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Abstract

In this paper we present work-in-progress
where we investigate the usefulness of previ-
ously created word lists to the task of single-
word lexical complexity analysis and predic-
tion of the complexity level for learners of
Swedish as a second language. The word lists
used map each word to a single CEFR level,
and the task consists of predicting CEFR lev-
els for unseen words. In contrast to previous
work on word-level lexical complexity, we ex-
periment with topics as additional features and
show that linking words to topics significantly
increases accuracy of classification.

1 Introduction

A way of addressing the second-language (L.2) ac-
quisition needs of the recent influx of new immi-
grants to Sweden would be to provide an extensive
amount of digitally accessible self-study materi-
als for practice. This could be achieved through
the development of specific algorithms for exer-
cise/material generation, but such algorithms gen-
erally heavily rely on linguistic resources, such as
descriptions of vocabulary and grammar scopes
per each stage of language development, so that
automatic generation of learning materials would
follow some order of increasing complexity.
Vocabulary scope can be described through
graded vocabulary lists. These are lexical re-
sources where each lexical item is linked to a
level at which the item is appropriate for learn-
ers to study, one prominent example being the
English Vocabulary Profile (Capel, 2010, 2012).
Graded lexical resources are useful, for exam-
ple, for course book writers, language test design-
ers, language teachers and language learners, since
they can inform the users as to what knowledge is
to be expected at which proficiency level, as well
as which words to teach and test at which levels.
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However, any graded list is a finite resource, as
it would never be possible to list by levels all items
that learners might encounter. We intend, there-
fore, to use previously compiled graded vocabu-
lary lists to learn from them to predict levels of
previously unseen, out-of-vocabulary (OOV), lex-
ical items.

In practical terms, we look at three auto-
matically created corpus-based vocabulary lists,
namely Kelly list (Volodina and Kokkinakis,
2012), a resource based on L1 web corpora that
identifies frequent vocabulary to guide language
learners in their acquisition of vocabulary', as well
as SVALex (Francois et al., 2016) and SweLLex
(Volodina et al., 2016b), two L2-targeted word
lists covering receptive vocabulary and productive
vocabulary respectively?. The aim of this work is,
thus, to create a model that is able to predict the
difficulty (i.e. appropriate CEFR? level) of any
Swedish word with regard to productive and re-
ceptive aspects. These graded vocabulary lists are
then intended for use in generation of exercises
for learners of different levels, though other usage
scenarios are also possible.

2 Related Work

There has been some work on the creation and
evaluation of automatically graded vocabulary
lists (Gala et al., 2013, 2014; Tack et al., 2016b).
Gala et al. (2013) aim at identifying criteria that
make words easy to understand, independently
of the context in which they appear. Since it
has been shown that the concept of difficulty de-
pends on the target group (Blache, 2011; Francois,
'Swedish Kelly list is available with CC-BY license from
https://spraakbanken.gu.se/eng/resource/kelly
?Both lists are a part of CEFRLex family of resources, and
are available from http.//cental.uclouvain.be/cefrlex/
*Common European Framework of Reference for Lan-

guages (Council of Europe, 2001) describes six levels of pro-
ficiency, starting from A1l to C2
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2012), and thus different combinations of fea-
tures might model certain groups better than oth-
ers, they focus on speech productions by patients
with Parkinson’s disease. Gala et al. (2013) look
at 27 intra-lexical and psycholinguistic variables.
The intra-lexical variables include number of let-
ters, number of phonemes, number of syllables,
syllable structure (CV structure), consistency be-
tween graphemes and phonemes, and selected dif-
ficult spelling patterns such as double vowels and
double consonants. Among psycholinguistic vari-
ables are orthographic neighborhood (words that
only differ by one letter), lexical frequency and
presence/absence from the Gougenheim list, a list
of easy-to-understand vocabulary items.

They train a Support Vector Machine (SVM)
classifier on the nine (out of initial 27) most
predictive features to predict the difficulty level
of unseen words. 5-fold cross-validation on the
data shows an average accuracy of 62% in the
three-way classification. They conclude that syl-
labic structures and spelling patterns are not very
predictive of difficulty and that the most predic-
tive features are the lexical frequency and pres-
ence/absence from the Gougenheim list.

