Guessing lexicon entries using finite-state
methods

Kimmo Koskenniemi
University of Helsinki
Department of Modern Languages
kimmo.koskenniemi@helsinki.fi

Abstract

A practical method for interactive guessing of LEXC lexicon entries is pre-
sented. The method is based on describing groups of similarly inflected words
using regular expressions. The patterns are compiled into a finite-state trans-
ducer (FST) which maps any word form into the possible LEXC lexicon entries
which could generate it. The same FST can be used (1) for converting conven-
tional headword lists into LEXC entries, (2) for interactive guessing of entries, (3)
for corpus-assisted interactive guessing and (4) guessing entries from corpora. A
method of representing affixes as a table is presented as well how the tables can
be converted into LEXC format for several different purposes including morpho-
logical analysis and entry guessing. The method has been implemented using
the HFST finite-state transducer tools and its Python embedding plus a number
of small Python scripts for conversions. The method is tested with a near com-
plete implementation of Finnish verbs. An experiment of generating Finnish verb
entries out of corpus data is also described as well as a creation of a full-scale an-
alyzer for Finnish verbs using the conversion patterns.

Tiivistelma

Artikkelissa esitelladn menetelma, jonka avulla kdyttaja voi madrittaa LEXC-
leksikkoon sopivia uusia hakusanoja. Menetelmissa kuvataan kukin taivutus-
luokka saannollisten lausekkeiden avulla. Samoja lausekkeita voidaan kéayttaa toi-
saalta tavanomaisen sanakirjan sanaluettelon konversioon ja toisaalta yksittais-
ten hakusanojen maérittdmiseen siten, ettd kayttdja antaa haluamansa hakusanan
eri muotoja, kunnes hakusana on yksiselitteisesti maératty. Arvaaminen voidaan
suorittaa my6s korpuksista keréttyjen tietojen avulla, jolloin oikea hakusana 16y-
tyy nopeammin. My6s pelkén sanalistan perusteella voidaan arvata hakusanoja.
Menetelma on toteutettu kdyttaen HFST:n aérellistilaisten transduktorien tydka-
luja ja erityisesti kayttden niitd Python-ohjelmointikielesta késin. Lisaksi on teh-
ty muutamia lyhyitd Python-skriptej4, joilla tietoja muunnetaan eri muodoista
toisiinsa. Menetelmé4 on testattu soveltamalla sité ldhes kattavaan suomen kie-
len verbien taivutusmalliin. Menetelmié on kokeiltu alustavasti toisaalta hakusa-
nojen automaattiseksi muodostamiseksi tekstikorpuksen sanalistasta ja toisaalta
taysimittaisen suomen kielen verbien morfologisen jasentimen muodossa.

59

Proceedings of the 4th International Workshop for Computational Linguistics for Uralic Languages (IWCLUL 2018), pages 59-77,
Helsinki, Finland, January 8-9, 2018. (©2018 Association for Computational Linguistics

kimmo.koskenniemi@helsinki.fi

1 Introduction

Creating lexical entries is an important and time consuming task for any language. For
lesser resourced languages with a rich morphology the task is particularly relevant.
Building a lexicon requires often not only plenty of time and labour but also specific
training. Thus, there is an obvious need for automating this task.

This paper describes the process of generating entries for computational morpho-
logical analysis in the framework of finite-state morphology and it uses the concepts
of the Xerox/HFST LEXC lexicons, for more information see (Beesley and Karttunen,
2003). Inflection classes (the declinations and conjugations) refer to traditional dictio-
naries, where the inflection of lexemes is characterized by model words and numbers
or other identifiers referring to those model words. Dictionaries often list many more
inflection classes than there are different types of LEXC entries. LEXC can general-
ize the entries by relying on TWOLC or XFST rules which take care of the regular
differences in the shapes of stems.

Several topics are discussed in this paper, including:

« How to describe inflection classes with regular expression patterns, i.e. how to
formalize what kinds of syllable structures and phonological alternations are
characteristic to each inflection class.

« How the regular expressions can be used for converting dictionary word lists
with inflection class codes into lexical entries of a LEXC lexicon.

« How to reuse the same regular expressions for guessing all possible LEXC en-
tries for a given single inflected word form.

« How to use such a mapping for selecting the correct LEXC lexicon entry by
prompting the user for further forms of the same lexeme.

