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Abstract

Evidence from the Hansard corpus shows that
the passive voice in British English has de-
clined in relative frequency over the last two
centuries. We investigate which factors are
predictive of whether transitive verb phrases
are passivized. We show the increasing im-
portance of the person-hierarchy effects ob-
served by Bresnan et al. (2001), with increas-
ing strength of the constraint against passiviz-
ing clauses with local agents, as well as the ris-
ing prevalence of such agents. Moreover, our
ablation experiments on the Wall Street Jour-
nal and Hansard corpora provide support for
the unmarked information structure of ‘given’
before ‘new’ noted by Halliday (1967).

1 Introduction

From the Hansard corpus of British parliamentary
proceedings (Alexander and Davies, 2015), we ob-
serve that the passive voice has declined in usage
frequency over the last two centuries. The early
19th century saw more frequent usage of this voice
compared to the late 20th century: As shown in Fig-
ure 1, while the passive was used in approximately
8% of two-argument clauses in the 1830s for exam-
ple, it was used in less than 6% of such clauses in
the 1990s. Following Bresnan et al. (2001), we ex-
clude short passives that contain no “by” phrase to
focus on those two-argument clauses where active
and passive voices are in direct competition.

Four corpora (LOB, F-LOB, Brown, and Frown)
are used by Mair and Leech (2006) to argue that the
passive decreased in frequency in written English
between the 1960s and the 1990s to match the norms

Figure 1: Proportions of passivized two-argument finite verb

phrases in the British Hansard over 200 years

of spoken English. While our analysis does not rule
out this effect of converging registers, we provide
evidence for additional factors in the evolution of the
English passive.

In this paper, we investigate the causes of the pas-
sive’s decline as follows: First, we identify features
that are predictive of whether a verb phrase is pas-
sivized by building a logistic regression model using
features suggested in the literature. After identifying
important explanatory variables for predicting pas-
sivization, we use the British Hansard corpus to in-
vestigate the change in average value of each feature
over time to find explanations for the decline in pas-
sivization and then discuss the changes undergone
by feature weights over time. We show the rising im-
portance of person-hierarchy effects in English pas-
sivization noted by Bresnan et al. (2001), with in-
creasing strength of the constraint against passiviz-
ing clauses with local (i.e. first- or second-person)
agents and the increasing prevalence of such agents.
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The majority of work on diachronic syntax has
relied on manual annotations, and computational
techniques in historical linguistics have mostly fo-
cused on phonology, morphology, and the lexicon
(Lieberman et al., 2007; Ellison and Kirby, 2006;
Bouchard-Côté et al., 2013, for example). One ad-
ditional goal of this paper, therefore, is to employ
automated methods to analyze the factors that af-
fect passivization and that explain its decreasing fre-
quency in English over the last two centuries.

2 Data

2.1 The British Hansard

To identify diachronic trends, we use the Hansard
corpus (Alexander and Davies, 2015), which is a
digitized version of two centuries of debates that
took place in the British Parliament starting from
1803. We divide the data according to the decade
in which each speech was given. When fitting mod-
els, we discard the decades prior to 1830 due to the
small amount of data from those years.

The number of two-argument constructions and
the number of words in each decade from 1830 to
1999 is shown in Table 1.

Decade Words Transitive Verbs
1830s 16,427,918 404,685
1840s 15,464,589 403,245
1850s 16,838,010 392,244
1860s 16,850,076 428,572
1870s 19,922,209 460,881
1880s 30,082,916 698,427
1890s 22,489,078 546,254
1900s 24,835,231 719,629
1910s 29,375,435 1,028,534
1920s 20,501,261 818,339
1930s 35,428,497 1,598,164
1940s 32,802,372 1,565,450
1950s 31,907,582 2,091,740
1960s 36,915,775 2,668,257
1970s 37,551,800 3,015,740
1980s 40,065,521 3,516,300
1990s 33,978,717 3,396,495

