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Abstract

We describe a system for the CWI-task that in-
cludes information on 5 aspects of the (com-
plex) lexical item, namely distributional infor-
mation of the item itself, morphological struc-
ture, psychological measures, corpus-counts
and topical information. We constructed a
deep learning architecture that combines those
features and apply it to the probabilistic and
binary classification task for all English sets
and Spanish. We achieved reasonable perfor-
mance on all sets with best performances seen
on the probabilistic task, particularly on the
English news set (MAE 0.054 and F1-score
of 0.872). An analysis of the results shows
that reasonable performance can be achieved
with a single architecture without any domain-
specific tweaking of the parameter settings and
that distributional features capture almost all
of the information also found in hand-crafted
features.

1 Introduction

In general, complex word identification (CWI)
aims to identify words that are perceived as dif-
ficult for a given target audience. As such, chil-
dren (De Belder and Moens, 2010), foreign lan-
guage learners (Paetzold and Specia, 2016c) and
readers suffering from aphasia (Devlin and Tait,
1998), dyslexia (Rello et al., 2013) or autism spec-
trum disorder (Štajner et al., 2017) will struggle
with different words.

The goal of the current CWI shared task (Yi-
mam et al., 2018) is to predict which words can be
difficult for a non-native speaker, based on annota-
tions collected from a mixture of native and non-
native speakers. The instructions for the English
dataset are formulated so that the annotator marks
the words he thinks are problematic for children,
non-native speakers, or people with language dis-
abilities.

Having such a diverse target audience requires
a system that includes a variety of information at

different levels of linguistic description. We in-
clude information that covers 5 aspects of the lexi-
cal item at hand, namely distributional information
of the item itself, morphological structure, psycho-
logical measures, corpus-counts and topical infor-
mation. With the exception of the psychological
measures, all can be readily trained by an appro-
priate neural network architecture and/or acquired
from large-scale corpora.

We train a neural network to integrate said
sources of information and apply it to the proba-
bilistic and the binary complexity assessment for
the three English datasets and the Spanish one.

2 Related Work

2.1 Complex Word Identification

The task of complex word identification has often
been regarded as a critical first step for automatic
lexical simplification (Shardlow, 2014). Indeed,
erroneously identifying or failing to identify words
as complex is likely to trigger important errors in
the simplification pipeline. As a result, a grow-
ing number of studies have been dedicated specif-
ically to complex word identification and have fo-
cused on developing accurate statistical learning
methods and on collecting appropriate gold stan-
dards (Paetzold and Specia, 2016a; Yimam et al.,
2017a,b; Štajner et al., 2017)

Complex word identification has only relatively
recently been framed as a machine learning (ML)
problem (Zeng et al., 2005; Shardlow, 2013).
Indeed, before any gold-standard datasets were
made available, the early approaches to the iden-
tification of complex words in a text included,
on the one hand, readability measures determin-
ing complex words based on word familiarity
(Dale and Chall, 1948) or on syllable count (Gun-
ning, 1952; Mc Laughlin, 1969) and, on the other
hand, simplification methods which plainly con-
sidered all words as complex and simplified every-
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thing (Devlin and Tait, 1998) or simplified words
based on a threshold on word familiarity (Elhadad,
2006).

The SemEval-2016 shared task on complex
word identification (described in detail in Paetzold
and Specia, 2016a) was the first evaluation cam-
paign which provided a gold-standard dataset as
well as an extensive comparison of different ma-
chine learning approaches for the task at hand.
The submitted systems included different types of
classifiers such as SVMs, random forests, maxi-
mum entropy systems, ... which combined differ-
ent types of features, ranging from linguistic infor-
mation (on a lexical, morphological, semantic and
syntactic level), over psycholinguistic measures
to corpus-based information such as frequencies.
The results on the shared task showed how en-
semble methods (Paetzold and Specia, 2016b) out-
performed any other ML technique and neural ap-
proaches in particular (Bingel et al., 2016). The
task also showed however how a lack of anno-
tation standards made it difficult for any ML-
approach to model the rather inconsistent human
assessment (Zampieri et al., 2017).

2.2 Deep Learning Architectures

The system we describe likewise inscribes itself
in the ML-approach to CWI and draws inspira-
tion from neural network literature in NLP. We
adapt the architectures’ initial purposes and ap-
ply it to the task at hand. Collobert et al. (2011)
show how distributional information from words,
called word embeddings, can be used in combina-
tion with a neural network architecture to largely
replace hand-crafted features for learning NLP-
related tasks such as POS-tagging and NER. The
embeddings capture fine-grained information cov-
ering its linguistic behavior and the neural network
model successfully teases out the relevant prop-
erties from that representation for the given task.
Character embeddings (Zhang et al., 2015; Zhang
and LeCun, 2015) take it one step further and also
make it possible to encode and capture subword
information in the modeling process.