« How the same data for affixes and their sequencing can be reused for building
ordinary morphological analyzers, lexicon converters and entry guessing.

« How to use the mapping for guessing in order to automatically deduce entries
out of a corpus.

The idea here is to build a finite-state model of inflecting unknown lexemes roughly
as was proposed by Ken Beesley and Lauri Karttunen (2003). For Finnish, their model
could produce the following two results for a Finnish word form puramme (‘we un-
pack’, ‘we disassemble’):

puramme --> purkaa V+PRES+ACT+PE2
puraa+V+PRES+ACT+PE2

The first result would be the correct analysis and the second analysis proposes a
nonexistent lexeme. But actually both results are ambiguous because neither of them
tells how the lexemes are inflected. The final a of the stem has two possibilities in
both results: either it alternates with o or it disappears in past tense. Thus there are
four possible entries behind the analysis. One of the hidden entries is what we want.

For the purposes of lexicon entry guessing, we need an equally general method
which is prepared to accept almost any surface word but would output lexical entries
instead of the base forms and morphosyntactic features. A lexical entry consist of a

60

lexical representation and a name of a continuation sub-lexicon. The lexical repre-
sentation consist of phonemes and morphophonemes (here we always use braces for
morphophonemes, e.g. f{aoef)] The name of a continuation sub-lexicon (e.g. /v) de-
termines the set of possible endins and possible less regular pieces of the stems. The
mapping we are building could map e.g.:

puramme --> pur{k@}{aoce} /v
pur{k@}{a@e} /v
pur{aocel} /v
pur{alel} /v

The program would then prompt the user for further inflected forms of the same lex-
eme. In this way the user can soon narrow down the possibilities to the desired single
lexicon entry without any detailed knowledge of the codes or conventions of the lex-
icon.

The work is done in the finite-state two-level framework in the spirit of the original
(Koskenniemi, 1983) version and in particular the so called simplified two-level model
as presented in (Koskenniemi, 2013h). Helsinki Finite-State Transducer Tools (HFST)
were used for the implementations of the finite-state transducers (FST) described in
this paper, for more information on HFST see (Lindén et al!, 2011) and various sites in
the net, e.g. http://hfst.github.id.

2 Previous and related research

The interactive method for guessing presented here was inspired by Aarne Ranta’s
Grammatical Framework (GF) system where a similar functionality was implemented,
see (Ranta, 2011) and (Détrez and Ranta, 2012). They presented so called smart para-
digms which have been implemented in GF. Smart paradigms perform a mapping that
is similar to the mapping described in this paper but do it in a different way.

Several other approaches have been proposed for the assisting or automating en-
try generation. Beesley and Karttunen (2003) presented a way to recognize unknown
words using regular expressions in a LEXC lexicon as was mentioned above, and in
this way cover an inflection class by each expression. The present paper elaborates
this approach further and explains how one can generate such expressions in an prin-
cipled way and how to connect the mechanism into the LEXC lexicon of normal mor-
phological analysis and how to use such a generator in practice.

Huldén| (2014) and |Ahlberg et al| (2015) discuss how paradigms or inflectional
tables can be used for finding or forming entries which is a topic beyond the scope of
this paper where the inflection is assumed to be already known.

A recent paper (Espla-Gomis et all, 2017) presents methods for a task quite rel-
evant to that of this paper. In those papers, inflection classes (i.e. declinations and
conjugations) are considered to consist of a set of affixes which are directly concate-
nated with the single stem of the lexeme. In contrast to this, GF is prepared to have
lexemes with several stems, and so does the present approach. In addition, the present
approach uses morphophonemes in order to describe regular variations within stems,
and therefore a very small number of distinct classes is needed. In some languages,

!This morphophoneme indicates that in that position there may be either an a or an o or an e depending
on the context. Inflection classes usually determine what kinds of phoneme alternations are present in
lexemes in that class and what sets of affixes can be attached to them.

61

http://hfst.github.io

e.g. several Sami languages, a large portion of inflection is represented as stem alter-
nations instead of and in addition to using suffixes. The approach presented in this
paper is intended to be applicable even to languages with such characteristics. (Espla-
Gomis et all, 2017) present also methods for for optimizing the yes/no queries for the
user. These or similar methods could be applied on top of the solutions in this paper
but that is not discussed in this paper.

