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Abstract

Some language exams have multiple writing
tasks. When a learner writes multiple texts
in a language exam, it is not surprising that
the quality of these texts tends to be similar,
and the existing automated text scoring (ATS)
systems do not explicitly model this similar-
ity. In this paper, we suggest that it could be
useful to include the other texts written by this
learner in the same exam as extra references
in an ATS system. We propose various ap-
proaches of fusing information from multiple
tasks and pass this authorship knowledge into
our ATS model on six different datasets. We
show that this can positively affect the model
performance in most cases.

1 Introduction

The existence of various English exam products
provides a useful and fair way for language learn-
ers to measure their English skills accurately.
It also offers a well-accepted standard to help
schools and companies to quantitatively judge
whether their non-native English applicants meet
the compulsory language requirements they set up.
Many learners have taken different English exams
to get the qualifications required by different or-
ganisations. For example, more than two mil-
lion International English Language Testing Sys-
tem (IELTS) exam sessions have been taken in
2012-20131, and more than 30 million people have
taken the Test of English as a Foreign Language
(TOEFL) exam2.

English exams like IELTS and TOEFL have
free-text writing tasks to evaluate a learner’s writ-
ing ability. For a writing task, each learner needs
to write a text to answer the prompt in the task.
Appropriately assessing the quality of free-text

1https://www.britishcouncil.org/organisation/press/record-
two-million-ielts-tests

2https://www.ets.org/toefl/ibt/about

writings requires highly proficient human exam-
iners, and the lack of professional and qualified
examiners makes it hard for learners to get accu-
rate feedback on the quality of their writings in a
timely fashion. Consequently, it is hoped that an
ATS system can possibly act as a kind of examiner
to mitigate this problem, which offers an assis-
tance to both learners and educators. The goal of
ATS is to improve consistency and reduce human
resource overheads. ATS usually utilises machine
learning techniques to build a model to learn the
underlying relationship between texts and scores.
ATS is often used as the second marker in high-
stakes exams, the only marker in practice and tu-
toring software products.

1.1 Multiple Writing Tasks

To evaluate a learner’s writing skill more thor-
oughly, many English exams like IELTS and
TOEFL ask them to answer multiple writing tasks.
These tasks are drawn from different topics and
genres, and each learner is required to write a
text for each task. In practice, human judges
score each text with an individual score, and these
scores are aggregated to obtain an overall score,
which reflects their writing skills. We also define
the ATS model predicting the individual score of
a text and the overall score of all the texts as the
individual-level and overall-level models, respec-
tively.

When an individual-level ATS model scores
texts, previous work has made an implicit as-
sumption that all responses to all tasks are com-
posed independently. This is not true for exams
requiring responses to multiple tasks. The writ-
ing skill exemplified by a learner during the same
exam session will not normally vary greatly, so the
texts written by one learner may share some com-
monalities, such as preferential word usages and
common mistakes, and should also approximately
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equally reflect their writing skills. We suggest that
when an individual-level model predicts the score
of a text written by a learner, it is helpful to use
their other texts as a reference and pass it as an ex-
tra piece of information to the model. We refer to
this information as authorship knowledge.

We suggest that the potential benefit of pass-
ing this authorship knowledge to an ATS model
might come from a reduction of data sparsity and
improvement in the robustness and reliability of
feature extraction. Normally the text length for
each task is limited, and so there may be insuffi-
cient features exemplified in a single response to
differentiate language proficiency levels. It can
be challenging for an ATS model to learn the
mapping between texts and scores accurately, and
adding authorship knowledge might provide addi-
tional salient features to learn the mapping.

In this paper, we test the hypothesis that au-
thorship knowledge can improve individual-level
model performance. We pass this authorship
knowledge to an individual-level model in two in-
dependent ways: feature fusion and score fusion.
When the model predicts text scores, both meth-
ods pass all the texts written by the same learner
to the model as an extra reference. It is shown that
adding this knowledge is helpful in an individual-
level ATS model in most cases. To the best of our
knowledge, this is the first study that studies how
authorship knowledge affects ATS system perfor-
mance.

