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Abstract

Many of the most significant impairments
faced by individuals with autism spectrum
disorder (ASD) relate to pragmatic (i.e. so-
cial) language. There is also evidence that
pragmatic language differences may map to
ASD-related genes. Therefore, quantifying the
social-linguistic features of ASD has the po-
tential to both improve clinical treatment and
help identify gene-behavior relationships in
ASD. Here, we apply vector semantics to tran-
scripts of semi-structured interactions with
children with both idiopathic and syndromic
ASD. We find that children with ASD are less
semantically similar to a gold standard derived
from typically developing participants, and
are more semantically variable. We show that
this semantic similarity measure is affected by
transcript word length, but that these group
differences persist after removing length dif-
ferences via subsampling. These findings sug-
gest that linguistic signatures of ASD pervade
child speech broadly, and can be automatically
detected even in less structured interactions.

1 Introduction

From its earliest descriptions (Kanner, 1943), autism
spectrum disorder (ASD) has been associated with
language impairment, and pragmatic language im-
pairment in particular. Problems with pragmatic lan-
guage are a key component of current diagnostic
criteria for ASD, and both atypical and idiosyn-
cratic language are noted as features of ASD un-

der current standards used in both the DSM-IV and
DSM-5 (American Psychiatric Association, 2000,
2013). However, current methods for assessing prag-
matic language impairment are often subjective, can
be very time intensive, and distal from underly-
ing mechanisms. Computational models of language
production in ASD thus have the potential to im-
prove diagnostic assessments, contribute to research
into the basis of language impairment in ASD, and
may also show strong utility in clinical treatment as
objective and quantitative measures of response to
intervention.

Additionally, evidence that more subtle language
differences are evident at elevated rates among rela-
tives of individuals with ASD points towards prag-
matic language as a genetically meaningful domain
in ASD, with potential for informing molecular ge-
netic studies, which examine more specific ties to
component phenotypes in ASD that may segregate
independently and relate to distinct genetic under-
pinnings (Losh, Sullivan, Trembath, & Piven, 2008).
The development of computational tools for quan-
tifying language impairment in ASD, such as the
present study, may therefore contribute to future
studies of ASD genetics as well. This can be accom-
plished by applying the present study’s methods to
large-scale datasets, which are appropriate for broad
genetic studies. In addition, the methods presented
below provide a continuous measure of pragmatic
impairment, which can be more readily compared
against genetic data.

The pragmatic language impairments in ASD are
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evident in a range of linguistic features. For instance,
limited frequency and diversity of complex syntax
has been shown to significantly impact narrative
and conversational quality in ASD (Losh & Capps,
2003; Prud’hommeaux, Roark, Black, & Van San-
ten, 2011). Individuals with ASD produce more non-
contingent discourse in narrative and conversation
(Capps, Kehres, & Sigman, 1998; Losh & Capps,
2003, 2006). In a similar vein, people with ASD
tend to fixate on a single topic, even though a
conversation may have moved away from that sin-
gle topic in another direction (Nazeer & Ghaziud-
din, 2012). Additionally, both inappropriate seman-
tic and pragmatic language has been demonstrated
(Tager-Flusberg & Sullivan, 1995). From a seman-
tic standpoint, one way these differences may man-
ifest is when children with ASD use very uncom-
mon words in a context in which a common word
suffices. Children with ASD can also fail to make
common pragmatic inferences, such as understand-
ing the semantics of a question like Can you close
the door? but failing to understand its pragmatics,
and so responding by saying Yes, I can.

Given this evidence that individuals with ASD ex-
hibit such pragmatic impairments, prior work has
used computational models to distinguish individ-
uals with ASD from typically developing individ-
uals, using distributional semantic word models
(Rouhizadeh, Prud’hommeaux, Roark, & Van San-
ten, 2013; Losh & Gordon, 2014). For example,
both Losh and Gordon (2014) and Lee et al. (2017)
used Latent Semantic Analysis (Deerwester, Du-
mais, Furnas, Landauer, & Harshman, 1990) with
transcripts from picturebook narratives, a narrative
recall task, and a less structured narrative elicitation
task. Both studies showed that narratives from in-
dividuals with ASD diverged significantly in vector
semantic space from a gold standard (either the orig-
inal narrative, or a narrative derived from the TD
group of participants) compared to (non-gold stan-
dard) typically developing controls.