3 Regular expressions for inflection classes

In order to generate lexical entries interactively or from comprehensive word lists, we
construct a model which characterizes the inflection classes by describing the com-
mon features and alternations in each class. It will be shown that with a single de-
scription, one one may solve two tasks : (1) converting a dictionary word list with
base forms and class numbers into LEXC lexical entries and (2) guessing LEXC lexical
entries out of inflected word forms as was discussed above.

The first mapping transforms dictionary headwords and their inflection class codes
into LEXC entries (as sequences of symbols) e.g.:

purkaaVo2x --> pur {kf} {ale} /v

The transformation can be represented equivalently as a sequence of symbol pairs
where the left symbol is transformed into the right symbol:

p:p u:u r:r k:{k@} a:{ale} a:0 VO2*:/v

or in an abbreviated form where pairs (e..g. p:p) of identical symbols are represented
by a single symbol (p) without the colon:

p ur k:{k@} a:{ale} a:0 VO2x*:/v

The inflection code V02* indicates that the entry is a verb of the second inflection
class and that the stem is subject to consonant gradation. The example expresses
the fact that the fourth phoneme of the dictionary word, k, must be replaced with
a morphophoneme {k@}. The morphophoneme tells that in that position k alternates
with nothing (Q).E At the end of the stem of the dictionary word, the final vowel a
alternates with zero @ and e. All these facts can be deduced by studying verbs with
the inflection code V02 i.e. studying the shapes and what kinds of alternations occur
in those verbs.

A LEXC lexicon consists of sub-lexicons containing entries for affixes and lexemes.
The lexemes are in the sub-lexicon where everything starts and the guessing of such
entries is the topic of this paper. Each entry typically corresponds to a morpheme.
A morpheme is represented as a pair of its morphophonemic representation and a
name of a sub-lexicon containing those morphemes (or entries) which may occur im-
mediately after this morpheme. This name of the next sub-lexicon is often called the
continuation class of a lexeme.

The inflection class also determines the continuation class, e.g. /v (which indicates
here that all verbal endings are attached directly to the stem). The association between
a inflection code (e.g. V02%) and a continuation class (e.g. /v) could be included as a

2We use an arbitrary symbol (&) to denote deletion or epenthesis. In morphophonemes and within
two-level rules it is always a concrete symbol, not an epsilon which would correspond to the empty string.
In this way, one has a better control over epenthesis and deletions. The & symbols will be removed only
after the rule component has been applied.

62

part of the regular expression but it proved to be better to represent as a separate
two-column table, which is used both in building the converter and the guesser.

In order to generalize the patterns we need to define some common component
expressions, e.g. vowels and consonants:

Vo = [alelilolulyl&ls];
Co [blcldlflglhljlklllmlnlplqlrisltiviwlxlz];

For Finnish words, we need an expression for the mapping of gradating consonant
clusters (as they appear in the dictionary words) into the corresponding morpho-
phonemic representations (as they will be in the LEXC entry).

Gs = [(QAlrin) k k:{k0} (Alr) k:{k@}In k:{kg}|
m p:{pm} | (1lr) p:{pv}|I(Qirim) p p:{pB}I
(h) t:{td}I11 t:{t1}In t:{tn}|r t:{tr} | Qlrin) t t:{t0}];

One might generalize the above transformation example by noticing that the initial
part of the word is the same in the dictionary word and in the LEXC entry part. Near
the end of the dictionary word there is a strong grade of a gradating consonant cluster
but in the LEXC entry there is a corresponding morphophoneme. At the very end,
there is the infinitive ending, (here) a which has to be removed, and the the code of
the inflection class which has to be replaced by the corresponding continuation class.
For our example, the following simple mapping could do the conversion:

[ColVol* Gs a:{aPe} a:0 VO2x*:/v

Such a simple expression might work correctly when converting dictionary words
but usually one wants to describe the inflection classes in more detail according to the
syllable structure and other characteristics shared by all words in that class. The more
precisely the expression separates lexemes in its class from those in other classes, the
better the expression serves its purpose. Precise characterizations help the building
of the lexicon by finding atypical entries in the dictionary and possible mistakes in
the data. Accurate expressions also help the guessing process to converge faster.