2 Related Work

In most previous work, text features are defined
manually and automatically extracted from each
text. A machine learning model is then applied
to learn the mapping from features to scores.
Many different machine learning models have
been used, including regression (Page, 2003; At-
tali and Burstein, 2006; Phandi et al., 2015), clas-
sification (Larkey, 1998; Rudner and Liang, 2002)
and ranking (Chen and He, 2013; Cummins et al.,
2016b). The features used in previous work range
from shallow textual features to discourse struc-
ture and semantic coherence (Higgins et al., 2004;
Yannakoudakis and Briscoe, 2012; Somasundaran
et al., 2014), and from prompt independent to de-
pendent features (Cummins et al., 2016a). Some
recent models have dispensed with feature engi-
neering and utilised word embeddings and neu-
ral networks (Alikaniotis et al., 2016; Dong and

Zhang, 2016; Taghipour and Ng, 2016).
However, no previous work has investigated the

utility of authorship knowledge in ATS. One possi-
ble reason is that most datasets only have one text
written by each learner. The First Certificate in
English (FCE) dataset released by Yannakoudakis
et al. (2011), on the other hand, contains two texts
per learner. We primarily focus on the FCE dataset
in this paper, but also utilise other datasets to cor-
roborate our results. Yannakoudakis et al. defined
all the texts written by a learner as a script. They
extracted features from each text and then com-
bined the features of the two texts within the same
script together. A support vector machine (SVM)
ranking model was trained to learn the relationship
between features and overall scores.

3 Datasets

In this paper, we require a dataset that includes
more than one text written by each learner, where
each text is scored with an individual-level score.
We finally get six datasets in total for our exper-
iments. Each dataset is a set of texts collected
from a real exam, and each exam is targeted at one
or more Common European Framework of Refer-
ence for Languages (CEFR) 3 levels in English.
There are six CEFR levels in total: A1, A2, B1,
B2, C1 and C2 arranged from lowest to highest.

In each dataset, each script consists of the an-
swers to two tasks. The answers to both tasks were
scored on the same grading scale. Each script was
written on the same day so we can safely assume
no dramatic variation in the writing skill for each
learner. The FCE dataset discussed in Section 2
was collected from the FCE exam. The other five
datasets were provided by Cambridge Assessment
collected from different years.

We need to choose the score for each text for
an ATS model to learn. As the original score for
each text in the FCE is not reported on a numer-
ical scale, Cambridge Assessment helped us con-
vert the grades to integers between 0 and 20. This
mapping is available in Table 2. All the texts from
the B2-U, B2-S, C1-U and C1-S datasets are eval-
uated in terms of four aspects: content, commu-
nicative achievement, language quality and organ-
isation. Each aspect is scored as an integer in the
range 0-5. We add the scores of these four aspects
of a text together to obtain a total score in the range
0-20, and we use this total score as the score for

3http://www.coe.int/t/dg4/linguistic/Cadre1 en.asp
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Exam CEFR Score Range MEAN STD # prompts # scripts # train # dev # test
FCE B2 0-20 13.92 2.92 31 1212 822 293 97
B2-U B2 0-20 14.51 2.18 37 2047 1447 300 300
C1-U C1 0-20 13.20 2.69 50 2088 1488 300 300
AL-U A1-C2 0-9 5.78 0.96 58 1604 1004 300 300
B2-S B2 0-20 13.72 2.41 67 6584 5984 300 300
C1-S C1 0-20 12.77 2.73 35 1910 1310 300 300

Table 1: The details of the six datasets. FCE is the dataset released by Yannakoudakis et al.. For the
other five datasets, the name of each dataset encodes its target CEFR level learners with whether it is
unshuffled or shuffled. B2-U means that it aims at B2 level learners and is unshuffled. MEAN and
STD describe the mean and standard deviation of the scores. All the datasets have two writing tasks, and
for each writing task, each learner is required to write an answer to one prompt. # prompts describes how
many prompts exist in each dataset.

this text for our study. In contrast, AL-U is marked
on a scale of 0-9 at 0.5 mark intervals, where each
text also receives a score for each of four aspects
including task achievement, coherence, word us-
age and grammar. The total score is aggregated
from the scores on all four aspects by Cambridge
Assessment, and it is still normalised to 0-9 at 0.5
mark intervals. In this case, we directly use the ex-
isting total score as the individual score for a text
in AL-U for our study.