Narrative recall and picturebook description tasks
afforded clear gold standards for comparisons, with
a very clear objective semantics to communicate
the original narrative. Thus, they were optimal for
a computational linguistic approach. However, it is
less clear whether such an approach can general-
ize to other, more variable and naturalistic language

contexts, in which there may be no objective gold
standard. Arguably, though, these naturalistic stud-
ies are more ecologically valid, and also constitute
the discourse context posing the most serious chal-
lenges to individuals with ASD.

1.1 Goals
The primary goal of the present work is to investi-
gate whether this computational approach could be
applied in a more open-ended conversational setting,
in which there is no objective gold standard. The pri-
mary contributions of this work are as follows:

• We show that language from individuals with
ASD can be distinguished from that of typi-
cally developing individuals, by applying vec-
tor semantic models, even on semi-structured
conversational data.

• We demonstrate that semantic similarity met-
rics are affected by transcript length, raising
the question of whether such metrics can yield
valid conclusions with very small language
samples, such as often occur with children or
lower functioning populations.

• We present a method for adapting semantic
similarity analyses to accommodate possibly-
small language samples from younger or lower
functioning populations who have more limited
language abilities.

To do this, we analyzed semi-structured conversa-
tional interactions, consisting of relatively free rang-
ing conversation in a number of somewhat consis-
tent situations. We construct an approximate gold
standard of comparison from the transcripts of a few
individuals with typical development who had simi-
lar and typical language and cognitive abilities.

We focus on conversational interactions because
this language context is among the most challenging
for individuals with ASD, since lack of structure and
high interpersonal demands pose serious barriers to
effective communication (as opposed to picturebook
narratives, for example) (Losh & Capps, 2003). Fur-
thermore, prior studies of computational linguistic
approaches to characterizing discourse in ASD have
focused on more structured contexts. This study is
the first to apply this technique to conversational in-
teraction in ASD. If this technique can successfully
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differentiate neurotypical individuals and individu-
als with ASD, based on semi-structured conversa-
tion, it would suggest that the semantic differences
in the language of individuals with ASD are quite
widespread, and detectable across a range of every-
day tasks. Finally, because the semi-structured inter-
actions we analyze come from a standard ASD diag-
nosis task (the ADOS, see below), such a computa-
tional model has the potential to help with diagnosis.

The remainder of this paper is structured as fol-
lows. The following section describes our transcript
dataset. Following that, Section 3 describes how we
use word embeddings to quantify distances to gold
standards. Section 4 describes our first experiment
applying this method to conversation data. Section
5 points out that this similarity metric is confounded
by transcript length and presents a method to remove
this confound. Section 6 concludes.

2 Interaction session transcripts

2.1 Participants

We selected 109 participants, in three groups: (1)
(younger) typically developing children used as a
control due to comparable cognitive ability to the
clinical groups (TD); (2) school aged children with
idiopathic ASD, unrelated to any other known ge-
netic disorders (ASD); and (3) children with ASD
comorbid with fragile X syndrome (FXS-ASD). For
all three groups, children were selected based upon
the nonverbal mental age from the Leiter Interna-
tional Performance Scale (Wechsler, 2008). For typ-
ically developing children, mental age should on av-
erage match chronological age. However, for chil-
dren with developmental impairments, mental age is
often lower than chronological age.

Fragile X syndrome (FXS) is the most common
heritable intellectual disability, and has common co-
morbidity with ASD (Rogers, Wehner, & Hagerman,
2001; Kaufmann et al., 2004; Martin et al., 2017; in-
ter alia). Like ASD, fragile X syndrome often shows
pragmatic deficits as well. Evidence also exists that
language impairment within fragile X syndrome af-
fects males with FXS more than it affects females
with FXS (Abbeduto, McDuffie, & Thurman, 2014).
For this reason, all selected participants were male.
This also eliminates sex as a possible confound.