Table 1: The number of words and the number of two-argument

actives/passives per decade

After parsing the text of the parliamentary de-

bates using version 3.6.0 of the Stanford dependency
parser (Manning et al., 2014; De Marneffe et al.,
2006), we detect passive verb phrases by screen-
ing for two dependency relation types: those la-
beled with “auxpass” and with “nsubjpass”. (In
transitive constructions, passives can also be de-
tected by screening relations that have the label
“nmod:agent”.) To identify the agent in a passive
construction, we focus on the labels ending with
“agent”. To identify the subject of each verb, we use
the labels “nsubjpass” and “nsubj”. Finally, to iden-
tify the object in an active construction, we make
use of the “dobj” relation. Although not all demoted
subjects in passive constructions are agents, and not
all promoted objects are patients, we use the terms
“agent” and “patient” to refer to the former and the
latter respectively. The aforementioned identifica-
tion process yields approximately 26 million two-
argument verb phrases in total, of which roughly 1.5
million are passives.

2.2 Evaluating Parser Accuracy

We have verified 300 clauses to ensure that the Stan-
ford parser is sufficiently reliable for processing lan-
guage from the Hansard corpus despite the time pe-
riod covered by this corpus. The results of our man-
ual verification process are listed in Table 2.

verb valency & voice argument acc. accuracy
2-argument actives 84% 95%

2-argument passives 88% 94%
active intransitives 86% 90%

short passives 92% 94%
Table 2: Manual evaluation of parser accuracy: In the middle

column, a parse was considered accurate only when all argu-

ments and the voice were correctly identified. In the last col-

umn, only valency and voice had to be correct.

We randomly sampled 100 verb phrases that were
identified by the parser as being two-argument ac-
tives; of those, it correctly identified the voice and
valency in 95 cases, but in only 84 cases were both
arguments correctly identified as well. We also ran-
domly sampled 100 verb phrases from the pool iden-
tified by the parser as two-argument passives; of
those, it correctly identified the voice and valency
in 94 cases (and both of the arguments in 88 sam-
ples). Finally, we sampled 100 verbs (50 actives and
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50 passives) identified by the parser as having only
one argument; it was correct 92% of the time on this
sample for voice plus valency (and 89% of the time
for identifying the argument).

In clauses with two arguments, the most common
type of parser error was incorrectly identifying some
argument of the verb. In addition, there were cases
where the parser decided that a transitive verb phrase
had only one argument and vice versa (e.g. treating
copular constructions as transitive; classifying in-
strumental prepositional phrases as agentive); such
valency errors were more common than voice iden-
tification errors. From our sample, we have observed
that the parser rarely decides on an incorrect voice,
which means that passives are correctly identified as
such by the parser in the vast majority of cases.

2.3 Wall Street Journal

In addition, we report our model’s performance on
the Wall Street Journal corpus from the Penn Tree-
bank Project (Marcus et al., 1993; Marcus et al.,
1994) and use the latter to test the significance of
explanatory variables. Even though accurate con-
stituency trees are provided in the Wall Street Jour-
nal corpus, we parsed the text with a dependency
parser and processed it in a manner similar to the
aforementioned procedure for the Hansard so that
results from the two corpora would be comparable.

3 Modeling Passivization

We fit a logistic regression model to predict the pas-
sivization of two-argument verbs. Similar to earlier
models inspired by Harmonic Grammar (Legendre
et al., 1990), we start with only the constraints on
the locality of agent and patient.

Obtaining better predictions (on our task of in-
terest of predicting whether a given verb phrase is
passive or active) would help us identify the most
important explanatory variables for why a speaker
might choose to use the passive over the active voice.

3.1 Features

The features in our model were inspired by several
previous studies of English passivization.

Person Features In our simplest model, inspired
by the work of Bresnan et al. (2001) on person-
hierarchy effects (see §5.1), each data point consists

of two binary features. The first indicates whether
or not the agent is a local (i.e. first or second) per-
son, and the other corresponds to whether or not the
patient is a local person.

Pronoun Features Because the existence of
person-hierarchy effects would be confounded by
the fact that local persons happen to be pronouns
and thus more likely to be “given” information (see
below), we add two features to denote whether the
agent is a pronoun and whether the patient is a pro-
noun. In addition to personal pronouns, we include
demonstrative pronouns (i.e. “this”, “that” when the
part-of-speech tag is “DT”) as pronouns.