Original→ New Original→ New
0,0→ 0 3,2→ 13
1,1→ 1 3,3→ 14
1,2→ 4 4,1→ 15
1,3→ 7 4,2→ 16
2,1→ 9 4,3→ 17
2,2→ 10 5,1→ 18
2,3→ 11 5,2→ 19
3,1→ 12 5,3→ 20

Table 2: The score mapping in the FCE dataset

We summarise the six datasets in Table 1. The
difference between the shuffled and unshuffled
datasets in Table 1 is how texts are presented to
human judges to score. For the four unshuffled
datasets, each human judge marks the first and sec-
ond text written by a learner in sequence, so the
score of the second text might be affected by the
first marked text. In comparison, the texts in B2-S
and C1-S are shuffled and randomly displayed to
human judges. Hence, this removes any grading
bias due to knowing the authorship.

Due to transcription errors, we only kept scripts
which do not contain any invalid individual score.

After we cleaned the text scores, each dataset was
then split into training, development and test sets.
The total number of scripts in each dataset, and the
number of scripts in the training, development and
test sets are summarised in Table 1. The test set for
FCE is the same in Yannakoudakis et al. (2011).

4 Notations

Let us introduce some notations to facilitate our
discussion. Each dataset consists of M tasks for
each learner to answer, and there are J learners
in one dataset. We assume that each learner only
takes any exam once. All the datasets we de-
scribed in Section 3 require learners to write two
texts. Hence, M = 2 in each dataset. tm,j de-
notes the mth text written by learner lj , which an-
swers the mth task taskm in a dataset. text tm,j

can be represented as a sequence of words written
by learner lj . The individual score for text tm,j

marked by a human examiner is sm,j .

TLj = {tm,j |m = 1, ...,M} denotes the set
of all the texts written by lj in a dataset. In other
words, TLj is equivalent to the script answered by
learner lj .

TNm,j = TLj \ tm,j denotes the neighbouring
text set of tm,j , which is all the texts written by
learner lj except for tm,j . In this section, since
each dataset only contains 2 texts per learner, the
number of texts in TNm,j is always 1, and the only
text in this set is t(M+1−m),j , which denotes the
neighbouring text of tm,j .

TTm = {tm,j |j = 1, ..., J} denotes the se-
quence of all the texts to the mth task taskm an-
swered by all learners in the same exam.
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5 Assumptions

There are two assumptions behind authorship
knowledge and ATS we want to validate.

The first assumption is that there is a variable
skillj which can describe the writing skill of each
learner lj , and skillj is approximately constant
during an exam. If we believe the skill of a learner
could be measured by the English exam they take,
sm,j for any m will be a sample from a distribu-
tion constrained by skillj during the exam. We
also assume that no learner will behave totally dif-
ferently on the two tasks during the same exam.
In this case, these individual text scores should
be close and correlate well with their skill skillj ,
and this correlation might be helpful in training an
individual-level model.

However, the first assumption is not always cor-
rect. In some circumstances, learners will perform
really well on some tasks, but fail to finish other
tasks to the same quality, and they can get low
scores on these tasks. An obvious reason for this
is that some learners may have managed their time
badly and failed to finish the second task; some
may also be better prepared for the topic and genre
elicited by one of the prompts.

To verify and measure this assumption, we cal-
culate root-mean-squared error (RMSE), quadratic
weighted kappa (κ), Pearson (ρprs) and Spearman
correlation (ρspr) between all the responses to the
first task TT1, and the second task TT2 answered
by all learners. The results are given in Table 3.

