the
unknown using the known, explains the complex
using the simple, and helps us to emphasize the
relevant aspects of meaning resulting in effective
communication. Consider the following examples
of metaphor use in Table 1.

Metaphor has been studied in the context
of political communication, marketing, mental
health, teaching, assessment of English profi-
ciency, among others (Beigman Klebanov et al.,
2018; Gutierrez et al., 2017; Littlemore et al.,
2013; Thibodeau and Boroditsky, 2011; Kaviani
and Hamedi, 2011; Kathpalia and Carmel, 2011;
Landau et al., 2009; Beigman Klebanov et al.,
2008; Zaltman and Zaltman, 2008; Littlemore and
Low, 2006; Cameron, 2003; Lakoff, 2010; Billow
et al., 1997; Bosman, 1987); see chapter 7 in Veale
et al. (2016) for a recent review.

M: The alligator’s teeth are like white daggers
I: The alligator have white and pointed teeth.

M: He swam in a sea of diamonds.
I: He is a rich person.

M: Authority is a chair, it needs legs to stand.
I: Authority is useless when it lacks support.

M: In Washington, people change dance part-
ners frequently, but not the dance.
I: In Washington, people work with one another
opportunistically.

M: Robert Muller is like a bulldog — he will get
what he wants.
I: Robert Muller will work in a determined and
aggressive manner to get what he wants.

Table 1: Metaphorical sentences (M) characterized
by metaphors in bold and their literal interpreta-
tions (I)

In this paper, we report on the first shared task
on automatic metaphor detection. By making
available an easily accessible common dataset and
framework for evaluation, we hope to contribute to
the consolidation and strengthening of the grow-
ing community of researchers working on com-
putational approaches to figurative language. By
engaging a variety of teams to test their systems
within a common evaluation framework and share
their findings about more or less effective architec-
tures, features, and data sources, we hope to create
a shared understanding of the current state of the
art, laying a foundation for further work.

This report provides a description of the shared
task, dataset and metrics, a brief description of
each of the participating systems, a comparative
evaluation of the systems, and our observations
about trends in designs and performance of the
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systems that participated in the shared task.

2 Related Work

Over the last decade, automated detection of
metaphor has become an increasingly popular
topic, which manifests itself in both a variety of
approaches and in an increasing variety of data to
which the methods are applied. In terms of meth-
ods, approaches based on feature-engineering in
a supervised machine learning paradigm explored
features based on concreteness and imageability,
semantic classification using WordNet, FrameNet,
VerbNet, SUMO ontology, property norms, and
distributional semantic models, syntactic depen-
dency patterns, sensorial and vision-based fea-
tures (Bulat et al., 2017; Köper and im Walde,
2017; Gutierrez et al., 2016; Shutova et al., 2016;
Beigman Klebanov et al., 2016; Tekiroglu et al.,
2015; Tsvetkov et al., 2014; Beigman Klebanov
et al., 2014; Dunn, 2013; Neuman et al., 2013;
Mohler et al., 2013; Hovy et al., 2013; Tsvetkov
et al., 2013; Turney et al., 2011; Shutova et al.,
2010; Gedigian et al., 2006); see Shutova et al.
(2017) and Veale et al. (2016) for reviews of super-
vised as well as semi-supervised and unsupervised
approaches.

Recently, deep learning methods have been ex-
plored for token-level metaphor detection (Rei
et al., 2017; Gutierrez et al., 2017; Do Dinh and
Gurevych, 2016). As discussed later in the paper
later, the fact that all but one of the participating
teams for the shared task experimented with neu-
ral network architectures testifies to the increasing
popularity of this modeling approach.

In terms of data used for evaluating metaphor
detection systems, researchers used specially con-
structed or selected sets, such as adjective noun
pairs (Gutierrez et al., 2016; Tsvetkov et al., 2014),
WordNet synsets and glosses (Mohammad et al.,
2016), annotated lexical items (from a range of
word classes) in sentences sampled from cor-
pora (Özbal et al., 2016; Jang et al., 2015; Hovy
et al., 2013; Birke and Sarkar, 2006), all the way
to annotation of all words in running text for
metaphoricity (Beigman Klebanov et al., 2018;
Steen et al., 2010); Veale et al. (2016) review addi-
tional annotated datasets. By far the largest anno-
tated dataset is the VU Amsterdam Metaphor Cor-
pus; it has also been used for evaluating many of
the cited supervised learning-based systems. Due
to its size, availability, reliability of annotation,

and popularity in current research, we decided to
use it to benchmark the current field of supervised
metaphor detection approaches.

