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Ildikó Pilán
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Abstract

In this paper, we describe our experiments
for the Shared Task on Complex Word Iden-
tification (CWI) 2018 (Yimam et al., 2018),
hosted by the 13th Workshop on Innovative
Use of NLP for Building Educational Appli-
cations (BEA) at NAACL 2018. Our sys-
tem for English builds on previous work for
Swedish concerning the classification of words
into proficiency levels. We investigate dif-
ferent features for English and compare their
usefulness using feature selection methods.
For the German, Spanish and French data we
use simple systems based on character n-gram
models and show that sometimes simple mod-
els achieve comparable results to fully feature-
engineered systems.

1 Introduction

The task of identifying complex words consists of
automatically detecting lexical items that might be
hard to understand for a certain audience. Once
identified, text simplification systems can substi-
tute these complex words by simpler equivalents
to increase the comprehensibility (readability) of
a text. Readable texts can facilitate information
processing for language learners and people with
reading difficulties (Vajjala and Meurers, 2014;
Heimann Mühlenbock, 2013; Yaneva et al., 2016).

Building on previous work for classifying
Swedish words into different language proficiency
levels (Alfter and Volodina, 2018), we extend our
pipeline with English resources. We explore a
large number of features for English based on,
among others, length information, parts of speech,
word embeddings and language model probabil-
ities. In contrast to this feature-engineered ap-
proach, we use a word-length and n-gram proba-
bility based approach for the German, Spanish and
French data.

Our interest for participation in this shared task
is connected to the ongoing development of a com-
plexity prediction system for Swedish (Alfter and
Volodina, 2018). In contrast to this shared task,
we perform a five-way classification correspond-
ing to the first five levels of the CEFR scale of lan-
guage proficiency (Council of Europe, 2001). We
adapted the pipeline to English, and included some
freely available English resources to see how well
these would perform on the CWI 2018 task and to
gain insights into how we could improve our own
system.

2 Data

There were four different tracks at the shared task.
Table 1 shows the number of annotated instances
per language. For the French sub-task, no training
data was provided. Each instance in the English
dataset was annotated by 10 native speakers and
10 non-native speakers. For the other languages,
10 annotators (native and non-native speakers) an-
notated the data. An item is considered complex if
at least one annotator annotates the item as com-
plex.

Language Training Development

English 27299 3328
Spanish 13750 1622
German 6151 795
French / /

Table 1: Number of instances per language

In the dataset, information about the total num-
ber of native and non-native annotators and how
many of each category considered a word complex
is also available.

A surprising aspect of the 2018 dataset was
the presence of multi-word expressions (MWE),
which were not part of the 2016 shared task. For
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the 2018 task, the training data contains 14% of
MWEs while the development data contains 13%.

3 Features

We extract a number of features from each target
item, either a single word or a multi-word expres-
sion. The features can be grouped into: (i) count
and word form based features, (ii) morphological
features, (iii) semantic features and (iv) context
features. In addition, we use psycholinguistic fea-
tures extracted by N-Watch (Davis, 2005). In Ta-
ble 2, we list the complete set of features used for
English.

Count features

Length (number of characters)
Syllable count (S1)
Contains non-alphanumeric character
Is number
Is MWE
Character bigrams (B1)
N-gram probabilities (Wikipedia)
In Ogden list
AWL distribution
CEFRLex distribution

Morphological features

Part-of-speech
Suffix length

Semantic features

Number of synsets
Number of hypernyms
Number of hyponyms
Sense id

Context features

Topic distributions
Word embeddings

N-Watch features

British National Corpus frequency (BNC)
CELEX frequency (total, written, spoken)
In Kučera Francis (KF) list
Sydney Morning Herald frequency (SMH)
Reaction time
Bigram frequency (B2)
Trigram frequency (T2)
Syllable count (S2)

Table 2: Overview of features

Word length in terms of number of characters
has been shown to correlate well with complexity
in a number of studies (Smith, 1961; Björnsson,
1968; O’Regan and Jacobs, 1992).

Besides the number of characters, we also con-
sider the number of syllables (S1 and S2). As the
calculation of syllables in English is not straight-
forward, we use a lookup-based method for S1. In
case the word is not present in the lookup list, we
apply a heuristic approach as a fall-back. A high
number of multi-syllabic words has been shown to
increase the overall complexity of a text (Flesch,
1948; Kincaid et al., 1975), so we assume it could
also be helpful in predicting the complexity of
smaller units.