Dataset RMSE κ ρprs ρspr
unshuffled datasets

FCE 2.264 0.700 0.706 0.704
B2-U 1.902 0.620 0.630 0.607
C1-U 2.148 0.680 0.684 0.670
AL-U 0.716 0.726 0.746 0.735

shuffled datasets
B2-S 2.566 0.434 0.440 0.416
C1-S 2.984 0.408 0.419 0.394

Table 3: The relation between TT1 and TT2 to
check how the scores of the first and second text
written by each learner are correlated

As we can see, κ, ρprs and ρspr are above 0.6 in
the four unshuffled datasets, and about 0.4 in the
two shuffled datasets. It is suggested by Landis
and Koch (1977) that there is a substantial agree-
ment between two sequences if Cohen’s Kappa is
above 0.6 and a moderate agreement when Co-

hen’s Kappa is between 0.4 to 0.6 4. We use their
interpretation to describe our results, and there is
at least a moderate correlation and agreement be-
tween the scores of TT1 and TT2. This verifies
our first assumption to some degree. Whether this
amount of agreement can affect the performance
of an ATS model is further investigated in the fol-
lowing sections.

The second assumption concerns whether pass-
ing authorship knowledge to an ATS model truly
improves the model performance by bringing
more reliable features and better understanding
about each learner’s writing skill. An alternative
explanation for the possible improvement, if it ex-
ists, is brought by the bias during the marking pro-
cedure. When comparing RMSE for the unshuf-
fled and shuffled datasets as shown in Table 3, we
can see that RMSE is higher for BS-2 than for
B2-U, and higher for C2-S than for C2-U. This
suggests that human judges might be biased when
marking the second text after the first. Hence, we
aim to determine whether authorship knowledge
truly improves ATS performance by looking at the
shuffled dataset, since any improvement on the un-
shuffled dataset might be the result of grading bias.

6 Methods

To study how authorship knowledge affects ATS,
we first need a baseline model.

6.1 Baseline

In the baseline model, a feature vector fm,j , ex-
tracted from text tm,j written by learner lj , is used
to train an individual-level model to learn the rela-
tionship between feature vector space F and text
score space S. The model finally predicts the
score of text tm,j as ŝm,j . The predicted score
ŝm,j might be invalid on the given grading scale.
For example, an ATS model might predict a score
of 4.3, but the grading scale requires an integer.
Hence, we round ŝm,j to the nearest valid score on
the given grading scale as r̂sm,j , which is 4 in this
case.

6.1.1 Features
The features for the baseline model we use are
similar to those of Yannakoudakis et al. men-
tioned in Section 2. More specifically, we use
features including word and POS n-grams, script

4Although Landis and Koch claimed that this interpreta-
tion is clearly arbitrary.
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length, the n-gram missing rate estimated on a
background corpus, phrase structure rules, and
grammatical dependency distances between any
two words within the same sentence, though we
only use the top parse result for grammatical rela-
tion distance measures. The n-gram missing rate
is estimated on UKWaC (Ferraresi et al., 2008).
Besides that, we also include the number of words
misspelt, the count of grammatical relation types,
and the minimum, maximum and average sen-
tence and word lengths. The POS tags, grammati-
cal relations and phrase structure rules are derived
from the RASP (robust accurate statistical pars-
ing) toolkit (Briscoe et al., 2006). We remove
any feature whose frequency in the training set
is below 4, and keep the top 25,000 features that
have the highest absolute Pearson correlation with
text scores. Each feature vector is normalised to
||fm,j || = 1.

6.2 Benchmark

Yannakoudakis et al. (2011) only built an overall-
level model and evaluated it in terms of ρprs and
ρspr. As we use more features and also a global
feature selection step, we should ensure that our
model is relatively optimal and thus a challenging
baseline.