A short Python script was made for reading in expressions for all verbal inflection
classes and for transforming the expressions into a converter LEXC lexicon. The con-
verter lexicon implements the mapping from dictionary entries into actual Finnish
LEXC entries. Each expression forms the first part of one converter lexicon entry and
this part maps dictionary entries of that class into a morphophonemic representation.
The second part of the converter lexicon entry is the inflection identifier used here as a
name of a sub-lexicon. A small sub-lexicon of the transformer lexicon is produced out
of the separate table that was mentioned above. Each line of that table is converted
into a sublexicon to which the expression entry continues. This arrangement allows
one to experiment with different types of converted lexicons e.g. one which is very
permissive and useful for old or dialectal texts and others which are more normative
by excluding less common ending allomorphs of each inflectional class. Below is a
fraction of the generated LEXC for conversion:

LEXICON Root

< Cox Vo+ (Sy1l)* Cox* [ol6|uly] [a:0]14:0] > VO1 ;

< Cox Vo+ (Syl)* Gs [oldéluly] [a:0]&:0] > VO1x* ;

< Cox Vo+ (Syl)* Co+ [a:%{ale’} a:0l&a:%{aPe%} &:0] > V02 ;

3The curly brackets were used in the expressions as such but in LEXC they must be protected or quoted
with a per cent sign (%). The Python script adds the per cent signs.

63

< Cox Vo+ (Syl)* Gs [a:V{a@e%} a:0la:%{aBel} &:0] > VO2* ;
< Co VV t:%{tds%} [a:%{ale%} a:0la:%{aPe’%} &4:0] > VO3 ;
< Co VV t:%{tds%} [a:%{a@e%} a:0la:%{a0e%} &4:0] > V04 ;

The above lexicon is then compiled into a FST, stored and used by another Python
script which performs the conversion. This script can be applied to a test set of repre-
sentative dictionary entries or to a full scale list of all dictionary list words. In order
to have full control of possible failures of the expressions, the script uses the lookup
mode so that it finds not only the appropriate result but also knows when the ex-
pressions fail to give any results. So, in addition to the resulting LEXC entries, also a
control list is produced for verification and debugging. Potential errors in the source
data (dictionary entries) as well as in the expressions can be found in this way.

The patterns and definitions are given as a file of comma separated values (CSV)
(possibly by editing with a spreadsheet and then saving in this format). The patterns
and definitions are extracted from there using a short Python script which formats
the data into the LEXC format and collects any multicharacter symbols needed for
the definitions in the header part of the resulting LEXC file. This CSV file can then be
reused for other purposes. The following are samples from a full-scale description of
patterns for Finnish verbs according to the inflection class codes used in the Reverse
dictionary of Modern Standard Finnish (Tuomi, 1980), see Figure E.E

4 Reusable affix data

Converters and guessers are not meaningful in isolation. In order to know into what
format the dictionary entries have to be converted, one needs to have at least a small
test TWOLC lexicon and the associated rules. The test lexicon defines the target for
the conversion and the guessing. It ought to include example lexemes from all in-
flection classes and define what affixes may be attached to the stems and in which
combinations. The rulesﬂ, in turn, make the test lexicon operational so that the mor-
phophonemic alternations and the combinations of stems and affixes can be validated.
The design of a LEXC lexicon and rules is beyond the scope of this paper except that
parts of the test lexicon can be reused in the guesser. Thus, one would benefit from
combining the writing the analyzing and the guessing lexicons.

Both the normal morphological analyzer and the guesser need a description of
inflectional morphemes (affix entries), their shapes and the ways in which they may
combine with each other. The structures of these two lexicon systems is rather iso-
morphic, i.e. the entries and the sub-lexicons correspond directly to each other, even
if the entries are a bit different.

LEXC lexicons are technically a collection of sub-lexicons where each sub-lexicon
has a name and a set of entries. For each lexeme (or root morpheme) and each affix (or
inflectional morpheme) , there is an entry in some sub-lexicon. Each entry consists
formally of three components: (1) input string, (2) output string and (3) the name of
the continuation sub-lexicon from which the next entry is chosen:

4 All Python scripts and the CSV files mentioned in this section are freely available at Github: https:
//github.com/koskenni/twolex. The HFST used in these Python scripts was loaded according to the
instructions at https://pypi.python.org/pypi/hfst

SIn this paper, two-level rules were used and the morphophonemes were established according to the
principles of the simplified two-level model. The method for conversions, guessing and the reuse of affix
data is independent of the kind of rules one uses.