3 Task Description

The goal of this shared task is to detect, at
the word level, all metaphors in a given text.
Specifically, there are two tracks, namely, All
Part-Of-Speech (POS) and Verbs. The former
track is concerned with the detection of all
content words, i.e., nouns, verbs, adverbs and
adjectives that are labeled as metaphorical while
the latter track is concerned only with verbs that
are metaphorical. We excluded all forms or be,
do, and have for both tracks. Each participating
individual or team can elect to compete in the All
POS track, Verbs track, or both. The competition
is organized into two phases: training and testing.

3.1 Dataset

We use the VU Amsterdam Metaphor Corpus
(VUA) (Steen et al., 2010) as the dataset for our
shared task. The dataset consists of 117 fragments
sampled across four genres from the British Na-
tional Corpus: Academic, News, Conversation,
and Fiction. Each genre is represented by approx-
imately the same number of tokens, although the
number of texts differs greatly, where the news
archive has the largest number of texts. We ran-
domly sampled 23% of the texts from each genre
to set aside for testing, while retaining the rest for
training. The data is annotated using the MIP-
VU procedure with a strong inter-annotator re-
liability of κ > 0.8. It is based on the MIP
procedure (Group, 2007), extending it to handle
metaphoricity through reference (such as marking
did as a metaphor in As the weather broke up, so
did their friendship) and allow for explicit cod-
ing of difficult cases where a group of annotators
could not arrive at a consensus. The tagset is rich
and is organized hierarchically, detecting various
types of metaphors, words that flag the presense of
metaphors, etc. In this paper, we consider only the
top-level partition, labeling all content words with
the tag “function=mrw” (metaphor-related word)
as metaphors, while all other content words are la-
beled as non-metaphors. Table 2 shows the overall
statistics of our training and testing sets.

To facilitate the use of the datasets and evalu-
ation scripts beyond this shared task in future re-
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Data Training Testing
#texts #tokens %M #texts #tokens %M

Verbs
Academic 12 4,903 31% 4 1,259 51%
Conversation 18 4,181 15% 6 2,001 15%
Fiction 11 4,647 25% 3 1,385 20%
News 49 3,509 42% 14 1,228 46%

All POS
Academic 12 27,669 14% 4 6,076 24%
Conversation 18 11,994 10% 6 5,302 10%
Fiction 11 15,892 16% 3 4,810 14%
News 49 17,056 20% 14 6,008 22%

Table 2: Verbs and All POS datasets. The table reports the number of text fragments from BNC, number
of tokens and percentage of tokens marked as metaphor group by genres.

search, the complete set of task instructions and
scripts are published on Github1. Specifically, we
provide a script to parse the original VUAMC.xml,
which was not provided in our download bundle
due to licensing restriction, to extract the verbs and
other content words required for the shared task.
We also provide a set of features used to construct
the baseline classification model for prediction of
metaphor/non-metaphor classes at the word level,
and instructions on how to replicate the baselines.

3.2 Training phase
In this first phase, data is released for train-
ing and/or development of metaphor detection
models. Participants can elect to perform cross-
validation on the training data, or partition the
training data further to have a held-out set for
preliminary evaluations, and/or set apart a subset
of the data for development/tuning of hyper-
parameters. However the training data is used, the
goal is to have N final systems (or versions of a
system) ready for evaluation when the test data is
released.

3.3 Testing phase
In this phase, instances for evaluation are re-
leased.2 Each participating system generated
predictions for the test instances, for up to N
models.3 Predictions are submitted to CodaLab4

1https://github.com/EducationalTestingService/metaphor
/tree/master/NAACL-FLP-shared-task

2In principle, participants could have access to the test
data by independently obtaining the VUA corpus. The shared
task was based on a presumption of fair play by participants.

3We set N=12.
4https://competitions.codalab.org/competitions/17805

and evaluated automatically against the true
labels. We selected CodaLab as a platform
for organizing the task due to its ease of use,
availability of communication tools such as
mass-emailing, online forum for clarification of
task issues, and tracking of submissions in real
time. Submissions were anonymized. Hence, the
only statistics displayed were the highest score
of all systems per day, and the total number of
system submissions per day. The metrics used
for evaluation is the F1 score (least frequent
class/label, which is “metaphor”) with Precision
and Recall also available via the detailed results
link in CodaLab.