We firstly concatenate all the texts in script TLj

together as concatenated text ctj so that

ctj := t1,j ⊕ t2,j ⊕ ...⊕ tM,j

We extract the script feature vector cfj from the
concatenated text ctj based on the features defined
in Section 6.1.1. We define the combined script
score csj as the sum of the individual text scores
to represent the overall score of each script: csj :=∑M

m=1 sm,j

The FCE dataset has another overall script
score ssj for script TLj used by Yannakoudakis
et al. (2011). In order to benchmark with Yan-
nakoudakis et al.’s work, we train an overall-

Model RMSE κ ρprs ρspr
UKWaC X X 0.735 0.758

CLC X X 0.741 0.773
DISCOURSE X X 0.749 0.790
SVR (BASE) 3.988 0.657 0.761 0.787

SVM RANKING 4.123 0.646 0.735 0.766

Table 4: The comparison of the previous work and
our baseline models on the FCE test set.

level model by means of support vector regres-
sion (SVR) and SVM ranking between cfj and its
script score ssj rather than csj together with a lin-
ear kernel. In order to get the valid predicted score
on given the grading scale for SVM ranking, we
train another linear regression model on the train-
ing set between the ranking scores and the actual
text scores. For both SVR and SVM ranking, we
then round the scores predicted from their corre-
sponding regressors to the nearest valid integers
on the given grading scale.

We tune the regularization hyper-parameter on
the development set and report the results achiev-
ing the lowest RMSE on the development set. The
results are included in Table 4. The upper part
of the table shows previous results. UKWaC and
CLC are the results reported in Yannakoudakis
et al. (2011) on SVM ranking models which use
the UKWaC and the Cambridge Learner Corpus
(CLC) (Nicholls, 2003) as the background corpus
for n-gram missing rate estimation respectively.
DISCOURSE is the CLC version with extra dis-
course features. In the DISCOURSE version, Yan-
nakoudakis and Briscoe (2012) investigated differ-
ent features to measure the coherence of a text and
how these features affect the overall score of the
texts in the FCE dataset. They showed that the
coherence feature based on incremental semantic
analysis (Baroni et al., 2007) measuring average
adjacent sentence similarity can help their ATS
system improve in terms of the Pearson and Spear-
man correlations.

Table 4 does not include any recent neural
model on the FCE dataset, because the neural
model developed by Farag et al. (2017) shows that
there is still a performance gap between the neural
model and the models built on hand-crafted fea-
tures.

Our models achieve relatively good perfor-
mance, and we also found that by selecting ap-
propriate features and hyper-parameters, the dif-
ference between using ranking and regression to
train an ATS model is relatively small. This con-
trasts with Yannakoudakis et al. (2011)’s finding
that ranking is much better than regression on this
task. Therefore, we use SVR (BASE) in the fol-
lowing experiments.

6.3 Model Fusion

There are two ways in which we can pass author-
ship knowledge in our ATS model. We refer to
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them as score fusion and feature fusion.
For score fusion, we concatenate all the texts

within the same script together as ctj written by
learner lj . We extract the script feature vector cfj
from ctj . An overall-level model is trained on cfj
and its combined script score csj , which is the
sum of all the individual scores of one script. This
overall-level model predicts the combined script
score of ctj as ĉsj , and the predicted normalised
combined score ĉsj

M is fused with the predicted in-
dividual score ŝm,j by linear interpolation to get
the predicted fused score f̂ sm,j :

f̂ sm,j := (1− α)ŝm,j + α
ĉsj
M

The interpolation hyper-parameter α is tuned on
the development set, and f̂ sm,j is then rounded
to the nearest valid score on the given grading
scale as the final predicted individual-level score
for tm,j .

For feature fusion, we still extract the script
feature vector cfj from ctj . Then, we define the
fused feature vector ffm,j of tm,j as the vector
concatenated by fm,j and cfj together as follows:

ffm,j := (1− β)fm,j ⊕ βcfj

where β is the concatenation weighting hyper-
parameter to be tuned on the development set. We
train an individual-level model on the fused fea-
ture vector ffm,j and text score sm,j , and the pre-
dicted score ŝm,j is rounded to the nearest valid
score r̂sm,j on the given grading scale.