All participants were selected based on a men-

tal age of approximately 5;0. All participants had
a mean length of utterance (MLU) of at least three
words per utterance and were L1 English speakers.
Participants were drawn from a larger longitudinal
study reported in Martin et al. (2017). Addition-
ally, individuals with idiopathic ASD were required
to have a previous clinical diagnosis, confirmed by
administration of the Autism Diagnostic Observa-
tion Schedule (ADOS) (Lord et al., 2000) and/or
the Autism Diagnostic Interview - Revised (Lord,
Rutter, & Le Couteur, 1994). Individuals with FXS-
ASD were confirmed based only on the ADOS. The
average chronological and mental age for each group
are provided in Table 1.

2.2 Procedure

Language samples were derived from the ADOS
and/or ADOS-2, gold standard diagnostic tools for
ASD. The ADOS includes several structured activ-
ities as well as opportunities for naturalistic inter-
action, in order to probe for social-communication
skills and the presence of restricted and repetitive
behaviors. Play-based activities included the oppor-
tunity to play with action figures and other toys.
Non-play based activities included conversation be-
tween tasks, describing a picture, or telling a story
from a book.

2.3 Transcription

Subsections of entire language samples were tran-
scribed from high quality audio recordings by
trained transcribers. The transcripts were based on
a subset of the full assessment: specifically, 55 intel-
ligible play based turns and 55 non-play based turns
were transcribed (or fewer in the rare case that there
were not 55 intelligible turns).

2.4 Processing

All child utterances were extracted from the tran-
scripts, including filled pauses and stop words. Al-
though stop word removal is common practice in
distributional semantics and NLP (Levy, Goldberg,
& Dagan, 2015), this class of words can be psycho-
logically informative (Chung & Pennebaker, 2007).
This also seems especially relevant to ASD, where
incorrect pronoun usage is common, e.g. using the
second-person you when referring to oneself, instead
of the correct first-person I (Naigles et al., 2016).

14



Diagnostic Group n Chronological Age (SD) Mental Age Equivalent (SD)

Typically developing (TD) 22 4.7 (1.1) 5.1 (1.2)
Autism spectrum disorder (ASD) 39 8.7 (2.9) 6.9 (3.4)
Fragile X syndrome + ASD (FXS-ASD) 48 10.6 (2.6) 5.0 (0.6)

Table 1: Participant chronological age and mental age equivalent for each diagnostic group.

2.5 Gold standard transcripts
Two of the transcripts from children with typical
development were designated gold standard tran-
scripts. This designation was performed by two re-
searchers who were both familiar with the tasks
in the interactions. Gold standards were selected
based on detailed clinical-behavioral ratings. We se-
lected TD participants who, based on this coding,
demonstrated minimal pragmatic language deficits
and highly-rated core features of conversation, such
as contingency, reciprocity, and initiation. For the
purposes of analyses conducted below, these two
transcripts were excluded from the TD group, so as
not to bias the results.

3 Word embeddings

A number of previous studies have used word em-
beddings (vector semantics) to study language tran-
scripts of people with autism (Rouhizadeh et al.,
2013; Rouhizadeh, 2015). A vector semantic model
specifies an embedding, or mapping, from each
word in the vocabulary to a point in a continuous
vector space. A document in such models typically
consists of an unordered collection of words. A vec-
tor semantic representation of a document can be ob-
tained by combining the embeddings of the words it
contains in some way, such as summing.

For the present study, each word in the transcript
was converted to a vector using the word2vec
model, via the pretrained Google News embed-
dings (Mikolov, Sutskever, Chen, Corrado, & Dean,
2013), which are 400-dimensional. A vector seman-
tic representation of each document was created by
summing the vectors for each of its words, and then
normalizing to have unit length.