Length Features The length of a constituent was
reported by Wolk et al. (2013) to have an effect on
predicting the dative alternation. Specifically, a dou-
ble object dative has a greater likelihood of being
realized in British English as well as American En-
glish (and especially the latter) when the length of
the patient is longer. We therefore also consider the
length of the agent and that of the patient when pre-
dicting passivization.

Taking square roots of the lengths led to better
performance on development data compared to us-
ing the raw lengths, so our two length features con-
sist of the square root of the agent’s length and that
of the patient’s length.

Given or New Information As a proxy for given
information, we add a feature corresponding to
whether the agent begins with the lemma “the”,
“this”, “that” or a pronoun, as well as another fea-
ture indicating whether the patient begins with one
such word.

Relative Clauses and Wh-words We add two
features indicating whether the current verb is part
of a relative clause and whether it is part of a clause
beginning with a wh-word.

Preceding Passives Parallel structure among suc-
cessive sentences was reported by Weiner and Labov
(1983) to have a significant effect on whether a sen-
tence contains a passivized verb. In the same vein,
we add two features representing preceding pas-
sives: the first indicates whether or not any of the
previous five verbs was passivized, and the second
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indicates whether there was a passive in any of the
previous five sentences.

Lemma Features Finally, we add 1,000 features
representing the 1,000 most common verb lemmas,
with one additional feature to catch the remaining
less common verbs. In order to see the effects of
having different agent and patient head words, we
also add 2,002 binary features corresponding to the
1,000 most common agents and the 1,000 most com-
mon patients (along with two features to catch the
remainder) from across all years.

3.2 Performance

Since, as noted above, a little over 5% of two-
argument transitive clauses in the Hansard as a
whole are passive, a classifier that always predicts
‘active’ can achieve quite high token-level accuracy.
For each test set, we report the proportion of active
clauses as the “baseline” accuracy. We also, there-
fore, report not just the raw classifier accuracy on
test data but also the precision, recall, and F1 for
correctly detecting passive clauses. All evaluations
are the result of five-fold cross validation.

Hansard Table 3 shows the full model’s perfor-
mance on different decades of the Hansard corpus,
with each decade treated independently.

Decade Acc. F1 Prec. Recall Baseline
1830 0.962 0.745 0.772 0.721 0.923
1850 0.959 0.736 0.767 0.707 0.920
1870 0.957 0.734 0.765 0.705 0.917
1890 0.961 0.744 0.771 0.719 0.921
1910 0.969 0.754 0.782 0.729 0.935
1930 0.970 0.740 0.775 0.708 0.939
1950 0.970 0.712 0.759 0.671 0.945
1970 0.970 0.702 0.761 0.652 0.945
1990 0.966 0.673 0.755 0.608 0.942

Table 3: the full model’s performance on every other decade of

the British Hansard corpus since 1830

Sorting the features in each decade by the magni-
tude of their coefficients, the top four features are the
same in every decade of the Hansard from the 1830s
to the 2000s: whether the agent is given (instead
of new), the agent lemma “who”, the agent lemma
“which”, and the verb lemma “have”. (The coef-
ficients in these four cases are all negative, which
means that these features suppress passivization.)

Wall Street Journal Table 4 shows the perfor-
mance of the full model on the WSJ corpus.

Accuracy F1 Prec. Recall Baseline
0.964 0.395 0.733 0.270 0.957

Table 4: Performance on the Wall Street Journal

The top ten features sorted by the magnitude
of their coefficients are shown in Table 5. Posi-
tive weights correspond to passivization being more
likely; for example, our results show that the verb
“have” is rarely passivized, while the verb “offset”
is passivized relatively often.