4 Systems

The shared task started on January 12, 2018 when
the training data was made available to registered
participants. On February 12, 2018, the testing
data was released. Submissions were accepted un-
til March 8, 2018. Overall, there were a total of 32
submissions by 8 unique individuals/teams for the
Verbs track, and 100 submissions by 11 individu-
als/teams for the All POS track. All participants
in the Verbs track also participated in the All POS
track. In total, 8 system papers were submitted
describing the algorithms and methodology for
generating their metaphor predictions. In the
following sections, we first describe the baseline
classification models and their feature sets. Next,
we report performance results and ranking of the
best systems for each of the 8 teams. We also
briefly describe the best-performing system for
every team. The interested readers can refer to the
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teams’ papers for more details.

Baseline Classifiers
We make available to shared task participants a
number of features from prior published work on
metaphor detection, including unigram features,
features based on WordNet, VerbNet, and those
derived from a distributional semantic model,
POS-based, concreteness and difference in con-
creteness, as well as topic models.

As baselines, we train two logistic regression
classifiers for each track (Verbs and All-POS),
with instance weights inversely proportional to
class frequencies. Lemmatized unigrams (UL) is a
simple yet fairly strong baseline (Baseline 1). This
feature is produced using NLTK (Bird and Loper,
2004) to generate the lemma of each word accord-
ing to its tagged POS. As Baseline 2, we use the
best system from Beigman Klebanov et al. (2016).
The features are: lemmatized unigrams, general-
ized WordNet semantic classes, and difference in
concreteness ratings between verbs/adjectives and
nouns (UL + WordNet + CCDB).5

4.1 System Descriptions

The best-performing system from each participant
is described below, in alphabetic order.

bot.zen (Stemle and Onysko, 2018) used
word embeddings from different standard cor-
pora representing different levels of language
mastery, encoding each word in a sentence into
multiple vector-based embeddings which are
then fed into an LSTM RNN network architec-
ture. Specifically, the backpropagation step was
performed using weightings computed based on
the logarithmic function of the inverse of the
count of the metaphors and non-metaphors. Their
implementation is hosted on Github6 under the
Apache License Version 2.0.

DeepReader (Swarnkar and Singh, 2018) The
authors present a neural network architecture
that concatenates hidden states of forward and
backward LSTMs, with feature selection and
classification. The authors also show that re-
weighting examples and adding linguistic features
(WordNet, POS, concreteness) helps improve
performance further.

5Baseline 2 is “all-16” in Beigman Klebanov et al. (2018).
6https://github.com/bot-zen/naacl flp st

MAP (Pramanick et al., 2018) used a hybrid
architecture of Bi-directional LSTM and Con-
ditional Random Fields (CRF) for metaphor
detection, relying on features such as token,
lemma and POS, and using word2vec embeddings
trained on English Wikipedia. Specifically, the
authors considered contextual information within
a sentence for generating predictions.

nsu ai (Mosolova et al., 2018) used linguistic
features based on unigrams, lemmas, POS tags,
topical LDAs, concreteness, WordNet, VerbNet
and verb clusters and trained a Conditional
Random Field (CRF) model with gradient descent
using the L-BFGS method to generate predictions.

OCOTA (Bizzoni and Ghanimifard, 2018)
experimented with a deep neural network com-
posed of a Bi-LSTM preceded and followed
by fully connected layers, as well as a simpler
model that has a sequence of fully connected
neural networks. The authors also experiment
with word embeddings trained on various data,
with explicit features based on concreteness, and
with preprocessing that addresses variability in
sentence length. The authors observe that a model
that combines Bi-LSTM with the explicit features
and sentence-length manipulation shows the best
performance. The authors also show that an
ensemble of the two types of neural models works
even better, due to a substantial increase in recall
over single models.

Samsung RD PL (Skurniak et al., 2018) ex-
plored the use of several orthogonal resources in a
cascading manner to predict metaphoricity. For a
given word in a sentence, they extracted three fea-
ture sets: concreteness score from the Brysbaert
database, intermediate hidden vector representing
the word in a neural translation framework, and
generated logits of a CRF sequence tagging model
trained using word embeddings and contextual
information. Trained on the VUA data, the CRF
model alone outperforms that of a GRU taking all
three features.