3 Methods, Data, etc.

3.1 Data sources

The English datasets cover 3 informationally
dense target domains for which to assess lex-
ical complexity, namely news, Wikipedia and
Wikipedia news. The Spanish dataset contains

data taken from Spanish Wikipedia pages. Table 1
summarizes the number of training, development
and test items for each dataset we used in the ex-
periment. We combined training and development
sets and used it as a single training set.

As a general domain corpus we use the COW-
corpora (Schäfer, 2015; Schäfer and Bildhauer,
2012). The corpora are gathered online and cover
a wide scope of topics. The English corpus con-
tains well over 13 billion tokens, the Spanish one
over 4 billion tokens.

We have at our disposal psychological mea-
sures for English from the MRC Psycholinguistic
Database (Wilson, 1988). Measures include age
of acquistion, imageability, concreteness, familiar-
ity and meaningfulness and covers 150837 words.
The overlap between the training dataset is how-
ever limited to approximately 1500 words.

Dataset Train Dev Test

English News 14002 1764 2095
English Wikipedia 5551 694 870
English Wikinews 7746 870 1287
Spanish 13750 1622 2233

Table 1: CWI training, development and test sets

3.2 Feature operationalization

Psychological measures Psychological mea-
sures are used for the words found in the available
dataset. Missing values were extrapolated based
on findings that psychological measures correlate
(inversely) to frequency. As such, less frequent
words tend for instance to have a higher age of ac-
quisition, and a lower imageability and concrete-
ness rating. We therefore chose to respectively use
third and first quartile values. In order to accom-
modate the neural network architecture all values
have been normalized by dividing by the maxi-
mum value.

Frequency counts Frequency counts are calcu-
lated from the general corpus for all experiments.
To avoid skewness we perform a rank transforma-
tion, with equal ranks being given the first encoun-
tered rank, and normalize again by dividing by the
highest rank.

Word length Word length is also determined.

Word embeddings Word embeddings are pre-
trained using the COW-corpora and are used to
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initialize several of our input layers in the neural
network. We use the gensim implementation of
word2vec to construct a 300 dimensional embed-
ding space, based on a window-size of 5 including
words that reach a minimum frequency threshold
of 20.

Character embeddings Character embeddings
are trained on the train and development set of all
target words. Each character is replaced by a 16-
dimensional encoding which has been randomly
initialized. Each word consists of a concatenation
of its character representations.

3.3 Architecture

Figure 1 shows the general architecture for the
CWI-task. The model has been constructed with
the Keras deep learning library (Chollet et al.,
2015) with tensorflow-gpu as a backend. It in-
cludes the 5 sources of information we discussed
in the previous section/ which are used as features
to represent information at the word and the sen-
tence level. At the word level, we include engi-
neered features (psychological measures, corpus-
counts and word length) and distributional infor-
mation (word and character embeddings). At the
sentence level we concatenate embeddings to cap-
ture topical information.

3.3.1 Input Layers
We include engineered features for the English
dataset following the idea that they correlate with
cognitive complexity. The features include psy-
chological information, corpus-counts and word
length. Corpus-counts measure familiarity and in-
frequent words are attributed a higher degree of
complexity. Word length then has been shown to
be related to processing difficulties and is relevant
for instance to determine which words pose prob-
lems for persons with dyslexia.

Each target word is encoded by its word em-
bedding, or in the case of word groups by their
concatenated embeddings. The idea is that words
with similar distributional patterns might have a
comparable complexity. An LSTM layer with a
dimensionality of 64 compacts the dimensionality
of the representation.

Each target is also encoded as a sequence of
its character embeddings. This input encoding
is meant to capture morphological information as
well as cues from letter sequences which might be
perceived as difficult. The character embeddings

are trained through 2 convolutional layers (4 fil-
ters, kernel size of 4, stride of 1) followed by max
pooling (with a size of 2). An LSTM of size 64 is
the final layer that directly encodes the character
information.

The entire sentence is encoded as a concatena-
tion of word embeddings and serves as a sort of
topical approximation using contextual cues. An
LSTM of 128 finalizes the information captured
in this layer.

3.3.2 Dense Layers
All inputs are then concatenated and run through
a shallow 3 layered fully connected network (each
consisting of 32 nodes) with a moderate dropout
rate of 0.3. A final dense layer predicts the out-
put. 2 auxiliary loss functions are provided to en-
sure smooth training of the character and the topic
model. We use binary cross-entropy as the loss
function for the binary outcome task and mean
squared error rate for the probabilistic one. We ap-
plied the architecture to the English datasets and,
with the exception of the psychological measures,
also to the Spanish one.