Top Feature Weight
Given Agent -5.039

Lemma “which” (Agent) -3.257
Lemma “Tenders” (Patient) 3.130

Lemma “who” (Agent) -3.126
Lemma “have” (Verb) -2.851
Lemma “offset” (Verb) 2.815
Lemma “rate” (Verb) 2.334

Lemma “who” (Patient) 2.168
Lemma “affect” (Verb) 2.100
Lemma “cover” (Verb) 2.027

Table 5: Top Features for the WSJ Corpus

3.3 Effects from Feature Classes

We measure the effects on performance of removing
classes of features from the full model and making
predictions with five-fold cross-validation. Table 6
shows the predictive accuracy and F1 score achieved
on the Wall Street Journal corpus by each ablated
model.

Removed Features Accuracy F1 p-value
Pronouns 0.964 0.393 0.196

Lengths 0.961 0.283 < 0.005

Given 0.962 0.299 < 0.005

Rel.&Wh-Clauses 0.964 0.395 0.391

Preceding Passives 0.964 0.382 0.006

Persons 0.964 0.394 0.243

Lemma Features 0.958 0.122 < 0.005

Table 6: Effects on the WSJ of removing one group of features

at a time

Compared to the performance reported in Table
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4, the lemmas were the feature category whose re-
moval caused the biggest impact on performance.

We have also found that the lemma features are
extremely important for predicting passivization on
the Hansard corpus. For example, if we use only the
top 10 instead of the top 1,000 lemma features of
each type, the F1 score for the full model drops from
0.745 to 0.514 for the 1830s and similarly drops
from 0.673 to 0.391 for the 1990s.

To see the effects of the other features on the F1
score more clearly, we trained the model using only
the top 10 lemmas of each type and then removed
each of the other feature categories in turn to mea-
sure the decrease in performance. We did this sep-
arately for different decades of the Hansard; the re-
sults obtained for the 1830s and 1990s are shown in
Table 7 and Table 8.

Removed Features Accuracy F1 p-value
(None) 0.936 0.514
Persons 0.936 0.512 0.380

Pronouns 0.936 0.504 < 0.005

Lengths 0.934 0.461 < 0.005

Given 0.926 0.183 < 0.005

Rel.&Wh-Clauses 0.936 0.512 0.445

Preceding Passives 0.936 0.504 < 0.005

Lemma Features 0.927 0.313 < 0.005

Table 7: Effects on the 1830s of removing individual features

(with the top 10 lemmas of each type in the full model)

Removed Features Accuracy F1 p-value
(None) 0.949 0.391
Persons 0.949 0.391 0.245

Pronouns 0.949 0.386 < 0.005

Lengths 0.948 0.368 < 0.005

Given 0.946 0.218 < 0.005

Rel.&Wh-Clauses 0.949 0.372 < 0.005

Preceding Passives 0.949 0.373 < 0.005

Lemma Features 0.944 0.231 < 0.005

Table 8: Effects on the 1990s of removing individual features

(with the top 10 lemmas of each type in the full model)

3.4 Statistical Significance

To test the statistical significance of the contribution
of individual features, we compare the full model to

each smaller model from Section 3.3 using a permu-
tation test.

To test whether one model outperforms another
in a statistically significant way, we swap or keep
each pair of outputs with equal probability and, in
this way, generate two new series of outputs. We
then measure the difference in F1 scores between
these two series of predictions and repeat this pro-
cedure 200 times to generate 200 such differences.
Next, we compare the true difference in F1 scores of
the original models to the 200 randomly generated
differences. The reported p-values are the propor-
tions of the randomly generated differences that are
as large as or larger than the true difference.

For the Wall Street Journal, we see from Table 6
that the features whose removal caused a statistically
significant decrease in the F1 score were the fea-
tures representing the lengths of the agent and pa-
tient, the features indicating whether the agent and
patient were given (instead of new) information, the
features indicating whether the preceding five verb
phrases and the preceding five sentences contained
passives, and finally the lemma features.

For the Hansard corpus, after using only the top
10 lemmas of each type, we see from Table 7 and Ta-
ble 8 that the removal of any feature category other
than the person features (and relative/wh-clause fea-
tures in the 1830s) causes a statistically significant
decrease in the F1 score. In particular, removing the
given/new information features causes the F1 to suf-
fer the biggest drop.