Gala et al. (2014) focus on learners of French,
both L1 learners and learners of French as a for-
eign language. They use Manulex (Lété et al.,
2004) to model L1 learners’ vocabulary and
FLELex (Francois et al., 2014) to model L2 learn-
ers’ vocabulary. In contrast to Gala et al. (2013),
they use 49 features which can be grouped into or-
thographic features (e.g. number of letters, num-
ber of phonemes, number of syllables), morpho-
logical features (number of morphemes, affix fre-
quency, compounding), semantic features (degree
of polysemy) and statistical features (frequency,
Gougenheim list). They train two SVM classifiers,
one for L1 learners and one for learners of French
as a foreign language. The first one is a three-way
classification while the latter is a six-way classifi-
cation. On the three-way classification, they reach
63% accuracy and on the six-way classification
they reach 43% accuracy. As in Gala et al. (2013),
they find the most predictive features to be lexical
frequency and presence/absence from the Gougen-
heim list. However, they also find the binary poly-
semous status, i.e. whether the word polysemous
or not, as well as the degree of polysemy to cor-
relate well with the complexity of words. This is
an interesting finding, as the degree of polysemy
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is not directly correlated with frequency.

A related area of work is complex word iden-
tification for text simplification. For this task, it
is important to identify target difficult words or
phrases that need simplification (Shardlow, 2013;
Paetzold and Specia, 2016; gtajner et al., 2018).
However, in contrast to our work, complex word
identification is a binary classification and the fo-
cus is slightly different, although there are sig-
nificant overlaps. Tack et al. (2016a) and Tack
et al. (2016b) for example aim at identifying and
classifying words of a text into known and un-
known ones either for an individual learner or
for learners of a given proficiency level as a
group. They compare different personalized mod-
els with a model based on the graded vocabulary
list FLELex (Frangois et al., 2014). Their per-
sonalized models also use frequency information,
CEFR levels of single words as calculated in Gala
et al. (2014), number of letters, and number of
senses of a word. For the FLELex vocabulary
based model and a learner of a given CEFR level,
the model considers all words that are of the same
or lower level as the learner’s level as known and
all words that are of higher level as unknown.

Our recent participation in the Complex Word
Identification Task 2018 (étajner et al., 2018) has
yielded interesting findings that we hope will fur-
ther improve the presented system (Alfter and
Pilan, 2018).

3 Data

Our data consists of three different word lists for
Swedish, namely SVALex (Francois et al., 2016),
SweLLex (Volodina et al., 2016b) and Kelly list
(Volodina and Kokkinakis, 2012).

SVALex is compiled from the COCTAILL text-
book corpus (Volodina et al., 2014), comprised
of reading comprehension texts marked for CEFR
levels, and covers receptive vocabulary knowl-
edge. SweLLex is derived from the pilot SweLL
learner essay corpus (Volodina et al., 2016a)
graded for CEFR levels and covers productive vo-
cabulary knowledge. Kelly list is derived from the
Swedish Web-as-Corpus (SweWaC) and contains
the 8425 most frequent lemmas appearing in na-
tive speaker writing divided into CEFR level ac-
cording to the frequency of the items and corpus
coverage. See table 1 for the overview of the three
resources.

While Kelly list already assigns each word to a
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Figure 1: Distribution of the verb arbeta ‘to work’, in receptive and productive resources

Al A2 Bl B2 Cl1 Total
SVALex 968 1973 2761 6223 3697 15 681
SweLLex 602 1258 1317 1024 1248 6 965
Kelly list 1404 1404 1404 1404 2809 8 425

Table 1: Data distribution across lists. In SVALex and SweLLex vocabulary items partially overlap between levels,
and hence the total number of items in the list does not equal the sum of items per level.

target CEFR level, SVALex and Swel.Lex present
distributions over CEFR levels, i.e. how often a
word occurs at the different CEFR levels, as ex-
emplified in table 2. Since SVALex and SwelLLex
cover 5 proficiency levels and Kelly list covers 6
proficiency levels, we assimilated the highest level
in Kelly list (C2) to the previous level (C1).

To go from distributions to target levels in
SweLLex and SVALex, we use the mapping pro-
cedures described in Gala et al. (2013), Gala et al.
(2014) (first occurrence) and Alfter et al. (2016)
(threshold). For first-occurrence mapping, we as-
sign each word to the level it first occurs at. For
threshold mapping, we assign each word to the
level where it occurs significantly more often than
at the preceding level, with the level of signifi-
cance set at 30%.

Figure 1 shows the distribution of frequencies
for the word arbeta (Eng. “to work™) over the five
CEFR levels in SVALex (receptive resource, st
bar) and SwelL.Lex (productive resource, 2nd bar).
According to the first occurrence approach, the
target level for both receptive and productive com-
petence for the word arbeta would be A1, whereas
the threshold approach suggests that A1 would be
the target level for receptive knowledge, and A2
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would be the target level for productive level.