64

https://github.com/koskenni/twolex
https://github.com/koskenni/twolex
https://pypi.python.org/pypi/hfst

ID,NEXT,MPHON, COMMENT

,V01,<Co* Vo+ Co+ [ol|6|uly] [a:0[&:0]>,PUNOA

,VO1%,<Co* Vo+ Gs [o|6|uly] [a:0[&:0]>,KUTOA

,V02,<Cox Vo+ (Co+ Vo+)* Co+ [a:{aPe} a:0|&a:{&aPe} &:0]>,MUISTAA
,V02% ,<Co* Vo+ (Co+ Vo+)* Gs [a:{ale} a:0|a:{aPe} &:0]>,HUUDAHTAA
,V03,<Co VV t:{tds} [a:{aPe} a:0|&a:{a@e} &:0]>,HUUTAA

,V04,<Co VV t:{tds} [a:{ale} a:0|&a:{aPe} &:0]>,SOUTAA

,V09,<(Co) [Vo|VV] Co+ a:{aoce} a:0>,KAIVAA

,V09% ,<(Co) [Vo|VV] Gs a:{aoce} a:0>,KATTAA

,V10,<Co [Vo|VV] Co+ a:{aoce} a:0>,HAASTAA

,V10%,<(Co) [Vo|VV] Gs a:{aoce} a:0>,MALTTAA

,V11,<Co a i s t a:{aoe} a:0 >,PAISTAA

,V11%,<Co [alila ala i] [Gsk|Gst] a:{aoe} a:0 >,VIRKKAA
,V12,<Co a a r t:{trs} a:{aoce} a:0>,SAARTA

,V13,<(Co) Vo+ Co+ e:{eil} [a:0]&:0]>,LASKEA

,V13%,<(Co) Vo+ Gs e:{eif} [a:0]4:0]>,KYLPEA

,V13%,<(Co) Vo+ Gsj e:{eiP} [a:0|&:0]>,SULKEA

,V14,<t u n t:{tns} e:{ei@} a:0>,TUNTEA

,V15,<p o t:{tds} e:{ei} a:0>,POTEA

,V16,<1 & h:0 t:0 e:0 &:0>,LAHTEA

,V17,<Co* Vo+ Co+ i:{i@} [a:01&:0]>,SALLIA

,V17%,<Co* Vo+ Gs i:{i@} [a:0]&:0]>,LEMPIA

,V17,<Co* Vo+ (Syl)* [k slp s] i:{i0} [a:0]&:0]1>,KAVELEKSIA
,V17%,<Cox Vo+ (Sy1)* [h t:{td}] i:{i@} [a:0l&:0]1>,PUIKKELEHTIA
,V18,<n a i:{i@} d4:0 a:0>,NAIDA

,V18,<Co o i:{i@} d:0 a:0>,VOIDA

,V18,<(p) u i:{i@} d:0 a:0>,UIDA PUIDA

,V18,<Co* Vo+ (Syl)* Cox [ol|6] i:{i@} d4:0 [a:0]&:0]>,VOIDA
,V19,<s a a:{V@} d4:0 a:0>,SAADA

,V19,<j & &:{V@} d:0 &:0>,JAADA

,V20,<m y y:{V@} d:0 &:0>,MYYDA

,V21,<Co [u:{u@} o d:0 a:0ly:{y@} 6 d:0 &:0]>,JUODA SYODA
,V22,<v i:{i@} e d:0 &:0>,VIEDA

,V23,<k & y:0 4:0 4:0>,KAYDA

,V24 ,<Co* [Vo|VV] Cox (ald) i s O:{e@®} t:0 [a:0]4:0]>,NUOLAISTA
,V24,<Co* [Vo|VV] (Syl) Cox s 0:{e@} t:0 [a:0/&:0]>,NOUSTA SEISTA
,V24% ,<Co* [Vo|VV] Gw (ald) i s O:{e@} t:0 [a:0]&:0]>,LAUAISTA
,V25,<Co [Vo|VV] 1 0:{e@} 1:0 [a:0]4:0]>, TULLA NIELLA
,V26,<Co [Vo|VV] r 0:{e@} r:0 [a:0]4:0]>,PURRA PIERRA