The feature related to bigrams (B1) indicates
which character bigrams occur in the target item.
We calculate all character-level bigrams in the
training data and only retain the 36 most predic-
tive bigrams using Correlation-based Feature Sub-
set Selection (Hall, 1999).

N-gram probabilities are based on language
models trained on the English Wikipedia dumps
from June and July 20151. We calculate character-
level unigram, bigram and trigram probabilities.

The Ogden list contains 850 words from Basic
English (Ogden, 1944) and this feature indicates
whether a word is part of this list.

AWL distribution considers the ten Academic
Word List (AWL) sublists (Coxhead, 1998) and in-
dicates in which lists the word occurs. The AWL
list contains word families which appear often in
academic texts but excludes general English vo-
cabulary, making it specific to the academic con-
text. The ten sub-lists are ordered according to fre-
quency, so that words from the first sub-list are
more frequent than words from the second sub-
list, and so forth.

CEFRLex distribution indicates the pres-
ence/absence in the 5th, 10th and 20th percentile
English CEFRLex lists2. These lists are obtained
by aligning and sorting four different vocabulary
lists for English (EFLLex) (Dürlich and François,
2018), French (FLELex) (François et al., 2014),
Swedish (SVALex) (François et al., 2016) and
Dutch (NT2Lex) (François and Fairon, 2017) by
frequency and only taking words which occur in

1We already had these pre-calculated language models
from previous experiments. For simplicity and time rea-
sons, we chose not to retrain them on more recent Wikipedia
dumps.

2http://cental.uclouvain.be/cefrlex/
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the 5th, 10th and 20th percentile across all lan-
guages.

Morphological features include information
about parts of speech and suffix length. Suffix
length is calculated by stemming the word using
the NLTK stemmer (Bird et al., 2009) and sub-
stracting the length of the identified stem from the
length of the original word.

Semantic features are: number of synsets, num-
ber of hyponyms, number of hypernyms and sense
id. These features are calculated from WordNet
(Miller and Fellbaum, 1998). The first three are
obtained by calculating how many items WordNet
returns for the word in terms of synsets, hyponyms
and hypernyms. Sense id is obtained by using the
Lesk algorithm (Lesk, 1986) on the sentence the
target item occurs in.

Context features consist of topic distribution
and word embeddings. For word embeddings, we
use the pre-trained Google News dataset embed-
dings. We calculate the word context of a word wi

in a sentence S ∈ w1...wn as the sum of word vec-
tors from wi−5 to wi+5, excluding the vector for
wi. In case there is not enough context, the avail-
able context is used instead. Topic distributions
are calculated by first collecting Wikipedia texts
about 26 different topics such as animals, arts, ed-
ucation or politics. These texts are tokenized and
lemmatized. We then exclude words which occur
across all topic lists. Topic distribution indicates
in which of these topic lists the target item occurs.

Features from N-Watch include frequency in-
formation from the British National Corpus
(BNC), the English part of CELEX, the Kučera
and Francis list (KF), the Sydney Morning Herald
(SMH); reaction times and bi- and trigram charac-
ter frequencies (B2 and T2). While these features
are redundant in some case, such as number of syl-
lables (S1 and S2), their values can differ due to
being calculated differently.

Since our pipeline was not designed to handle
multi-word expressions, we address this by a two-
pass approach. First, we extract all features for
single words and store the resulting vector repre-
sentations. Then, for each multi-word expression,
if we have feature vectors for all constituents mak-
ing up the MWE, we sum the vectors for count-
based features such as length and number of sylla-
bles and average the vectors for frequency counts.
We have experimented with adding all vectors
and averaging all vectors, but found that summing

some features and averaging other features not
only yields higher scores but also is linguistically
more plausible. Context vectors for MWEs are not
added but calculated separately as described above
with the difference that for a multi-word expres-
sion MWE ∈ wi, ..., wi+k occurring in a sentence
S ∈ w1, ..., wn as the sum of vectors from wi−5

to wi−1 and wi+k+1 to wi+k+5. In case not all
constituents of a multi-word expression have cor-
responding vectors from phase 1, we set all feature
values to zero and only use the context.