4 Changes in Feature Values

We have thus far identified some features that affect
whether or not a speaker chooses to passivize a verb
phrase. We now examine how the average value of
each feature changed over time. Note that these are
not the estimated coefficients of these features in a
model but the observed frequencies of features in the
data without considering passivization.

For each decade of the Hansard corpus from 1830,
we calculate the average value of each explanatory
variable; except for the length features whose values
are not Boolean, this average is between zero and
one. Figure 2, for example, plots the average value
in each decade of the feature indicating whether the
agent is local.
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Figure 2: The frequency of local agents has increased over

time.

The observed average value of the local agent fea-
ture increases over time as shown in Figure 2, and
this increase is statistically significant (p = 0.0003)
if we apply an F-test to the slope of the line of best
fit. We apply this test to all the explanatory vari-
ables described in Section 3.1. As shown in Table
9, the only ones whose slopes are not significantly
different from zero are the agent length feature, the
pronoun agent feature, and the indicator for whether
the agent is given or new information.

However, not every feature whose slope is signifi-
cantly different from zero underwent a change as big
as the one undergone by the agent feature depicted
in Figure 2. In the 1830s, this feature had an aver-
age value of 0.069, which means that 6.9% of two-
argument verb phrases had a local agent; in contrast,
in the 2000s, this same feature had an average value
of 0.262, indicating that over 26% of data points had
a local agent. The magnitude of this change is thus
more than 19 percentage points. For each feature,
the raw change in average value from the 1830s to
the 2000s is listed in Table 9. (Because agent length
and patient length are not binary features, the in-
crease of 0.013 and 0.136 in their average values
should not be interpreted on the same scale as the
others.)

The indicators for the presence of passives in the
preceding verbs and preceding sentences cannot be
used to explain the observed decrease in passiviza-
tion frequency because it is unsurprising that these
features decreased in value on average over time as
a result of the general declining trend of the rate of
passivization.

The relative and wh-clauses are not reliable pre-
dictors of passivization according to Table 6 and Ta-

Feature Change in Value
Local Agent 0.193
Local Patient 0.014

Pronoun Agent -0.001 *
Pronoun Patient -0.042
Agent Length 0.013 *
Patient Length 0.136
Given Agent -0.004 *
Given Patient -0.107

Relative Clauses -0.049
Wh-Clauses -0.061

Preceding Verbs -0.182
Preceding Sentences -0.184

Table 9: Change in average value of each feature between the

1830s and the 2000s ( * indicates a statistically insignificant

change)

ble 7; therefore, although their average values ex-
hibit a modest change over time, they are unlikely to
be important for explaining the decline of passives.

This leaves the locality of the agent, the locality of
the patient, the pronoun status of the patient, and the
length of the patient as potential explanatory vari-
ables for the declining frequency of passivization.
(Although the features for local agent and local pa-
tient both increased in average value, the change un-
dergone by the latter is a small fraction of that un-
dergone by the former between the 1830s and the
2000s.) To estimate the impact of these explanatory
variables, we measure the overall passivization rate
when each (binary) feature value is 0 and when it is
1; these rates are listed in Table 10.

Feature Rate at 0 Rate at 1 Diff.
Local Agent 0.086 0.001 -0.085
Local Patient 0.062 0.125 0.063

Pronoun Patient 0.053 0.153 0.100
Table 10: Passivization rate at different feature values

The passivization rates in the 1830s and 2000s are
respectively 8% and 5.2% as illustrated in Figure 1.
This means we seek to explain a difference of 2.8%
percentage points.

To get an estimate of the contribution to the de-
cline in passivization that can be explained by each
feature, we multiply the last column of Table 10 by
the changes listed in Table 9. For example, the pro-
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noun status of the patient contributes an estimated
0.42 percentage points to the decline.

We note that the local patient feature actually pre-
dicts a slight increase in passivization rate, mean-
ing the change is going the wrong way. However,
this predicted increase is very small: only about 0.09
percentage points (in comparison, agent locality pre-
dicts a 1.64 percentage point decline in the rate).