The gold standard vector was calculated as the
mean of the two gold standard transcript vectors, and
used as the basis of comparison for semantic similar-
ity.1 The transcripts identified to be the gold standard

1Other bases for comparison were also considered, includ-

were excluded from the TD group for all analyses.
Semantic distance of a transcript vector to the

gold standard was measured as the cosine distance
between them. That is, for a given transcript vector
~vi and the gold standard vector ~g, the distance was
then calculated as

d(~vi, ~g) =
~vi · ~g

‖~vi‖2 ‖~g‖2
(1)

Because the transcript vectors are all normalized to
have unit length, this reduces to a simple dot prod-
uct.

A lower cosine distance means that the vectors be-
ing compared have more similar dimensions. Given
this, we then defined the semantic similarity of a
vector to the gold standard as one minus the cosine
distance (1 − d(~v,~g)), so that a lower distance re-
sulted in a higher semantic similarity score.

The code for converting transcripts to vectors
and computing similarities is freely available on an
open-source repository2. Although our transcripts
themselves cannot be shared because of privacy con-
cerns, we used a standard format for transcription,
making our tools readily usable by other investiga-
tors.

4 Experiment 1

We performed three sets of analyses to compare TD
individuals to the two populations with ASD.

4.1 Similarity to gold standard

For each transcript, we calculated the cosine dis-
tance between its vector embedding and the gold
standard, yielding a single similarity score for each
transcript. Figure 1 illustrates the mean semantic

ing using the mean vector from all transcripts as well as the
mean vector of all of the typically developing transcripts. Fu-
ture studies will compare and contrast the utility of selecting
different bases for comparison.

2https://github.com/langcomp/vectoraut
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Figure 1: Semantic similarity for each diagnostic group as com-

pared to the semantic content of Gold Standard transcripts

Comparison All Words Word Sampling

TD vs ASD p < 0.001 p < 0.05
TD vs FXS-ASD p < 0.00001 p < 0.001

Table 2: Significance levels for differences in semantic simi-

larity between diagnostic groups and a gold standard. Both full

transcripts as well as random word sampling from transcripts

are reported.

similarity for each group, as well as the 95% boot-
strapped confidence intervals. We then ran nonpara-
metric Wilcoxon tests comparing the semantic sim-
ilarity scores across groups, specifically comparing
the TD group to the ASD group, and the TD group to
FXS-ASD, the results of which are shown in Table
2, middle column. The results show reliable differ-
ences between TD and each of the two other groups,
with the TD group being more semantically similar
to the gold standard transcripts than the groups with
ASD. The two groups with ASD appear very similar
to each other.

4.2 Visualizing semantic space

To try to visualize the semantic space these tran-
scripts are embedded in, we used Principal Com-
ponent Analysis (Jolliffe, 2011) to reduce the 400-
dimensional vectors to two dimensions. The results
are visualized in Figure 2, where each transcript is
identified by its group, and the two transcripts from
which the gold standard was constructed have also
been added. As can be seen, the ASD and FXS-ASD
groups are much more dispersed than the typically
developing group, which is relatively tightly clus-

Figure 2: Most informative dimensions using full transcripts,

as selected by PCA, for different diagnostic groups. Clusters

for children with autism are more diffuse.

Diagnostic Group Manhattan Distance (mean)

TD 3.44
FXS-ASD 4.42
ASD 4.49

Table 3: Manhattan distance between all pairs of word vectors

within each diagnostic group, for full transcripts.

tered around the gold standard. This suggests a pos-
sible reason why the two groups with ASD were less
similar to the gold standard than was the TD group:
because they are more semantically variable.