4 Experiments on the English data

We tried three different configurations for the En-
glish data set, namely context-free, context-only
and context-sensitive. For context-free, we use
the features described above, excluding word em-
bedding context. For context-only, we only use
the word embedding context vectors.For context-
sensitive, we concatenate the context-free and
context-only features.

4.1 Classification
We tried different classifiers, among others Ran-
dom Forest (Breiman, 2001), Extra Trees (Geurts
et al., 2006), convolutional neural networks and
recurrent convolutional neural networks imple-
mented in Keras (Chollet et al., 2015) and PyTorch
(Paszke et al., 2017). For Random Forest and Ex-
tra Trees, we tried different numbers of estimators
in the interval [10, 2000] and found that generally
either 500 or 1000 estimators reached the best re-
sults on the development set. For neural networks,
we tried different combinations of hyperparame-
ters such as the type of layers, number of con-
volution filters, adding LSTM layers, varying the
number of neurons in each layer. We tried two
different architectures, one taking as input the fea-
tures extracted as described below and convolving
over these features, the other taking both the fea-
tures and word embeddings as separate inputs and
merging the separate layers before the final layer.

5 Experiments on other languages

5.1 Predicting the German and the Spanish
test set

During testing, we noticed that using the
character-level n-gram model trained on the En-
glish Wikipedia and using only unigram, bigram
and trigram probabilities and word length as fea-
tures yielded scores in the vicinity of our best-
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performing feature-engineered models at that time
(0.81 F1 vs 0.82 F1).

Following this finding, we used character-level
n-gram models trained on Wikipedia dumps3 for
Spanish, German and French and calculated uni-
gram, bigram and trigram probabilities for these
languages. In addition, we used target item length
in characters as additional feature.

5.2 Predicting the French test set

As there was no training or development data for
the French test set, we used the n-gram language
model to convert each French entry into n-gram
probabilities. We then used the n-gram classifiers
for English, German and Spanish to predict labels
for each word. We tested two configurations:

1. Predict with English, German and Spanish
classifier and use majority vote to get the final
label

2. Predict with Spanish classifier and use label
as final label

The rationale behind the second configuration
is that French and Spanish are both Romance lan-
guages. The single Spanish classifier might thus
model French data better than incorporating also
the English and the German classifiers, as German
and English are both Germanic languages.

6 Results

Table 3 shows the results of the best classifiers on
both the development data and the test data. For
the English News and WikiNews, the best classi-
fier is an Extra Trees classifier with 1000 estima-
tors with the reduced feature set (see subsection
6.1) and trained on each genre separately, as op-
posed to the general English classifier trained on
all three genres. For all other tasks, the best classi-
fier is an Extra Trees classifier with 500 estimators
with the reduced feature set.

6.1 Feature selection for English

Out of the set of features proposed for a certain
task, usually some features are more useful than
others. Eliminating redundant features can result
not only in simpler models, but it can also im-
prove performance (Witten et al., 2011, 308). We

3See footnote 1

F1 (dev) F1 (test)

EN News 0.8623 0.8325
EN WikiNews 0.8199 0.8031
EN Wikipedia 0.7666 0.7812
German 0.7668 0.7427
Spanish 0.7261 0.7281
French / 0.6266

Table 3: Results of best classifiers

therefore run feature selection experiments in or-
der to identify the best performing subset of fea-
tures. We use the SelectFromModel4 feature se-
lection method as implemented in scikit-learn (Pe-
dregosa et al., 2011). This method selects features
based on their importance weights learned by a
certain estimator. We base our selection on the
development data and the Extra Trees learning al-
gorithm, since it performed best with the full set
of features. We use the median of importances as
threshold for retaining features. For the other pa-
rameters, the default values were maintained for
the selection.

The feature selection method identified a subset
of 64 informative features. We list these features
in Table 4, indicating in parenthesis the amount of
features per feature type where it is relevant.

Selected features

Length Sense id
Is adjective # Syllable count S2
Is noun BNC freq.
Is verb CELEX freq. (3)
Syllable count S1 KF list
Suffix length Reaction time
# synsets SMH
# hypernyms Bigram B2 freq (4)
# hyponyms Trigram T2 freq (4)
Topic distr. (22) Is MWE
Char. bigram B1 (8) Unigram prob
In Ogden list Bigram prob
CEFRLex distr. (3) Trigram prob

Table 4: Selected subset of features

The best performing features included, among
others, features based on word frequency, infor-

4We also tested other feature selection methods, namely
an ANOVA-based univariate feature selection and recursive
feature elimination, but we omit the results of these since they
were inferior.
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mation based on words senses and topics as well
as language model probabilities.