For the patient length feature, we measure the pas-
sivization rate when the value of the feature is 1 and
when it is 2 (i.e. when the length is 4, since the
feature value is a square root of the actual length).
Across all decades, the passivization rate is 0.107
when the value of this feature is 1 and 0.039 when
the feature value is 2. This difference of -0.068
should overestimate the effect on passivization rate
of increasing the feature value by 1. Multiplying this
difference by the change in the average value of this
feature gives -0.009, which means that the change in
this feature value can explain at most 0.9 percentage
points of the declining passivization rate.

If we summed up the effects of the aforemen-
tioned contributions, we would seemingly explain
the entire 2.8% percentage points. However, be-
cause these features correlate with each other, we
cannot sum up the estimated effects. In particu-
lar, the patient locality, pronoun patient, and pa-
tient length features contain overlapping informa-
tion. However, because one feature alone explains
1.64 percentage points, these features explain well
over half of the difference.

5 Changes in Grammar

The significant increase in the frequency of local
agents is suggestive, but is the decline in passiviza-
tion mostly attributable to this lexical choice or, as
Mair and Leech (2006) suggested, to increasing con-
vergence with informal speech? We now turn from
changes in the average values of features to evidence
of changes in grammatical constraints’ weights.

5.1 Person Hierarchy

Some languages have a person hierarchy (Aissen,
1999; Bresnan et al., 2001) in which “local” first
and second persons outrank “nonlocal” third per-
sons. In one such language, Lummi (Bresnan et al.,
2001), the person hierarchy affects passivization in

a way such that speakers avoid a construction at all
times if the subject is the less prominent argument
on the person hierarchy. While no such categorical
effects are observed in English, Bresnan et al. use the
Switchboard corpus to conclude that statistical pref-
erences for harmonic person-argument associations
do exist in English. Our findings are consistent with
theirs; moreover, we find that the aforementioned
person hierarchy preferences have become stronger
in English over time.

The descriptive statistics from two centuries of the
British Hansard show the following: With a third-
person agent, the passive (instead of the active) is
used approximately twice as much with a local pa-
tient than with a nonlocal one as shown in Table 11,
which is consistent with the explanation that English
speakers perceive it to be disharmonic when the sub-
ject is less prominent than the object and therefore
use the passive to avoid having a nonlocal agent with
a local patient in an active construction.

passive percentages
1/2 acting on 1/2: 0.16%

1/2 acting on 3: 0.1%
3 acting on 3: 7.95%

3 acting on 1/2: 13.94%
Table 11: Descriptive statistics on argument locality

In addition, we find that this gap in frequency has
become wider over time: As shown in Figure 3, al-
though this ratio is 1.75 when we consider the entire
corpus, it is 1.19 if we focus on the earliest decade.

When we consider a local agent and a third-
person patient, the passive is used instead of the ac-
tive 0.1% of the time across the entire corpus. (This
is a weighted average of all the time periods, where
a weight is the number of two-argument clauses in a
time period.) However, throughout the 1800s, this
statistic remained between 0.21% and 0.29%. In
contrast, since 1950, this same measure has never
been above 0.1%. Moreover, it has dropped from
one decade to the next since 1940 without exception.
Although the downward trend could be attributed to
an overall decline in passive constructions over time,
the trend is fairly constant if we instead consider the
proportion of passives used with both third-person
agent and patient. When we divide the former pro-
portion by the latter, we still observe a clear de-
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Figure 3: Between years 1830 and 2004: the passive proportion

of 3rd-person agents with local patients over the proportion of

passives used to express two 3rd-person arguments

cline (as shown in Figure 4), suggesting that English
speakers have developed a stronger preference for
harmonic person-argument associations over time.

Figure 4: the passive proportion of 1st/2nd-person agent and

3rd person patient over the passive proportion of 3rd-person

agent and 3rd-person patient

5.2 Logistic Regression

For each decade starting from 1830, we have created
a balanced dataset in which each decade contains
64,000 data points, 50% of which are two-argument
passive verb phrases and the other 50% are actives.

We fit a logistic regression model to the data from
each decade (independently of the other decades).