,V27,<Co [Vo|VV] n 0:{eP} n:0 [a:0|&:0]>,PANNA MENNA

,V32,<juo | piel sy 6> JUOSTA juo-kse/v

,U33,<n & | t e>,NAHDA na-ke/v

,V34,<Co*x Vo+ (Syl) Co+ [al&dlol|6|ulyle]l t:0 [a:0/4:0]>,ALETA ale-ne/v
,V34% ,<Cox Vo+ (Syl) Gw [aldloldlulyle]l t:0 [a:014:0]>,KYETA ale-ne/v
,V34%,<Cox Vo+ (Syl) Gwj e t:0 [a:0|&:0]>,KYETA ale-ne/v

,V35,<Co* Vo+ (Syl)#* Cox [al&d] t:0 [a:0]&:0]>,SALATA sala-V/v
,V35%,<Cox Vo+ (Syl)* Gw [al&] t:0 [a:0/&:0]>,AIDATA sala-V/v
,V35%,<Co* Vo+ (Syl)* Gwj & t:0 &:0>,AIDATA sala-V/v

,V37,<Co* [Vo|VV] Co+ i t:0 [4:0/a:0]>,SELVITA selvi-A/v
,U37%,<Co [Vo|VV] Gw i t:0 [4:0]a:0]>,SIITA selvi-A/v

,V38,<Co* [Vo|VV] Co+ [0 t:0 a:0|6 t:0 &:0]>,KOHOTA koho-A/v
,V38%,<Co* [Vo|VV] Gw [0 t:0 a:0|6 t:0 &:0]>,TAUOTA koho-A/v

Figure 1: Regular expression patterns for Finnish verbs

65

INPUT:0UTPUT CONT;

Either the input or output string can be empty, and also here, only one of them needs
to be given if they are identical. If both are empty strings, even the colon may be
omitted.

In the framework used in Beesley and Karttunen (2003), the input string is the final
base form of the lexeme or for affixes, it consists of the morphosyntactic features of
each affix. The output string is the (morph)phonological shape of the affix. In order to
reduce the number of entries for morphemes, morphophonemic forms are used. Then
one may let the rules take care of the different shapes the affixes have when combined
with different stems or other affixes.

The present approach uses the three components of an entry in different ways
depending on whether an analyzer or a guesser is made. E.g. an entry for the ending
for conditional mood in analysis could be:

+COND+ACT:isi Person;

where the INPUT consists of the morphosyntactic features +COND and +ACT, the
OUTPUT (or morphophonemic representation) is isi and the next morpheme is in a
lexicon Person.

In affixes for guessing the components OUTPUT and CONT are the same as for
the analysis but the INPUT component is an empty string, e.g.:

:isi Person;

Let us move to lexeme entry classes. An entry class corresponds to one or several
similar inflection classes (as used in the dictionaries). For lexemes of such a class,
stems are not fully related to each other via simple phonological rules. E.g. a Finnish
verb salata (‘hide’, ‘keep in secret’) belongs to a common inflection class where the
stems are e.g. salaa-, salas-, sala-, salat-, salan-. One may simplify the rule compo-
nent by splitting such lexemes in two parts: (1) a truncated stem which is constant
or phonologically regular for a lexeme and (2) stem endings which are common to
all lexemes in this lexeme entry class. Both parts may themselves contain regular
phonological alternations such as vowel harmony or consonant gradation.

For each lexeme entry class, a sub-lexicon is established and it lists the end parts
of the stems in such a class. A sub-lexicon corresponding to a lexeme entry class is
common to all lexeme entries of this class and the lexeme entries all continue to this
sub-lexicon. The actual sub-lexicon used in the analysis of words inflected like salata
could be as follows:

LEXICON sala-A/v

{nt}{dlnrtP}{aa}:{vp} vO;
{nt}{dlnrtP}{aal}:s vl;
{nt}{dlnrtP}{adl}:{vp} v2;
{nt}{dlnrt@}{ad}: {nt} v3;

In this example, sal-A/v is the name of this sub-lexicon, v0 is the sub-lexicon for
present tense forms, v1 is the sub-lexicon for the past tense morpheme, v2 for con-
ditional morpheme and v3 is the sub-lexicon where infinitives and participal mor-
phemes reside. The base form for verbs is traditionally the first infinitive which is
in sub-lexicon v3. The INPUT component (for analysis) consists of whatever must
be added to the truncated stem (i.e. {nt}is added) in order to form the v3 stem. It is

66

given here followed by the common morphophonemic form of the infinitive ending
{dlnrt@}{ac’i}.E The OUTPUT component consists of the final parts of morphophonemic
representations of the different stems.