THU NGN (Wu et al., 2018) created word
embeddings using a pre-trained word2vec model
and added features such as embedding clus-
terings and POS tags before using CNN and
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Bi-LSTM to capture local and long-range de-
pendencies for generating metaphorical labels.
Specifically, they used an ensemble strategy
in which iterative modeling is performed by
training on randomly selected training data and
averaging the model predictions for finalized
outputs. At the inferencing layer, the authors
showed that the best-performing system is one
achieved by using a weighted-softmax classifier
rather than the Conditional Random Field pre-
dictor, since it can significantly improve the recall.

ZIL IPIPAN (Mykowiecka et al., 2018) used
word2vec embeddings over ortographical word
forms (no lemmatization) as an input for LSTM
network for generating predictions. They ex-
plored augmenting word embeddings by binarized
vectors that reflect the General Inquirer dictionary
category of a word and its POS. Experiments were
also carried out with different parametrization of
LSTM based on type of unit network, number of
layers, size of dropout, number of epochs, etc.,
though vectors enriched with POS information
did not result in any improvement.

5 Results

Tables 3 and 4 show the performance and the
ranking of all the systems, including the baseline
systems. For overall results on All-POS track,
three out of the seven systems outperformed the
stronger of the two baselines, with the best submit-
ted system gaining 6 F1-score points over the best
baseline (0.65 vs 0.59). We note that the best sys-
tem outperformed the baseline through improved
precision (by 10 points), while the recall remained
the same, around 0.7.

For the Verbs track, four out of the five sys-
tems outperformed both baselines. The best sys-
tem posted an improvement of 7 F1-score points
over best baseline (0.67 vs 0.60), achieved by im-
provements of about the same magnitude in both
recall and precision.

In the following section, we inspect the perfor-
mance of the different systems more closely.

6 Discussion

6.1 Trends in system design
All the submitted systems but one are based on a
neural network architecture. Out of the top three
systems that outperform the baseline on All-POS,

two introduce explicit linguistic features into the
architecture along with the more standard word-
embedding-based representations, while the third
experiments with using a variety of corpora –
including English-language-learner-produced cor-
pora – to compute word embeddings.

6.2 Performance across genres
Tables 3 and 4 show the overall performance for
the best submission per team, as well as the per-
formance of these systems by genre. It is clear
that the overall F1 scores of 0.62-0.65 for the top
three systems do not make explicit the substan-
tial variation in performance across genres. Thus,
Academic is the easiest genre, with the best per-
formance of 0.74, followed by News (0.66), with
comparable scores for Fiction (0.57) and Conver-
sation (0.55). In fact, this trend holds not only
for the top systems but for all systems, includ-
ing baselines, apart from the lowest-performing
system that showed somewhat better results on
News than on Academic. The same observations
hold for the Verb data. The large discrepancies
in performance across different genres underscore
the need for wide genre coverage when evaluat-
ing metaphor detection systems, as the patterns
of metaphor use are quite different across genres
and present tasks of varying difficulty to machine
learning systems across the board.

Furthermore, we note that the best overall sys-
tem, which is the only system that improves
upon the baseline for every single genre in All-
POS evaluation, improved over the baseline much
more substantially in the lower-performance gen-
res. Thus, for Academic and News, the in-
crease is 1.4 and 5.2 F1 points, respectively, while
the improvements for Conversation and Fiction
are 8.1 and 11.1 points, respectively. The best-
performing system thus exhibits more stable per-
formance across genres than the baseline, though
genre discrepancies are still substantial, as de-
scribed above.

6.3 Part of Speech
6.3.1 AllPOS vs Verbs
We observe that for the four teams who improved
upon the baseline on the Verbs-only track, their
best performance on the Verbs was better than on
the All-POS track, by 2.1-5 F1 score points.
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Rank Team P R F1 Approach
All POS (Overall)