We learn a different set of coefficients per decade
while keeping the features the same across decades.

For the model containing only the person features
and no other explanatory variables, the trajectories
of the coefficients are consistent with our earlier ob-
servations that disharmonic person-argument asso-
ciations are becoming less preferred over time.

Figure 5: The coefficient of the local agent feature decreases

over time.

For example, when the agent is local, we would
expect speakers to make it the subject of an utterance
by employing the active voice more frequently (and
the passive less frequently) over time. Indeed, we
observe in Figure 5 that the corresponding person
feature’s coefficient is decreasing over time.

Figure 6: Accuracy of the model with person plus lemma fea-

tures when trained on various decades and tested on the 1990s

(the y-axis was truncated to focus on the change over time)

Figure 6 shows the accuracy achieved by a model
with person features and lemma features. The
task is predicting passivization for 1990–1999 when
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trained on data from the decades preceding it. (On
the test set, employing the strategy of always guess-
ing the same label achieves an accuracy of 50%.) We
see from Figure 6 that performance improves when
the training data is from later time periods and that
the best performance is obtained by training on the
time period immediately preceding the 1990s (i.e.
closest to the decade used for testing).

5.3 Hierarchical Model
We have thus far fitted one model per decade assum-
ing different decades are independent. In this sec-
tion, we instead consider a linear hierarchical model:

ai ∼ normal(0, σ2
a)

bi ∼ normal(0, σ2
b )

θi(t) ∼ normal
(
ait+ bi, σ

2
)

Yn ∼ logistic(Xn · θ(t))

The coefficient vector for the period t is denoted
by θ(t). The labels are denoted by Yn. Each feature
vector is denoted byXn. Lastly, ai and bi are respec-
tively the slope and intercept for the line describing
the trajectory over time displayed by feature i. We
set σa to be 0.1, σb to be 5, and σ to be 0.5.

Considering only the two person features, we ob-
tain the following values for a and b using the Stan
modeling language (Carpenter et al., 2017; Stan De-
velopment Team, 2017) on a dataset of 100,000 two-
argument verb phrases consisting of an equal num-
ber of data points (sampled at random) per class and
per time period (with 2,000 iterations and 4 chains):

alocalA = −0.05, alocalP = 0.003,

blocalA = −6.22, blocalP = −1.9

This model corroborates the findings in earlier
sections of the changing constraints against passiviz-
ing local agents: In Figure 7, we see that local agent
displays a decreasing trend over time, which is con-
sistent with the earlier Figure 5.

6 Conclusions and Future Directions

In this paper, we examined possible causes of the
decline in the rate of passivization in English over
time. We found that some explanatory variables pre-
dict passivization and are themselves changing in
value over time; they can therefore be used to ex-
plain part of the decline. In particular, the local
agent feature increased in average value, and this

Figure 7: Parameters inferred by the linear model: red corre-

sponds to agents, blue to patients

alone can explain at least half of the decline in pas-
sivization. We also found that the person-hierarchy
effects noted by Bresnan et al. (2001) became more
important over time; the constraint against passiviz-
ing clauses containing a local agent gained strength.
Moreover, our ablation experiments on the Wall
Street Journal and Hansard corpora showed support
for the effect on passivization of the structural par-
allelism observed by Weiner and Labov (1983) and
also for the unmarked information structure noted
by Halliday (1967) of given information before new
information.

Future directions include examining animacy as
an explanatory variable, which affects passivization
in other languages (De Cuypere et al., 2014; Sasaki
and Yamazaki, 2006); however, animacy poses dif-
ficulties for automated methods as noted by Roland
et al. (2007). Prescriptivism is another potential ex-
planatory factor for the changing rate of passiviza-
tion (Anderwald, 2012). While the prescriptive liter-
ature does not directly address the person-hierarchy
features and their effect on the passivization rate
change, an examination of “awkward” passives in
that literature may yield a collection of examples in
which first-person agents form the majority. Finally,
cohort effects and other speaker variables that might
be gleaned from corpora such as the Hansard offer
opportunities for sociolinguistic modeling of syntac-
tic change.
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