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Abstract
This paper describes the results of NILC team
at CWI 2018. We developed solutions follow-
ing three approaches: (i) a feature engineering
method using lexical, n-gram and psycholin-
guistic features, (ii) a shallow neural network
method using only word embeddings, and (iii)
a Long Short-Term Memory (LSTM) language
model, which is pre-trained on a large text cor-
pus to produce a contextualized word vector.
The feature engineering method obtained our
best results for the classification task and the
LSTM model achieved the best results for the
probabilistic classification task. Our results
show that deep neural networks are able to per-
form as well as traditional machine learning
methods using manually engineered features
for the task of complex word identification in
English.

1 Introduction

Research efforts on text simplification have mostly
focused on either lexical (Devlin and Tait, 1998;
Biran et al., 2011; Glavaš and Štajner, 2015; Paet-
zold and Specia, 2016b) or syntactic simplifica-
tion (Siddharthan, 2006; Kauchak, 2013). Lexical
simplification involves replacing specific words in
order to reduce lexical complexity. Lexical sim-
plification is an open problem, as identifying and
simplifying complex words in a given context is
not straightforward. Although very intuitive, this
is a challenging task since the substitutions must
preserve both the original meaning and the gram-
maticality of the sentence being simplified. Com-
plex word identification is part of the usual lex-
ical simplification pipeline (Paetzold and Specia,
2015), which is illustrated in Figure 1.

For the challenge, we focused on the English
monolingual CWI track. We implemented three

∗ The opinions expressed in this article are those of the
authors and do not necessarily reflect the official policy or
position of the Itaú-Unibanco.

Figure 1: Lexical Simplification pipeline.

approaches using machine learning: the first one
uses feature engineering; the second one takes the
average embedding of target words as input to a
neural network; and the third approach models the
context of the target words using an LSTM (Gers
et al., 1999). Our code is publicly available at
github1.

2 Task Description

The setup of the CWI Shared Task 2018 is as fol-
lows: given a target word (or a chunk of words)
in a sentence, predict whether or not a non-native
English speaker would be able to understand it.
These predictions are based on annotations col-
lected from a mixture of 10 native and 10 non-
native speakers. The labels in the binary classifi-
cation task were assigned “1” if at least one of the
20 annotators did not understand it (complex), and
“0” otherwise (simple). The labels in the prob-
abilistic classification task were assigned as the
number of annotators who marked the word as dif-
ficult divided by the total number of annotators.

In this edition a multilingual dataset was avail-
able and participants could choose to partici-
pate in one or more of the following tracks:
English monolingual CWI, German monolingual

1https://github.com/nathanshartmann/
NILC-at-CWI-2018
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CWI, Spanish monolingual CWI, Multilingual
CWI shared task with French test set. Also, the
participants could choose between binary classi-
fication or probabilistic classification task. We
chose to participate in the English monolingual
track and in both classification tasks (see in Table
1 the dataset distribution for the track).

Dataset Train Dev Test

News 14,002 1,764 2,095
WikiNews 7,746 870 1,287
Wikipedia 5,551 694 870

Total 27,299 3,328 4,252

Table 1: CWI 2018 english dataset distribution.

More relevant task description, data and results
are available in Yimam et al. (2018).

3 Datasets

In this work, we used two extra corpora to train
language models, one of these to train a neural lan-
guage model:

• BookCorpus dataset: which has 11,038 free
books written by yet unpublished authors
(Zhu et al., 2015);

• One Billion Word dataset: which is the
largest public benchmark for language mod-
eling (Chelba et al., 2013).

4 Proposed Methods

In this section we show our developed methods,
following three approaches: feature engineering,
feature learning and ensembles.

4.1 Methods based on Feature Engineering
We used linguistic, psycholinguistic and language
model features to train several classification and
probabilistic classification methods. Our feature
set consists of three groups of features:

• LEX: includes word length, number of sylla-
bles, number of senses, hypernyms and hy-
ponyms in WordNet (Fellbaum, 1998);

• N-gram: includes log probabilities of an n-
gram containing target words in two language
models trained on BookCorpus and One Bil-
lion Word datasets using SRILM (Stolcke,
2002);

• PSY: contains word-level psycholinguistic
features such as familiarity, age of acquisi-
tion, concreteness and imagery values for ev-
ery target word (Paetzold and Specia, 2016a).