1 THU NGN 0.608 0.700 0.651 word embeddings + CNN + Bi-LSTM
2 OCOTA 0.595 0.680 0.635 word embeddings + Bi-LSTM + linguistic
3 bot.zen 0.553 0.698 0.617 word embeddings + LSTM RNN
4 Baseline 2 0.510 0.696 0.589 UL + WordNet + CCDB + Logistic Regression
5 ZIL IPIPAN 0.555 0.615 0.583 dictionary-based vectors + LSTM
6 Baseline 1 0.521 0.657 0.581 UL + Logistic Regression
7 DeepReader 0.511 0.644 0.570 word embeddings + Di-LSTM + linguistic
8 Samsung RD PL 0.547 0.575 0.561 word embeddings + CRF + context
9 MAP 0.645 0.459 0.536 word embeddings + Bi-LSTM + CRF
10 nsu ai 0.183 0.111 0.138 linguistic + CRF

All POS (Academic)
1 THU NGN 0.725 0.746 0.735 word embedding + CNN + Bi-LSTM
2 Baseline 2 0.711 0.731 0.721 UL + WordNet + CCDB + Logistic Regression
3 Baseline 1 0.728 0.701 0.715 UL + Logistic Regression
4 bot.zen 0.743 0.681 0.711 word embeddings + LSTM RNN
5 OCOTA 0.724 0.695 0.709 word embeddings + Bi-LSTM + linguistic
6 ZIL IPIPAN 0.722 0.674 0.697 dictionary-based vectors + LSTM
7 DeepReader 0.641 0.682 0.661 word embeddings + Di-LSTM + linguistic
8 Samsung RD PL 0.649 0.631 0.640 word embeddings + CRF + context
9 MAP 0.743 0.526 0.616 word embeddings + Bi-LSTM + CRF
10 nsu ai 0.283 0.100 0.148 linguistic + CRF

All POS (Conversation)
1 THU NGN 0.453 0.711 0.553 word embeddings + CNN + Bi-LSTM
2 OCOTA 0.478 0.607 0.534 word embeddings + Bi-LSTM + linguistic
3 bot.zen 0.469 0.563 0.511 word embeddings + LSTM RNN
4 DeepReader 0.403 0.608 0.485 word embeddings + Di-LSTM + linguistic
5 MAP 0.503 0.456 0.478 word embeddings + Bi-LSTM + CRF
6 Baseline 2 0.334 0.809 0.472 UL + WordNet + CCDB + Logistic Regression
7 Samsung RD PL 0.505 0.439 0.470 word embeddings + CRF + context
8 Baseline 1 0.335 0.767 0.466 UL + Logistic Regression
9 ZIL IPIPAN 0.336 0.625 0.437 dictionary-based vectors + LSTM
10 nsu ai 0.099 0.107 0.102 linguistic + CRF

All POS (Fiction)
1 THU NGN 0.483 0.692 0.569 word embeddings + CNN + Bi-LSTM
2 OCOTA 0.460 0.631 0.532 word embeddings + Bi-LSTM + linguistic
3 bot.zen 0.474 0.569 0.517 word embeddings + LSTM RNN
4 DeepReader 0.414 0.597 0.489 word embeddings + Di-LSTM + linguistic
5 MAP 0.526 0.445 0.482 word embeddings + Bi-LSTM + CRF
6 ZIL IPIPAN 0.415 0.545 0.471 dictionary-based vectors + LSTM
7 Samsung RD PL 0.413 0.531 0.464 word embeddings + CRF + context
8 Baseline 2 0.366 0.614 0.458 UL + WordNet + CCDB + Logistic Regression
9 Baseline 1 0.372 0.594 0.457 UL + Logistic Regression
10 nsu ai 0.121 0.120 0.120 linguistic + CRF

All POS (News)
1 OCOTA 0.606 0.718 0.658 word embeddings + Bi-LSTM + linguistic
2 THU NGN 0.664 0.647 0.655 word embedding + CNN + Bi-LSTM
3 bot.zen 0.608 0.694 0.648 word embeddings + LSTM RNN
4 ZIL IPIPAN 0.649 0.578 0.612 dictionary-based vectors + LSTM
5 Baseline 2 0.567 0.650 0.606 UL + WordNet + CCDB + Logistic Regression
6 Baseline 1 0.591 0.593 0.592 UL + Logistic Regression
7 DeepReader 0.566 0.592 0.579 word embeddings + Di-LSTM + linguistic
8 Samsung RD PL 0.571 0.587 0.579 word embeddings + CRF + context
9 MAP 0.681 0.400 0.504 word embeddings + Bi-LSTM + CRF
10 nsu ai 0.255 0.126 0.169 linguistic + CRF