As only lexical classes were annotated for com-
plexity, it is not surprising to see that, even though
our pipeline considers all part-of-speech classes,
the feature selection picked adjectives, nouns and
verbs.

7 Additional experiments on English

7.1 Native vs non-native
Since we had information about how many na-
tive speakers and non-native speakers rated target
items as complex, we experimented with training
classifiers separately for these two categories of
raters. We applied the native-only classifier on the
native judgments of the development set, as well
as on the non-native judgments, and similarly the
non-native classifier on native judgments and non-
native judgments. In all four configurations, we
found accuracy to be the same, at about 75%.

7.2 2016 vs 2018
Before this shared task, we experimented with the
2016 CWI shared task data and trained classifiers
on it. We tried applying the best-performing clas-
sifier trained on the 2016 data on the 2018 devel-
opment data, but results were inferior to training
on the 2018 training data and predicting 2018 de-
velopment data. The same is true in the other di-
rection; applying the best-performing 2018 classi-
fier on the 2016 data yields inferior results. Table 5
shows the result of these experiments. This raises
the question of how generalizable these complex
word identification systems are and how depen-
dent they are on the data, the annotation and the
task at hand.

Configuration Accuracy Recall F1

2016 on 2018 0.6499 0.7463 0.6948
2018 on 2018 0.7992 0.7269 0.7613

2018 on 2016 0.6610 0.6335 0.6470
2016 on 2016 0.8062 0.6511 0.7204

Table 5: Results of 2016/2018 comparison

7.3 Genre dependency
During the training phase, we concatenated the
English training files for News, WikiNews and
Wikipedia into one single training file. We did
the same with the development data. We trained

a single, genre-agnostic English classifier on this
data. During the submission phase, we used the
single classifier but also split the data into the three
sub-genres News, WikiNews and Wikipedia again
and retrained our systems, which improved perfor-
mance. This hints at the genre-dependency of the
concept of complex words.

7.4 Context

As the notion of complexity may be context-
dependent, i.e. a word might be perceived as more
complex in a certain context, we used word em-
bedding context vectors as features. However, our
feature selection methods show that these context
vectors do not contribute much to the overall clas-
sification results. Indeed, of the 300-dimensional
word embedding vectors representing word con-
text, not a single dimension was selected by our
feature selection.

However, if we only look at features which can
be derived from isolated words, we also have a
problem of contradictory annotations. This means
that representing isolated words as vectors can
lead to the same vector representation of different
instances of a word with different target labels. We
calculated the number of contradictions and found
that representing each word as a vector leads to 5%
of contradictory data points.

8 Discussion

One interesting aspect of the data is the separation
of annotators into native and non-native speakers.
However, while it can be interesting to try and
train separate classifiers for modeling native and
non-native perceptions of complexity, and this in-
formation can be exploited at training time, us-
ing features that rely on the number of native and
non-native annotators could not be used on the test
data, as the only information given at test time is
the total number of native and non-native annota-
tors, and these numbers do not vary for the English
data.

Our best classifiers are all Extra Trees. All
other classifiers that we tested, especially convolu-
tional neural networks and recurrent convolutional
neural networks, reached lower accuracies. This
might be due to insufficient data to train neural
networks, a suboptimal choice of hyperparameters
or the type of features used.

While our systems did not reach high ranks
on the English datasets (ranks 13, 13 and 6 on
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News, WikiNews and Wikipedia respectively), we
reached place 2 on the German data set and place
3 on the French data set. Given the simplicity
of the chosen approach, this is slightly surpris-
ing. However, we surmise that n-gram proba-
bilities implicitly encode frequency among other
things, and frequency-based approaches generally
perform well.

Further, we found that using only the Spanish
classifier on the French data lead to better scores
than using all three classifiers and majority vote.
This speaks in favor of the hypothesis that closely
related languages model each other better. This
can be interesting for low-resource languages if
there is a related language with more resources.

9 Conclusion

We presented our systems and results of the 2018
shared task on complex word identification. We
found that simple n-gram language models per-
form similarly well to fully-feature engineered
systems for English. Our submission for the non-
English tracks were based on this observation, cir-
cumventing the need for more language-specific
feature engineering.
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