Because an instance can contain more than a tar-
get word, mean, standard deviation, min and max
values were calculated for each feature. A total
of 38 features are extracted for each instance. We
also normalized features using Z-score.

We trained Linear Regression, Logistic Regres-
sion, Decision Trees, Gradient Boosting, Extra
Trees, AdaBoost and XGBoost methods for both
classification and probabilistic classification tasks.

4.2 Methods based on Feature Learning and
Transfer Learning

An alternative approach to feature engineering is
to make the machine learning model itself create a
data representation. This is the principle of feature
learning. In this scenario, all elements of the vec-
tor contain an independent value, which has some
meaning for the model (LeCun et al., 2015).

Most importantly, we can reuse this representa-
tion in another tasks, which is called transfer learn-
ing or domain adaptation. This strategy is already
used with success in Computer Vision, where deep
neural networks are pre-trained in large supervised
training sets like ImageNet (Girshick et al., 2014;
Esteva et al., 2017).

It is common in Natural Language Process-
ing (NLP) tasks to use pre-trained word embed-
dings with models like Word2Vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014). How-
ever, more recently some studies have used dis-
tributed sentences to produce contextualized em-
beddings, from a language model, machine trans-
lation model, or auto-encoder (Dai and Le, 2015;
Kiros et al., 2015; Yuan et al., 2016; Le et al.,
2017; Peters et al., 2017, 2018; McCann et al.,
2017; Howard and Ruder, 2018).

In the next section we will explain how we used
both strategies.

4.2.1 Average Embedding Method
Word embedding is a technique to represent words
into dense real vectors, that helps NLP tasks and
improves neural networks models (Collobert et al.,
2011; Kim, 2014; Bowman et al., 2015), because
this dense representation captures semantic and
morphological information of the words. In this
work, we obtained word vector representations for
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complex words. When a complex word was a
chunk of words, we took the average of their vec-
tors. We used word vectors from GloVe (6B to-
kens (Pennington et al., 2014)).

The resulting vector was passed on to a neural
network with two ReLU layers (Nair and Hinton,
2010) followed by a Sigmoid layer, which pre-
dicted the probability of whether or not the word
was complex (Figure 2).

sparking clashesintense

Output

μ

ReLU layer

ReLU layer

Sigmoid layer

Word
Embeddings

Figure 2: Example of average embedding method
processing target words.

4.2.2 LSTM Method
LSTM is a powerful tool for modeling sequen-
tial data. This type of neural network architec-
ture can learn to map an input sentence of vari-
able length into a fixed-dimensional vector repre-
sentation. For this reason, a lot of state-of-the-
art systems in several NLP tasks incorporate an
LSTM, for example, language modeling (Joze-
fowicz et al., 2016; Melis et al., 2017), machine
translation (Di Gangi et al., 2017), textual infer-
ence (Tay et al., 2017), and others.

Some studies used a pre-trained LSTM lan-
guage model (Dai and Le, 2015; Yuan et al., 2016;
Le et al., 2017; Peters et al., 2017, 2018) to repre-
sent a sentence/document and used this represen-
tation to improve their results.

Therefore, we trained a language model in the
One Billion Word dataset using similar parame-
ters from Le et al. (2017): one-layer LSTM with
512 units, 128 embedding size, and sampled soft-
max loss (Jean et al., 2015). However, we used
weight tying, which means the weights between
the embedding and softmax layer are shared, con-
sequently reducing the total parameters of the
model (Melis et al., 2017). For the CWI task,
the LSTM read five words before the complex
word, then the complex word itself (or the chunk

of words). We took the last hidden vector from the
LSTM and passed it through a Sigmoid layer.

In Figure 3 we show the pipeline where the blue
boxes represent the context words and red boxes
represents the complex word, which is a chunk in
this example.

and Philippinesflexed musclestheBoth China their

Sigmoid layer

Output

Figure 3: Example of a LSTM processing target
words.