Table 3: Performance and ranking of the best system per team and baselines for the All-POS track,
including split by genre.
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Rank Team P R F1 Approach
Verbs (Overall)

1 THU NGN 0.600 0.763 0.672 word embeddings + CNN + Bi-LSTM
2 bot.zen 0.547 0.779 0.642 word embeddings + LSTM RNN
3 ZIL IPIPAN 0.571 0.676 0.619 dictionary-based vectors + LSTM
4 DeepReader 0.529 0.708 0.605 word embeddings + Di-LSTM + linguistic
5 Baseline 2 0.527 0.698 0.600 UL + WordNet + CCDB + Logistic Regression
6 MAP 0.675 0.517 0.586 word embeddings + Bi-LSTM + CRF
7 Baseline 1 0.510 0.654 0.573 UL + Logistic Regression
8 nsu ai 0.301 0.207 0.246 linguistic + CRF

Verbs (Academic)
1 Baseline 2 0.707 0.836 0.766 UL + WordNet + CCDB + Logistic Regression
2 DeepReader 0.684 0.865 0.764 word embeddings + Di-LSTM + linguistic
3 ZIL IPIPAN 0.752 0.768 0.760 dictionary-based vectors + LSTM
4 THU NGN 0.746 0.763 0.755 word embedding + CNN + Bi-LSTM
5 MAP 0.672 0.842 0.748 word embeddings + Bi-LSTM + CRF
6 Baseline 1 0.686 0.808 0.742 UL + Logistic Regression
7 bot.zen 0.769 0.617 0.685 word embeddings + LSTM RNN
8 nsu ai 0.499 0.908 0.644 linguistic + CRF

Verbs (Conversation)
1 THU NGN 0.408 0.656 0.503 word embeddings + CNN + Bi-LSTM
2 bot.zen 0.355 0.729 0.477 word embeddings + LSTM RNN
3 DeepReader 0.366 0.605 0.456 word embeddings + Di-LSTM + linguistic
4 Baseline 2 0.301 0.821 0.441 UL + WordNet + CCDB + Logistic Regression
5 MAP 0.482 0.405 0.440 word embeddings + Bi-LSTM + CRF
6 ZIL IPIPAN 0.333 0.636 0.437 dictionary-based vectors + LSTM
7 Baseline 1 0.294 0.794 0.429 UL + Logistic Regression
8 nsu ai 0.163 0.271 0.203 linguistic + CRF

Verbs (Fiction)
1 THU NGN 0.455 0.784 0.576 word embeddings + CNN + Bi-LSTM
2 bot.zen 0.411 0.766 0.535 word embeddings + LSTM RNN
3 MAP 0.538 0.513 0.525 word embeddings + Bi-LSTM + CRF
4 DeepReader 0.419 0.670 0.515 word embeddings + Di-LSTM + linguistic
5 Baseline 2 0.407 0.667 0.506 UL + WordNet + CCDB + Logistic Regression
6 ZIL IPIPAN 0.414 0.604 0.491 dictionary-based vectors + LSTM
7 Baseline 1 0.390 0.608 0.475 UL + Logistic Regression
8 nsu ai 0.218 0.190 0.204 linguistic + CRF

Verbs (News)
1 THU NGN 0.694 0.744 0.718 word embedding + CNN + Bi-LSTM
2 bot.zen 0.667 0.764 0.712 word embeddings + LSTM RNN
3 Baseline 2 0.677 0.689 0.683 UL + WordNet + CCDB + Logistic Regression
4 ZIL IPIPAN 0.709 0.644 0.675 dictionary-based vectors + LSTM
5 DeepReader 0.644 0.665 0.654 word embeddings + Di-LSTM + linguistic
6 Baseline 1 0.668 0.619 0.643 UL + Logistic Regression
7 MAP 0.746 0.488 0.590 word embeddings + Bi-LSTM + CRF
8 nsu ai 0.477 0.256 0.333 linguistic + CRF

Table 4: Performance and ranking of the best system per team and baselines for the Verbs track, including
split by genre.