We did a comparison of both mapping meth-
ods to find out to what degree they agree. Ta-
ble 3 shows the levels assigned by both methods
for the two resources SVALex and SweLLex. By
comparing the output of these two mapping meth-
ods, we can see that both methods agree to a large
extend. When both methods did not agree, they
tended to still assign levels that were adjacent, e.g.
if one method assigned level B1, the other would
assign B2 or A2. This is not a surprise, as the
border between different proficiency levels can be
fluid. We call this type of disagreement within one
level. We also see that a certain amount of words
were classified as different levels but with the lev-
els assigned being more than one level apart, e.g.
one method assigns level A2 and the other method
assigns level B2. We call this type of disagree-
ment more than one level. Given this finding, and
for comparability between studies, e.g. with Gala
et al. (2013) and Gala et al. (2014), we have opted
to use the first-occurrence approach in the remain-
der of the study.

The SVALex and SwelLLex data is noisy, be-
cause, for one, we cannot validate whether the au-
tomatically assigned (mapped) levels are accurate



Lemma Part-of- Al A2 B1 B2 Cl
Speech

beta ‘to graze’ VB 0.0 0.0 0.0 19.27 13.21

bo ‘to live’ VB 4978.93 2515.92 1252.19 718.53 497.75

hund ‘dog’ NN 251.89 81.26 250.26 74.29 98.87

Table 2: Example of word distributions over levels in SVALex
Resource  Same Within More than tic complexity, among others in readability
level one level  one level assessment formulas, for example in Smith

(1961); Bjornsson (1968); O’Regan and Ja-

SVALex 12775 1592 1255
cobs (1992).

SwelLLex 5689 706 516

Table 3: Number of items that were assigned the same
level, within one level and more than level by both
mapping techniques

due to missing gold standard annotations, and sec-
ondly because of certain errors resulting from au-
tomatic corpus annotation. The data is also sparse,
and since the mapping procedure for SVALex and
SweLLex very much depends on the data avail-
able, this introduces further noise. These are the
limitations we are aware of and plan to address in
the future by collecting and annotating more data.

4 Features

From each word, including multi-word expres-
sions such as gdra ont ‘to hurt’ and god morgon
‘good morning’, we extract features, grouped into
count-based features (i), morphological features
(i1), semantic features (iii) and context-based fea-
tures (iv). Table 4 gives an overview of the av-
erage values for some selected features per level
and resource. As can be seen from this table,
words at higher levels tend to be longer, have
more syllables, longer suffixes, a higher number
of compounds and lower degrees of polysemy and
homonymy. Indeed, concerning polysemy, more
common words, which are typically found at lower
levels, tend to have more different senses than
more specialized words found at higher levels.

(i) Count-based and surface form features

e Length is the length of the word in char-
acters, our example word arbeta (Eng “to
work”) containing 6 characters. Word length
has previously been used to assess linguis-
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Syllable count is the number of syllables in
the word, where arbeta contains three syl-
lables. Syllables are counted as number of
vowels except for diphthongs ending in ‘v’
(e.g. ‘eu’, ‘au’) which are counted as one
syllable. Syllable count has been applied in
readability assessment as a measure of in-
creasing text difficulty, e.g. in Flesch (1948);
Kincaid et al. (1975), where multi-syllable
words have been proven to increase the over-
all linguistic complexity of a text. By anal-
ogy, we assume that the same applies on a
single word level.

Contains non-alphanumeric characters is a
boolean value that is true if the word contains
non-alphanumeric characters, i.e. any charac-
ter other than A-Z and digits 0-9, for example
13-aring (Eng. 13-year old).

Contains number is a boolean value that is
true if the word contains digits or consists
solely of digits.

The multi-word feature indicates whether the
lexical expression is made up of more than
one single word.

For bigrams, we calculated all character-level
bigrams from each word list and retained
only the 53 most predictive ones. This feature
is a vector indicating the presence or absence
of these 53 bigrams in the target word.