4.2.3 Sent2Vec
We also used sentence embeddings generated by
Skip-thought (Kiros et al., 2015). This model pro-
duces a sentence representation of 2,400 dimen-
sions. We trained two models using sentence em-
bedding. In the first, we passed the embedding
through a sigmoid layer and in the second, we used
two layers with ReLUs of 1,200 and 600 dimen-
sions respectively, followed by a Sigmoid layer. In
the last model we employed a dropout layer (0.7)
between all of the layers. Both models obtained
good results in the training set, however, the mod-
els had poor results in the development set.

4.3 Ensembles
We combined our three best systems: Feature En-
gineering, MLP Average Embedding and LSTM
Transfer Learning. For the binary classification
task, we combined the system by majority vot-
ing rule. For the probabilistic classification task
we used stacking with Linear Regression as a
base learner, which took the probabilities from our
three best system as features.

5 Results

For the binary classification task, we first evalu-
ated the ROC-AUC in the development set for all
methods. For the Feature Engineering method,
we decided to use an XGBoost classifier which
achieved the best AUC in development set (0.91).
Although we selected the threshold which max-
imizes the F1 in the training set for each Fea-
ture Engineering, Shallow and Deep Neural net-
work method, it is important to mention that these
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News WikiNews Wikipedia

F1 #Subm. #Author F1 #Subm. #Author F1 #Subm. #Author

XGBoost Linguistics 0.8606 9th 0.8277 7th 3rd 0.7918 4th
MLP Avg. Embeddings 0.8467 15th 0.7977 16th 0.7360 26th
LSTM Transfer Learning 0.8173 27th 0.7961 17th 0.7528 20th
Voting 0.8636 5th 4th 0.8270 8th 0.7965 2nd 2nd

Best competition results 0.8736 0.8400 0.8115

Table 2: F1 (macro) for English monolingual classification task.

News WikiNews Wikipedia

MAE #Subm. #Author MAE #Subm. #Author MAE #Subm. #Author

XGBoost Linguistics 0.2978 14th 0.3203 15th 0.3819 7th
MLP Avg. Embeddings 0.2958 13th 0.3240 16th 0.3578 7th
LSTM Transfer Learning 0.0588 7th 4th 0.0742 7th 0.0822 7th
Stacking 0.0590 8th 0.0733 6th 4th 0.0819 6th 3rd

Best competition results 0.0510 0.0674 0.0739

Table 3: MAE for English monolingual probabilistic classification task.

thresholds were found for the whole training set
and not for each subset. This guarantees that we
are not overfitting our method to test data or to a
specific dataset. Our results for the English mono-
lingual classification task are described in Table
2. The Feature Engineering method itself achieved
by far our best results for the three test sets. In or-
der to achieve better results, we submitted a fourth
system which calculated the majority voting of our
three methods. This voting system surpassed our
individual methods in two test sets, but was infe-
rior compared to the Feature Engineering method
by less than 1−3 F1 in the WikiNews dataset. Ma-
jority voting was our best method for the classifi-
cation task.

For the probabilistic classification task, our Fea-
ture Engineering method used also an XGBoost
classifier which achieved the best MAE in de-
velopment set (0.28). Our results for English
monolingual probabilistic classification task are
described in Table 3. While both Feature Engi-
neering and Average Embedding did not perform
well, our best individual system by a large margin
was the LSTM method. In order to achieve better
results, we used stacking of our three models. The
stacking performed better than individual methods
in two datasets, but was not better than LSTM for
the News test set (2−4 gap).

6 Conclusion

For the binary classification task, majority voting
achieved our best results, although only slightly
better than the standalone Feature Engineering
model.

For the probabilistic classification task, LSTM
had better results in one data set, but the stacking
method performed slightly better in the other data
sets. The deep learning method showed its poten-
tial when contrasted with the feature engineering
method.

In the future, we intend to explore more pow-
erful neural language models, such as encod-
ing characters embeddings (Jozefowicz et al.,
2016), bidirectional language model (Peters et al.,
2017, 2018), and other transfer learning methods
(Howard and Ruder, 2018).
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