Team All-POS Verbs Adjectives Nouns Adverbs Best to Worst
THU NGN .651 .674 (1) .651 (2) .629 (3) .588 (4) .09
OCOTA .635 .669 (1) .625 (2) .609 (3) .569 (4) .10
bot.zen .617 .655 (1) .582 (3) .594 (2) .539 (4) .12
Baseline 2 .589 .616 (1) .557 (3) .564 (2) .542 (4) .07
ZIL IPIPAN .583 .619 (1) .571 (2) .552 (3) .484 (4) .14
Baseline 1 .581 .594 (1) .578 (2) .564 (3) .563 (4) .03
DeepReader .570 .605 (1) .568 (2) .537 (3) .521 (4) .08
SamSung RD PL .561 .615 (1) .540 (2) .516 (3) .498 (4) .12
MAP .536 .586 (1) .527 (2) .481 (4) .496 (3) .10
nsu ai .138 .155 (1) .131 (3) .136 (2) .102 (4) .05
Av. rank among POS – 1 2.3 2.8 3.9 .09
Rank order correlation 1 .94 .92 .98 .81 –
with AllPOS performance

Table 5: Performance (F-score) of the best systems submitted to All-POS track by POS subsets of the test
data. In parentheses, we show the rank of the given POS within all POS for the system. The last column
shows the overall drop in performance from best POS (ranked 1) to worst (ranked 4).
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This could be related to the larger preponder-
ance of metaphors among verbs, which, in turn,
leads to a more balanced class distribution in the
Verbs data.

6.3.2 AllPOS by POS
To better understand performance patterns across
various parts of speech, we break down the All-
POS test set by POS, and report performance of
each of the best systems submitted to the All-
POS track on each POS-based subset of the test
data; Table 5 shows the results. First, we ob-
serve that the average difference in performance
between best and worst POS is 9 points (see col-
umn Best to Worst in the Table), with different
systems ranging from 3 to 14. We note that the
baseline systems are relatively more robust in this
respect (3-7 points), while the the top 3 systems
exhibit a 9-12 point range of variation in perfor-
mance by POS. While this gap is substantial, it is
much smaller than the 20-point gap observed in
by-genre breakdown.

Second, we note that without exception all sys-
tems performed best on verbs, and for all but one
system performance was worst on adverbs (see
“Av. rank among POS” row in Table 5). Perfor-
mance on adjectives and nouns was comparable
for most systems, with slightly better results for
adjectives for 7 out of 10 systems. These trends
closely follow the proportions of metaphors within
each POS:

While 30% of verbs are marked as metaphor-
ical, only 8% of adverbs are thus marked, with
nouns and adjectives occupying the middle ground
with 13% and 18% metaphors, respectively.

Third, we observe that the relative performance
of the systems is quite consistent across POS.
Thus, the rank order correlation between systems’
overall performance (AllPOS) and their perfor-
mance on Verbs is 0.94; it is 0.98 for nouns and
0.92 for Adjectives (see the last row of Table 5).
In fact, the top three ranks are occupied by the
same systems in AllPOS, Verbs, Adjectives, and
Nouns categories. The somewhat lower rank or-
der correlation for Adverbs (0.81) reflects Base-
line 1 (which ranks 6th overall) posting a rela-
tively strong performance for Adverbs (ranks 3rd),
while the ZIL IPIPAN system (ranks 5th overall)
shows relatively weak performance on Adverbs
(ranks 9th). Overall, the systems’ relative stand-
ings are not much affected when parceled out by
POS-based subsets.

7 Conclusion

This paper summarized the results of the 2018
shared task on metaphor identification in the VUA
corpus, held as part of the 2018 NAACL Work-
shop on Figurative Language Processing. We pro-
vided brief descriptions of the participating sys-
tems for which detailed papers were submitted;
systems’ performance in terms of precision, recall,
and F-score; and breakdowns of systems’ perfor-
mance by POS and genre.

We observed that the task of metaphor detection
seems to be somewhat easier for verbs than for
other parts of speech, consistently across partici-
pating systems. For genres, we observed a large
discrepancy in best and worst performance, with
results in the .7s for Academic and in .5s for Con-
versation data. Clearly, understanding and bridg-
ing the genre-based gap in performance is an im-
portant avenue for future work.

While most systems employed a deep learn-
ing architecture effectively, the baselines that use
a traditional feature-engineering design were not
far behind, in terms of performance; the stronger
baseline came 4th overall. Indeed, some of the
contributions explored a combination of a DNN
architecture and explicit linguistic features; this
seems like a promising direction for future work.
Some of the teams made their implementations
publicly available, which should facilitate further
work on improving performance on this task.
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