4.3 Within-group variability

Finally, to test this hypothesis that variability within
groups is higher for groups with ASD as opposed
to the TD group, we measured the Manhattan dis-
tance between all pairs of transcript vectors within
each group, using the full 400-dimensional tran-
script vectors. This distance is an indication of how
far apart semantically two transcript are. We elected
to use Manhattan distance rather than Euclidean dis-
tance because of the former’s robustness in high-
dimensional space (Aggarwal, Hinneburg, & Keim,
2001). The average distance between each vector
pair in each group is reported in Table 3. The results
show that the TD group is much more homogeneous,
while the two groups with ASD exhibit larger vari-
ability. Interestingly, the two groups with ASD again
appear very similar to each other.
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5 Experiment 2

The results of Expt. 1 showed strong evidence that
individuals in the ASD and FXS-ASD groups were
on average less semantically similar to a gold stan-
dard than TD individuals were, and that individuals
from both groups with ASD were more semantically
variable. However, it is also a feature of this dataset
that there is a systematic relationship between the
word count of a particular individual’s transcript and
their semantic similarity. This is shown in Figure 3,
where transcripts with a higher word count on av-
erage have higher similarity scores to the gold stan-
dard, within each of the three groups (although there
is some suggestion for the ASD group that this ef-
fect may reverse for especially high word counts).
There are multiple, non-exclusive hypotheses for
where this relationship arises. It may be an objec-
tive feature of language production that individuals
with more language impairment talk less on average.
Alternatively, it may be that the semantic similarity
metric becomes noisier and thus lower with smaller
language samples.

There are also systematic differences between
groups in transcript length, visualized in Figure
4. On the hypothesis that differences in transcript
length are an artifact of the measure, not necessarily
related to language proficiency, this raises the possi-
bility that the reason the TD group had more seman-
tic similarity to the gold standard on average was
that it had longer transcripts on average. To rule out
this possibility, and gain some insight into the rela-
tionship between semantic similarity and transcript
length, we developed a simple method to remove the
variance in transcript length.

5.1 Word sampling

To remove this variance in transcript length, we
performed a random sampling algorithm. Specifi-
cally, we selected a target transcript length of 300
words, which was lower than the majority of tran-
script lengths in every diagnostic group. Then, we
sampled, without replacement, 300 words from ev-
ery transcript. For the 2 transcripts that fell below
the 300-word threshold, we selected the entire tran-
script. With this new set of transcripts of a uni-
form length, we performed the same analyses as in
Expt. 1. To leave in tact full information about the

Figure 3: Child word counts versus semantic similarity to gold

standard. As children produce more words, similarity to the

gold standard also increases. Smoothing lines were calculated

using a generalized additive model (GAM).

Figure 4: Child words counts for different diagnostic groups.

Different diagnostic groups have markedly divergent distribu-

tions.

gold standard, we left it unchanged from Expt. 1.

5.2 Similarity to gold standard

The similarity of these uniform-length transcripts to
the gold standard are shown in Figure 5. As can
be seen, even without transcript length differences,
semantic similarity is still lower for the ASD and
FXS-ASD groups than for the TD group. The re-
sults of a Wilcoxon test are given in the rightmost
column of Table 2, showing that these differences
are still significant, suggesting that the group differ-
ences obtained in Expt. 1 were not merely an artifact
of shorter transcript lengths.

Comparing the values in Figure 5 to those in Fig-
ure 1 from Expt. 1, however, we can see that the sim-
ilarity values here are a bit lower, especially those
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Figure 5: Semantic similarity for each diagnostic group as com-

pared to the semantic content of Gold Standard transcripts, us-

ing a 300 word random sample

Figure 6: Most informative dimensions using random word

sampling, as selected by PCA, for different diagnostic groups.

Clusters for children with autism are more diffuse.

from the TD group. That suggests that these seman-
tic similarity metrics are indeed somewhat biased
lower by the smaller samples. For work such as this
applying vector semantic similarity metrics to tran-
scripts from younger and/or lower functioning indi-
viduals, analyses like this may be a useful tool.

5.3 Visualizing semantic space

As in Expt. 1, we reduced all of the transcript vectors
to two dimensions using PCA. Even when randomly
selecting words, the same spatial relationships seen
in Expt. 1 still hold, with greater dispersion for the
ASD and FXS-ASD groups, and more concentration
for the TD and gold standard groups.

Diagnostic Group Manhattan Distance (mean)

TD 3.76
FXS-ASD 4.54
ASD 4.67

Table 4: Manhattan distance between all pairs of word vectors

within each diagnostic group, for random word samples.