4 Results

Dataset Result Rank Maximum-score

English News (Acc) 0.872 2 0.879
English Wikipedia (Acc) 0.782 5 0.812
English Wikinews (Acc) 0.815 6 0.843
Spanish (Acc) 0.777 2 0.784

English News (MAE) 0.054 2 0.051
English Wikipedia (MAE) 0.081 2 0.074
English Wikinews (MAE) 0.071 3 0.067
Spanish (MAE) 0.073 2 0.072

Table 2: Results, Rank and Maximum scores for the
CWI identification task

The results in Table 2 show reasonably good
performance for all tasks. Our architecture seems
to work especially well for the regression task,
but shows its aptitude for the classification task
as well. The size of the training data seems to
play a direct role in the system’s ability for accu-
rate predictions. This is in line with other deep
learning literature. This does not hold for the
Spanish set however, which might be due to a
slight difference in apprehension during the data
collection phase. The inclusion of corpus-counts
and pre-trained embeddings from a general cor-
pus, rather than a wikipedia corpus shows directly
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Figure 1: Neural Network Architecture
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Input Precision Non-complex Precision Complex Recall Non-complex Recall Complex

Character encoding (C) 0.876 0.757 0.839 0.809
Engineered features (E) 0.853 0.755 0.846 0.764
Word embeddings (W) 0.892 0.813 0.882 0.829
Sentences (S) 0.617 0 1 0

W + C 0.897 0.829 0.893 0.835
W + C + E 0.902 0.825 0.888 0.845

Table 3: Precision and Recall for different input layers

in the performance of the respective tasks. Using
a wikipedia corpus will probably positively influ-
ence the results for those particular sets. Yet, the
inclusion of general corpus-information proves to
be a valid alternative in lack of specialized cor-
pora. The inclusion of the engineered features
does not seem to affect the obtained scores much.

Table 3 provides an overview of the relative
contribution of each input layer to the final result
for the English news dataset. The models were
trained for 50 epochs. Considering each input
layer separately, the word embeddings are the best
estimator for the complexity task, followed closely
by the character embeddings. Engineered features
capture some information on the word’s complex-
ity, yet not as much as the embedding layers. In-
terestingly, sentence information does not outper-
form the baseline.

The combination of input layers shows the rel-
ative improvement that can be achieved by adding
more information to the best performing input
layer. The results indicate that combining in-
formation only marginally improves performance.
They also confirm that the engineered features
in combination with the embeddings do not con-
tribute much to the final score.

This leads to the following conclusions for the
current dataset. First, complexity is best deter-
mined by including focused information of the tar-
get word itself. The inclusion of contextual, topi-
cal information does not show any noticeable ad-
vantage. Looking at the combination of input lay-
ers, we can derive that the engineered features
only add marginally different information from
other input sources. This could be due to the lim-
ited number of words that are actually covered by
the psychological dataset, but it also implies that
the information from the corpus-counts is indi-
rectly captured by the embeddings and from the
word length by the character encodings. It is a case
in point for replacing manual feature engineer-

ing by word and character embeddings. Based on
these results we cannot conclude whether the word
embeddings’ better performance over the charac-
ter embeddings is due to pre-training.

5 Conclusion

Reasonable performance can be achieved with a
single architecture including information from dif-
ferent levels of linguistic description. Information
derived from large scale corpora makes it possi-
ble to include them as a starting point on which
to build a general architecture that learns the ap-
propriate weights for the specific problem, in our
case, the CWI-task. Embeddings at the word and
the character level seem to contain sufficient infor-
mation to model the problem well.

Future work will include an exploration to find
optimal hyperparameter settings to optimize the
identification task. We will likewise explore
whether pre-training the character embeddings on
a larger corpus will put its performance on par
with the pre-trained word embeddings. The latter
would pave the way for a model with less training
parameters and would significantly reduce com-
plexity.
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Sanja Štajner, Victoria Yaneva, Ruslan Mitkov, and
Simone Paolo Ponzetto. 2017. Effects of Lexi-
cal Properties on Viewing Time per Word in Autis-
tic and Neurotypical Readers. In Proceedings of
the 12th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 271–281,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Michael Wilson. 1988. MRC Psycholinguistic
Database: Machine Usable Dictionary, version 2.00.
Behavior Research Methods, Instruments, & Com-
puters, 20(1):6–10.

Seid Muhie Yimam, Chris Biemann, Shervin Mal-
masi, Gustavo Paetzold, Lucia Specia, Sanja Štajner,
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