For n-gram probabilities, we calculate
character-level unigram, bigram and trigram
probabilities with a language model based on
the Swedish Wikipedia dump from February
2018. We surmise this also implicitly cap-



Al A2 B1 B2 C1
Average word length
SVALex 6.00 7.49 8.51 8.85 9.58
SweLLex 5.10 5.98 7.66 8.89 991
Kelly 5.74 7.00 7.54 7.86 7.80
Average syllable count
SVALex 2.08 2.52 2.88 291 3.24
SweLLex 1.80 2.01 2.58 2.94 3.28
Kelly 2.04 2.44 2.62 2.78 2.76
Average suffix length
SVALex 0.54 0.63 0.77 0.80 0.91
SweLLex 0.47 0.51 0.56 0.63 0.71
Kelly 0.70 0.80 0.86 0.88 0.87
Average number of compounds
SVALex 0.014 0.037 0.052 0.062 0.067
SweLLex 0.038 0.058 0.112 0.125 0.162
Kelly 0.043 0.095 0.137 0.175 0.167
Average degree of polysemy
SVALex 0.64 0.51 0.39 0.29 0.24
SweLLex 0.55 0.62 0.46 0.36 0.30
Kelly 0.84 0.73 0.67 0.56 0.56
Average degree of homonymy
SVALex 1.25 1.11 1.06 1.05 1.02
SwelLLex 1.35 1.18 1.10 1.08 1.04
Kelly 1.30 1.13 1.08 1.10 1.05

Table 4: (Selected) feature averages per level and resource

tures information about grapheme-phoneme
correspondence, frequency and suffixes.

(ii) Morphological features

e Part-of-speech corresponds to the part-of-
speech of the word. For multi-word expres-
sions, the part-of-speech of the head noun is
taken.

o For suffix length, we stem the word using the
NLTK stemmer (Bird et al., 2009) and sub-
tract the length of the resulting stem from the
length of the original word. In arbeta, the
final -a is a suffix. Previous work on order
of acquisition of inflectional versus deriva-
tional morphemes, e.g. Derwing (1976),
argue that knowledge of derivational mor-
phology is acquired gradually in the learn-
ing progress, thus motivating this feature for
our experiments. This intuition also seems to
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hold when looking at average suffix length by
level, as shown in table 4.

For compound count, we run the word
through the SPyRo/SALDO pipeline (Ostling
and Wirén, 2013), which generates possible
analyses of the word with regard to com-
pounding. Compound count is the number of
possible compounding alternatives. Arbeta
can theoretically be analyzed as ar ‘are (unit
of measurement)’ + beta ‘to graze’ and thus
would have a compound count of 1. Glasskdl
on the other hand can be analyzed as glas
‘glass’ + skadl ‘bowl’, glass ‘ice cream’ + skal
‘bowl’ and glass ‘ice cream’ + kal ‘cabbage’
and thus would have a compound count of 3.
The cognitive load for processing a word, that
potentially has several (compounding) inter-
pretations, hypothetically also influences the
word’s complexity, and hence the level at
which it is acquired.



e For compounds, we calculate all compound
elements, i.e. words that have been identified
in compounds, in all lists and selected the 12
most predictive compounds. This feature is a
vector indicating the presence or absence of
these compounds in the target word.

Gender for nouns is taken from Saldo’s mor-
phology (Borin et al., 2008) and encoded nu-
merically as -1 (no information about gen-
der or not applicable), 0 (common gender,
aka “en-ord”), 1 (neuter, aka “ett-ord”) and 2
(variable gender). For arbeta the value would
be -1 since gender only applies to nouns. The
majority of nouns in Swedish are of com-
mon gender (e.g. in the Kelly-list there are
3465 nouns of common gender, while 1065
are neuter).

(iii) Semantic features

e Degree of polysemy is calculated by count-
ing the sub-entries of a given dictionary en-
try in Lexin (Gellerstam, 1999). The verb
arbeta has only one sub-entry, and is thus
non-polysemous. From empirical sources
(e.g. various frequency lists), we can observe
that non-polysemous words tend to be less
used constituting a large bulk of non-frequent
words, something that is quite logical given
that most word lists are compiled based on
lem-grams (e.g. a combination of base form
of a word plus its part-of-speech), and not
on senses. Usages of several senses of the
same lem-gram are thus grouped together in
one entry and push the word to the top of the
frequency lists. Highly polysemous words,
like komma ‘to come’ are thus often learned
in the beginning. This seems to be a con-
tradictory trend with regards to our example
word, arbeta ‘to work’. However, if we ex-
tend the search to phrasal verbs with arbeta
in Saldo, there would be seven more entries,
and in Lexin four more.

o Degree of homonymy is calculated by count-
ing the number of dictionary entries in Lexin
with the same orthographic form. An ex-
ample of a homonym across word classes
would be gift: it could either be the adjec-
tive meaning “married” or the noun mean-
ing “poison”. Homonymy within the same
word class would be vara (Eng. “to last”,
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“to be”’). The example word arbeta has only
one entry in Lexin. Studies on homonymy
within second language learning (Mashhady
et al., 2012) show that honomymous words
take longer to remember and differentiate be-
tween meanings than e.g. several synonyms
relating to the same concept, demanding dis-
ambiguation of a homonym given the con-
text, which makes homonymy an interesting
feature to include into our experiments.