5.4 Within-group variability

We aimed to understand whether the transcript vec-
tors from randomly sampled words still had a very
short distance between them, or whether the ran-
dom word sampling obfuscated the similarities seen
in Expt. 1. As seen in Table 4, the uniform-length
transcripts still had the same qualitative distance re-
lationships, with the vectors in the TD group being
closer together than those within either of the two
groups with ASD.

Comparing Table 4 to its Expt. 1 equivalent, Ta-
ble 3, we see that the mean distance between TD
group transcripts is about 0.3 units higher here,
whereas the ASD and FXS-ASD group distances are
only 0.1–0.2 units higher. This result suggests again,
however, that there is some evidence that the vari-
ability within groups seen in Expt. 1 was biased to
be somewhat higher for the groups with shorter tran-
script, and that this method can correct for that bias.

6 Discussion

In this study, we used vector semantics to show
that semi-structured conversations produced by in-
dividuals with ASD were semantically further from
a gold standard conversational sample by children
with typical development, and that there was more
variability within the groups with ASD than within
the typically developing group. We also presented
evidence that these semantic similarity and dis-
tance measures were moderately biased by transcript
length, with low transcript lengths yielding larger
semantic distances from a gold standard as well
as yielding more within-group variability. Finally,
we showed that this bias could not explain the dif-
ferences in semantic similarity and distance across
groups.

Many previous studies applying vector seman-
tics to the language of autism relied upon narra-
tives (Losh & Capps, 2003; Prud’hommeaux et al.,
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2011; Rouhizadeh, Prud’hommeaux, van Santen, &
Sproat, 2014; Losh & Gordon, 2014; Lee et al.,
2017; inter alia), for which there is an objective gold
standard of semantic evaluation, i.e., the original
narrative. The present study demonstrates that such
methods can be extended to the more naturalistic
context of semi-structured conversation. This is im-
portant because narrative retellings are expected to
use a more constrained vocabulary; thus, unexpected
words are even more surprising when the vocabu-
lary is expected to be more minimal. On the other
hand, it is easy to assume that a naturalistic con-
versation would have a large variety of vocabulary,
making unexpected words less surprising and less
telling, since a conversation can have a more wide
array of topic areas to discuss. Nonetheless, even
when participating in a more unconstrained conver-
sation, our study still picked up semantic differences
for the ASD groups, despite the more freewheeling
dialogue.

The results of this study of semi-structured con-
versation parallel those of Losh and Gordon (2014)
and Lee et al. (2017) on narratives. All studies
showed that individuals with ASD produced lan-
guage semantically further from a gold standard of
typical development. All studies also showed that
language produced by typically developing children
clustered together more closely in semantic space,
whereas that from children with ASD was more vari-
able and diffuse in semantic space (cf. Rouhizadeh
et al., 2014). These findings suggest that greater se-
mantic variability may be a general property of the
language of ASD not confined to narrative retellings.

To our knowledge, this is the first study to present
a method for analyzing semantic similarities in the
presence of strong differences in word length of
transcripts across individuals and groups, which
may be a common occurrence in work analyzing
populations that differ in conversation length. Since
MLU has been commonly found to be strongly cor-
related to (chronological) age (Miller & Chapman,
1981), and would lead to more words in a conversa-
tion, this may be a common issue for younger popu-
lations, as well as those that are lower functioning.

Interestingly, even when reducing the lengths of
the transcripts by a substantial amount (often more
than 50%) via random sampling, the transcripts of
individuals with ASD were still significantly se-

mantically further from the gold standard than were
those of typically developing individuals. This sug-
gests that the language of ASD may be pervasive in
speech and detectable from even shorter samples.

The question remains, though What exactly are
we detecting through different mean semantic sim-
ilarities for each group? Are we picking up differ-
ent styles of language use, or are we picking up the
same type of language, just describing different top-
ics? Either of those differences could affect semantic
similarity in a similar fashion.