Another question raised by the discussion here
is what to fuse. For text tm,j in score fusion, in-
stead of fusing the individual score ŝm,j with the
combined script score ĉsj , we can also fuse ŝm,j

with the individual predicted score ŝ(M−m+1),j

from the other text within the same script, which
is the neighbouring text t(M−m+1),j .

For feature fusion, when we are augmenting text
feature vector fm,j to ffm,j , we can concatenate
it with the feature vector f(M−m+1),j from the
neighbouring text t(M−m+1),j instead of the script
feature vector cfj derived from the concatenated
text ctj . Therefore, we have two different fusion
approaches, and each approach also has two dif-
ferent sources to fuse.

It should be noticed that the two questions for
each dataset are designed on a similar difficulty
level. The fusion approach can easily be made to
work even if these questions are not on the same

difficulty level. If the difficulty difference between
the targeted question and the neighbouring ques-
tion is too large, we can penalise the neighbouring
question so that the ATS model mainly look at the
targeted question. This is straightforward to do in
our method by adjusting the weight of the neigh-
bouring question. We will investigate questions
from different difficulty levels in future work once
we have a suitable dataset.

7 Results and Discussion

In this section, we evaluate the baseline model and
the fusion approaches to study the influence of
authorship knowledge. For each setup, we train
an individual-level model for each dataset. The
model for each setup is optimised on each devel-
opment set in terms of RMSE. We tune the SVR
regularisation and interpolation hyper-parameters
on each development set. We report RMSE, κ,
ρprs and ρspr in Table 6 for each test set. The op-
timal interpolation hyper-parameters for each fu-
sion approach are reported as α/β in Table 6.

Some readers might notice that there is a numer-
ical difference between Table 4 and Table 6 for the
same baseline model evaluated on the FCE test set.
The reason for the difference here is that these two
tables correspond to two different tasks. The task
in Table 4 is predicting the overall-level score, and
Table 6 is the individual-level score of a text. It
seems that predicting the individual-level scores is
a harder task as there is less text to assess (Sec-
tion 1.1).

For feature fusion, feature fusion with neigh-
bouring text (FF-NT) and concatenated text (FF-
CT) is consistently better than the baseline
(BASE) on all the datasets except for the B2-U
on κ, ρprs and ρspr. For score fusion, score fu-
sion with concatenated text (SF-CT) is better than
BASE on all the six datasets except for κ in AL-
U. In contrast, score fusion with neighbouring text
(SF-NT) is better than BASE on all the datasets re-
garding RMSE except for FCE, but κ is only better
than BASE on C1-S. Both SF-CT and SF-NT are
better than BASE in terms of ρprs and ρspr. The
improvement is also visible on the two shuffled
datasets, and we suggest that adding authorship
knowledge is not merely the result of modelling
grading bias, which answers the second assump-
tion in Section 5.

To give a better global understanding of how
each approach performs, we conduct the Wilcoxon
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signed-rank test (Wilcoxon, 1945; Demšar, 2006)
across the six datasets to see whether any setup is
significantly better or worse than BASE at a global
level. We use the SciPy implementation to run the
test5, and the p-values of all the metrics across all
the six datasets are listed in Table 5. Based on the
result in Table 5, there is a significant difference
between all the fusion approaches (p < 0.05) and
BASE on all the metrics except for SF-NT on κ
across multiple datasets.

Setup RMSE κ ρprs ρspr
SF-NT 0.046 0.058 0.028 0.028
SF-CT 0.028 0.046 0.028 0.028
FF-NT 0.028 0.046 0.046 0.046
FF-CT 0.028 0.046 0.046 0.046

Table 5: p-value for each approach estimated by
the Wilcoxon signed-rank test across all the six
datasets. The value bigger than 0.05 is in bold

7.1 Hyper-parameters

α, β > 0.5 in each fusion approach tells the ATS
model that it should favour the information from
the other source over the current individual text
tm,j being marked, and vice versa. We also vi-
sualise the relation between β and RMSE for the
feature fusion approaches in Figure 1 and 2.