(iv) Context features

e For topic distributions, we indicate in which
topic lists the target word occurs. Topic lists
were extracted from the COCTAILL corpus,
where each reading text is assigned one or
more topics. We thus extracted all lemmata
from reading texts, assigning them to the top-
ics as given in the corpus. We then ran a
TF-IDF algorithm over the lists to eliminate
words that occurred across all topic lists. This
yielded 33 topic lists, such as animals, arts,
daily life, food and drink, nature, places, or
technology.

Thus, for the verb arbeta, we can summarize
the above features into the following (simplified)
word complexity description: 6-letter 3-syllable
non-polysemous non-homonymous verb with one
possible suffix, one possible compound analysis,
no gender information (since this only applies to
nouns), not a multi-word expression and a word
used in topics characteristic of presenting people
(CEFR levels Al and A2) which is - supposedly
- the reason why the empiric data points out Al
level for receptive and productive knowledge ac-
cording to first-occurrence approach; and Al for
receptive and A2 for productive knowledge if we
follow the threshold mapping strategy.

5 C(lassification

In order to check how well the features we have
chosen model single word complexity, we use
different classifiers and stratified 10-fold cross-
validation on the different data sets.

For classification of unseen words, we train
classifiers on the available data. We train one clas-
sifier for receptive predictions on SVALex and one
classifier for productive predictions on SweL.Lex.

The classification task consists in assigning
each word in our word lists a target CEFR level.



Svalex Swellex Kelly
Majority baseline  0.29 £ 0.00 0.29 £+ 0.00 0.33 £ 0.00
SVM 0.32 £ 0.02 0.37+£0.05 0.39+0.04
MLP 0.32 £0.03 0.37+£0.04 0.39 £ 0.04
ET 0.27 £0.02 0.33 £0.05 0.32+0.04
SVM+T 0.44 +£0.03 0.41 +0.04 0.45 +0.05
MLP+T 0.53 £0.04 0.38 £0.05 0.44 £ 0.05
ET+T 0.55 +0.05 0.37 £ 0.06 0.43 £ 0.05
SVM+TL 0.48 £0.03 0.41 £0.05 0.45+0.04
MLP+TL 0.53 £0.04 0.39 £ 0.06 0.44 +£0.03
ET+TL 0.59 +£0.03 0.37 £ 0.06 0.42 +£0.03

Table 5: Results: Accuracy and standard deviation using 10-fold cross-validation

For evaluation of the features, accuracy is calcu-
lated by comparing the predicted level with the
level given by the graded word list. We cannot, at
this moment, evaluate classifiers for unseen words,
as we would have to have manually graded word
lists against which to compare our predictions.

6 Results

Table 5 shows the results of 10-fold cross-
validation classification using different algo-
rithms. Majority baseline always predicts the ma-
jority class. Since our data is not balanced, this de-
viates from the expected chance baseline of 0.2 for
five-class classification. SVM is a support vector
machine with default parameters C' = 1 and radial
basis function (rbf) kernel. MLP is a multilayer
perceptron with 100 hidden layers and a learning
rate of 0.01. These parameters were chosen based
on a randomized grid search over the parameter
space. ET is an extra trees classifier, a classifier
from the group of random tree classifiers. Prelim-
inary experiments have shown an initial increase
in accuracy with an increase in the number of es-
timators of the ET algorithm but which shows no
further improvement after 100 estimators. We thus
have fixed the number of estimators for the ET al-
gorithm at 100. SVM+T, MLP+T and ET+T show
the accuracies obtained by the same algorithms but
with topic distributions added to the data. For
comparability, since we have included all word
classes in our experiments, we also tried classi-
fying only lexical word classes (nouns, verbs, ad-
jectives and adverbs) as in Gala et al. (2014). The
results of these experiments are shown in the rows
SVM+TL, MLP+TL and ET+TL.
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Write a lemma

byracka

Select a part-of-speech

noun v

Receptive ® Productive O Beth O

Gol
Results
Word POS ROP Predicted
level
byracka NN receptive B2
vovve NN receptive A2
hund NN receptive A1

Figure 2: User interface for lexical complexity predic-
tion

In addition, we have created a user interface®,
as shown in figure 2. This user interface can be
used for getting predictions of any word, not only
words present in the word lists . The input word
is transformed into a feature vector as described
above and then fed into the classifier, which pre-
dicts a label. Figure 2 shows the predictions for
hund ‘dog’, vovve ‘childish or endearing term for
dog’ and byracka ‘derogatory term for dog’.