To test this, we looked at the transcripts’ connec-
tions to type-token ratio, which measures lexical di-
versity. We ran both Pearson and Spearman corre-
lations between semantic similarity and type-token
ratio (TTR). TTR is the ratio of the number of word
types to the number of word tokens If lexical di-
versity was significantly different between groups
in the same way that semantic similarity was differ-
ent between groups, this would be a strong indicator
that the difference in group semantic similarity was
due to the use of different types of language, or at
least different levels of lexical diversity. However,
this correlation was very low and neither individual
groups nor overall correlations approached statisti-
cal significance.

This results suggests that linguistic style (at least
as indexed by the type-token ratio) is not a driving
factor. Instead, we are left with the most glaring dif-
ferences being due to using the same type of lan-
guage while discussing different topics, and thereby
using different words to describe different topics.

Perhaps this underscores the idiosyncratic na-
ture of utterances from both the ASD and FXS-
ASD groups. In other words, even though conver-
sational language is more unconstrained than narra-
tive retellings, Figures 2 and 6 still seem to illustrate
that TD participants use a more confined vocabulary.
This may seem counter-intuitive, as a more natural
conversation can be assumed to be diverse, with a
less constrained vocabulary. This seems to point to
the robustness of word vectors, since they can still
capture the diversity of the uncommon words often
selected by children with ASD and FXS-ASD, while
downplaying the natural diversity that is expected
from conversations with typically-developing chil-
dren.
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6.1 Conclusion

The primary contribution of this study is to show
that vector semantics distinguishes language of in-
dividuals with ASD from language of individuals
who are typically developing, even when that lan-
guage was produced in a semi-structured conversa-
tional setting with no objective semantic standard –
the language context where individuals with ASD
exhibit most severe impairments. It also presented
evidence that such semantic metrics can be applied
to populations who yield smaller word counts (such
as younger, lower functioning children with intellec-
tual disability) – despite short transcripts biasing the
semantic metrics – and presented a simple method
to help quantify and control this bias that can be im-
plemented across age and ability levels.

This work represents a step toward developing a
metric of language impairment in ASD that is em-
pirically quantifiable, objective, and automatically
generated, which has the potential to improve clini-
cal assessments, offer objective quantitative indices
of language impairment that could be used to strat-
ify groups in biological studies, and possibly serve
as sensitive measures of response to clinical inter-
ventions. The results here were based on conver-
sational data from the ADOS assessment, a stan-
dard assessment for ASD including semi-structured
conversational samples. This is a more generalized
form of dialogue than the narrative retellings used
in many previous studies. This finding, then, opens
the door to investigate further diverse discourse set-
tings where semantic similarity tests might be effec-
tively implemented. For instance, if a classroom or
family dinnertime setting could be used as a reliable
source, then a child would not need to be removed
from their typical daily activities in order to perform
testing. Such assessments would also capture prag-
matic impairments in more naturalistic settings, af-
fording more generalizable findings.

Future investigations will investigate the seem-
ing disparity between extremely uncommon word
choice and word choice that is too identical to that
employed by a conversation partner. Perhaps these
phenomena cancel each other out when an entire
conversation is considered, leaving both of these id-
iosyncrasies diluted by averaging. We plan on in-
vestigating this alongside semantic similarity as a

means to predict, not merely quantify, ASD.
We also have data collected from the same partic-

ipants at subsequent time points, which will allow
us to test the rate of change for individuals. For ex-
ample, if language production did not advance at an
expected rate over a period of time, this could also
be a sign of developmental deficits.

Finally, by quantifying the language of ASD in a
continuous way, this method has possible applica-
tions to genetic studies of ASD, where quantitative
as opposed to categorical phenotypic measures af-
ford greater power to detect molecular genetic as-
sociations for complex traits and disorders such as
ASD. For example, it could be used to quantify the
extent to which family members of individuals with
ASD, who are themselves typically developing, nev-
ertheless exhibit values of this continuous measure
that more closely resemble the language of ASD.
More generally, these findings suggest that the lin-
guistic signatures of ASD pervade child speech, and
may be automatically detectable under wider condi-
tions than previously demonstrated.
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