For the fusion with concatenated text ctj , α >
0.5 on FCE and C1-S in SF-CT. β > 0.5 for all
the datasets except for B2-U in FF-CT. Further-
more, if we tune β on the test sets, we can find the
optimal β for all the six datasets are bigger than
0.5. On the one hand, we are a little bit surprised
that the fusion approaches with concatenated text
favour ctj , and it might mean that ctj is more
salient compared to the original text tm,j in ATS.
On the other hand, it is still to be expected to ob-
serve these results, because ctj also contains tm,j ,
and the information from tm,j is still dominant in
the model even if α, β > 0.5.

In contrast, we expect that the model fused with
neighbouring text achieves the best performance
on each dataset when α or β is smaller than 0.5,
as the model should focus on the text tm,j being
marked. For SF-NT in Table 6, the optimal α is
always smaller than 0.5. However, for FF-NT, the
optimal β = 0.5 for AL-U and C1-U in Table 6.
Furthermore, if we choose the test sets to tune β
instead of the development sets, we can see that

5https://www.scipy.org

β > 0.5 on the FCE, C1-U and AL-U dataset in
Figure 2. Based on these results, we suggest that
in some cases, the features from two tasks written
by the same learner could be highly similar and
shared to some extent in an ATS model.

7.2 Score Difference

Although positive effects are observed in most
cases, no method is significantly better than BASE
on every dataset and metric we used. One reason
might be that it is not ideal to aggregate the two
texts written by the same learner together if the
performance difference between these texts is big.
For example, some learners might perform well on
the first task, but fail to complete the second task.
This is what we have discussed in the first assump-
tion in Section 5, and this assumption might be in-
valid in some cases. So, we conduct another study
to see how the score difference between the two
texts in each script affects the model performance.

We define the script score difference sdj as the
score difference between two texts t1,j and t2,j
within the same script TLj : sdj := |s1,j − s2,j |.

The text score difference of text tm,j is defined
as the score difference of the script to which it be-
longs: sdm,j := sdj .

The text score error errorm,j denotes the dif-
ference between the predicted score and the gold
score of tm,j : errorm,j := |r̂sm,j − sm,j |.

The text score errors errorm,j produced by
BASE and any fusion approach on text tm,j de-
note errorBASE

m,j and errorFUSION
m,j , respectively.

The performance difference PDm,j between
BASE and any fusion approach for text tm,j de-
notes the difference between the errors made by
the two setups:

PDm,j := errorBASE
m,j − errorFUSION

m,j (1)

PDm,j > 0 means that the fusion approach is bet-
ter than BASE at predicting the score of tm,j , and
vice versa.

We calculate the Pearson correlation ρprs be-
tween PDm,j and sdm,j for each test set in Ta-
ble 7. Although we do not find any interesting
relation between the correlation here and the per-
formance variation in Table 6, Table 7 does reveal
some patterns. On the one hand, most values are
negative, and the five positive values in bold tend
to be close to 0, and p is always bigger than 0.05
for all the positive values. We suggest that there
is a negative correlation between performance dif-
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Setup RMSE κ ρprs ρspr α/β RMSE κ ρprs ρspr α/β
FCE AL-U

BASE 2.569 0.511 0.662 0.652 X 0.693 0.620 0.684 0.659 X
SF-NT 2.572 0.490 0.693 0.696+ 0.35 0.686 0.603 0.704 0.687+ 0.34
SF-CT 2.495 0.533 0.696 0.702+ 0.70 0.691 0.610 0.689 0.667 0.33
FF-NT 2.529 0.554+ 0.688 0.688+ 0.30 0.683 0.634 0.698 0.680 0.50
FF-CT 2.460+ 0.554+ 0.694 0.695 0.67 0.664+ 0.649+ 0.720+ 0.710+ 0.70