7 Discussion

We found that our features excluding topic distri-
butions barely outperform the majority baseline,
yielding even lower scores than the baseline in

some cases. Adding topic distributions signifi-

*https://spraakbanken.gu.se/larkalabb/
siwoco



cantly improves accuracy.

In comparison to the results presented in Gala
et al. (2014), we can see an expected trend. In-
deed, on the L1 resource Manulex and Kelly
(which is based on L1 data but intended for L2
audiences), they reach 63% accuracy in a three-
way classification while we reach 45% accuracy
in a five-way classification. On the L2 textbook
corpus resources FLELex and SVALex, they reach
43% accuracy in a six-way classification while we
reach 59% accuracy in a five-way classification.

If we are comparing our results without topic
distributions, which are more similar to the results
presented in Gala et al. (2014) due to the simi-
larity of features, we see that our best system on
L2 data performs worse in a five-way classifica-
tion (0.32) than theirs in a six-way classification
(0.43). This is probably due to the size of the cor-
pus that was used to compile these lists. While
FLELex was compiled from 28 textbooks and 29
readers, COCTAILL was compiled from 12 text-
books only. As such, their distributions are less
sparse and hypotheses about the target level can
be made with more certainty.

Another point is that, in contrast to previous
work, we have not included information about lex-
ical frequency explicitly. Including such informa-
tion could possibly further improve accuracy. It
can be argued that n-gram probabilities latently
encode this information, but it would be interest-
ing to see whether a more explicit approach would
lead to better results.

We also ran cross-validated recursive feature
elimination (Guyon et al., 2002) to get a rank-
ing of features and discard useless features.
This interestingly identified bigram features (pres-
ence/absence of most predictive bigrams; not to be
confused with bigram frequency) and compound
features as useless, but excluding those features
does not lead to an increase in accuracy. However,
looking at the most predictive bigram and com-
pound files, it seems that something went wrong
during calculation of these, since, for example in
bigrams, there are only very rare combinations
such as ‘44’, ‘do’, ‘xf” and ‘xb’. We would like to
address this issue in future work. The final model
uses 64 features.

One problem for the classifiers could be that
representing words as vectors can lead to the same
representation for different words with different
levels, which leads to a decrease in learnability
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since it introduces contradictory data points. We
have checked for this and found out that our data
contains about 5% of contradictory data points. A
possible approach could be to add more disam-
biguating features.

8 Conclusion and future work

We have presented insights from work-in-progress
on single word lexical complexity. In contrast to
previous work, we show that adding topic infor-
mation significantly improves results on the clas-
sification task. However, the current topic lists can
be further refined, for example by synonym expan-
sion, in the hope of improving accuracy.

For future work, one concern that was also ex-
pressed in Gala et al. (2014) is that the current
lists do not discriminate between different senses
of a word. Thus, words like glas, meaning either
‘glass’ as substance or ‘glass’ as receptacle for
drinks, would be assigned one single level while
their different senses clearly should be assigned
different levels. We are currently working on re-
calculating the resources SVALex and SwelLex
on the sense level by including a word sense dis-
ambiguation component in the pipeline.

Another interesting experiment could be to in-
clude number of phonemes in our study, since
Swedish has some non-transparent grapheme-to-
phoneme correspondences.

There is currently ongoing work concerning the
collection and annotation of learner essays, which
we hope will alleviate the data sparseness problem
that we face at the moment, especially with regard
to the learner essay based word list.

We would also like to implicitly crowdsource
learner knowledge by embedding words from
these automatically mapped lists in automatically
generated learner exercises. By monitoring how
learners of a given level are dealing with words
predicted to be of their level, we hope to be able to
draw conclusions about the target level of words,
i.e. if learners of intermediate B1 level consis-
tently have problems with certain words that our
mapping predicts to be of B1 level, we can assume
that the prediction was incorrect.

In the future, we intend to evaluate these re-
sources both with teachers of Swedish as a second
language as well as language learners to estimate
the validity of the automatic mapping. We would
also like to create gold standard annotations, both
based on these resources as well as new resources.
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