B2-U B2-S
BASE 1.991 0.246 0.359 0.339 X 2.085 0.386 0.476 0.442 X
SF-NT 1.979 0.241 0.371 0.347 0.18 2.050+ 0.384 0.501+ 0.463 0.23
SF-CT 1.954+ 0.271+ 0.398+ 0.377+ 0.32 2.029+ 0.400 0.510+ 0.476+ 0.33
FF-NT 1.982 0.242 0.348 0.324 0.20 1.983+ 0.430+ 0.541+ 0.511+ 0.33
FF-CT 1.974 0.241 0.354 0.333 0.25 2.017+ 0.415 0.506 0.481 0.80

C1-U C1-S
BASE 2.405 0.269 0.411 0.410 X 2.421 0.341 0.504 0.471 X
SF-NT 2.387 0.260 0.438 0.433 0.37 2.413 0.343 0.511 0.480 0.02
SF-CT 2.366+ 0.288 0.453+ 0.451+ 0.37 2.346+ 0.378+ 0.567+ 0.523+ 0.78
FF-NT 2.350+ 0.304+ 0.462+ 0.455+ 0.50 2.370+ 0.389+ 0.529 0.498 0.40
FF-CT 2.378 0.296+ 0.428 0.420 0.60 2.361+ 0.381+ 0.548+ 0.513+ 0.67

Table 6: The results of different setups on the test sets. The best setup per dataset is in bold.
GREEN means improvement and RED means degradation over BASE. The optimal interpolation hyper-
parameters for each fusion approach are reported as α/β. + means significantly better (p < 0.05) than
BASE using the permutation randomisation test (Yeh, 2000) with 2,000 samples. No metric is found
significantly worse than BASE.
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Figure 1: How RMSE (y-axis) changes with β (x-axis) in FF-CT. The vertical RED and GREEN dashed-
dot lines in each graph represent that the model achieves the lowest RMSE on the development and test
sets at the corresponding β.

ference PDm,j and text score difference sdm,j on
some datasets.

On the other hand, only the p-values for six neg-
ative values in Table 7 are smaller than 0.05. We
think the negative influence brought by the score
difference is not huge, because the scores of the
two texts written by the same learners are at least
moderately correlated in Table 3. This correlation
might reduce the negative influence of score dif-
ference here.

In some operational settings, it might be consid-

ered unfair to use other responses to score a new
response, and grading guidelines usually require
texts to be marked independently. Nevertheless,
we found a clear improvement when making use
of such information, and no approach is signifi-
cantly worse than BASE on any metric or dataset.
In other words, the positive influence brought by
our fusion approaches is stronger than any possi-
ble negative effects.
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Figure 2: How RMSE (y-axis) changes with β (x-axis) in FF-NT. The vertical RED and GREEN dashed-
dot lines in each graph represent that the model achieves the lowest RMSE on the development and test
sets at the corresponding β.

Setup SF-NT SF-CT FF-NT FF-CT
FCE -0.102 -0.156* 0.002 -0.162*
B2-U -0.034 -0.009 0.036 0.012
C1-U -0.060 -0.018 0.034 -0.005
AL-U -0.188* -0.107* -0.021 -0.108*
B2-S -0.039 -0.039 0.014 -0.074
C1-S -0.074 -0.102* -0.032 -0.048

Table 7: The Pearson correlation between perfor-
mance difference PDm,j and script score differ-
ence sdm,j on the test sets. * denotes p-value
< 0.05, and bold denotes a positive correlation.

8 Conclusion

In this paper, we studied how authorship knowl-
edge, by means of score fusion and feature fusion,
is a useful feature in ATS. We showed that in-
cluding such information improves model perfor-
mance at in most datasets, and that improvement
is not only from modelling grading bias. One pos-
sible topic for future work is to study whether the
target CEFR level of each dataset affects the influ-
ence of adding authorship knowledge.
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