In the guesser version, all this information is not needed. Instead, the INPUT
that is needed here, consists of the name of the continuation class itself (defined as a
multicharacter symbol and preceded by a space that has been quoted with a per cent
sign).

LEXICON sala-A/v
% sala-A/v:{V@} v02;
% sala-A/v:s vi;
% sala-A/v:{nt} v3;

Some linguists think that complex lexicons in LEXC format are not convenient for
humans to editd Therefore, it is a practical idea to create and edit those parts of the
lexicon in a simple tabular form by using e.g. some spreadsheet calculator. From the
internal format of spreadsheet calculators, one may store the data as comma sepa-
rated values (CSV) which are easy to process with small Python scripts. One may use
slightly different scripts in order to produce either normal LEXC entries for morpho-
logical analysis or entries modified for the guesser or other purposes. Below is the
source CSV data for the above examples for sal-A/v sub-lexicons:

1D , NEXT, MPHON, FEAT, BASE

sala-A/v, vO , {V@} , , {nt}{dlnrtP}{ad}
, vl , s R , {nt}{dlnrt@}{ad}
, v2o, {ver , , {nt}{dlnrt@}{ad}
, v3 , {nt} , , {nt}{dlnrt@}{as}

In a similar manner, the CSV entries of actual affixes can be in the same tabular
format, e.g. the conditional ending:

ID, NEXT , MPHON, FEAT , BASE
v2, Person neg , isi , V COND ACT,

For analysis, INPUT comes from the FEAT column, and OUTPUT from the MPHON
column. There are two sub-lexicon names in the NEXT column and therefore two
separate entries are produced into the LEXC lexicon. For guessing, in inflectional
endings, INPUT will be empty but otherwise the entry will be similar whereas the
lexicons for inflection classes will be slightly different. In them, the INPUT is the
name of the sub-lexicon (and OUTPUT as in analysis). Short Python scripts perform
all simple conversions that are needed B

5 Producing the FST for guessing

Now we know how to make the sub-lexicons for affixes and the special sub-lexicons
for each lexeme entry class. When converting dictionary headwords into lexeme en-

The infinitive ending may be in several shapes (-a, -4, -ta, -td, -da, -dd, -la, -ld, -na, -na, -ra, -rd), but
the forms are fully determined by the phonological properties of the preceding stem and easily handled by
arule.

"Especially the handling of so called flag diacritics requires duplication and results in less readable
LEXC source files. Moreover, there are no convenient ways to parametrize the LEXC files so that one could
compile different versions out of the same source file.

8 All Python scripts and the CSV files mentioned in this section are freely available at Github: https:
//github.com/koskenni/twolex.

67

https://github.com/koskenni/twolex
https://github.com/koskenni/twolex

tries in Section B, each pattern had an inflection class code and there was a separate
table associating the inflection class and the lexeme entry class so that the pattern and
the sub-lexicons could produce a lexeme entry with the proper continuation class. We
use the same pattern data when building the regular expression entries for guessing.

In the conversion, the expressions themselves were transformations from the dic-
tionary head word into a morphophonemic representation of the lexeme entry. For
the guesser, we only need the output part of this mapping. For transforming the con-
version patterns into guessing patterns, a small Python script was made. The script
changed the regular expressions in the definitions and in the regular expressions pat-
terns so that any symbol pair was replaced by the output part only, e.g.:

p:{pv} -—> {pv}
a:0 -—-> 0

The result was an output projection of the initial transduction. It was formatted ac-
cording to the conventions required by LEXC and compiled together with the affixes
in a respective format. The compiled lexicon FST was then compose-intersected with
the two-level rules. The inverse of this was then minimized and optimized for lookup
so that it could be used for looking up possible entries for any verb form, e.g.:

$ hfst-lookup -i guesser.fst

> hakkeroiden

hakkeroiden hakkero haravo-i/v 0,000000
hakkeroiden hakkero{i@} /v 0,000000

The hfst-lookup program reads a word form (hakkeroiden) at a time and looks the
FST for any matches and prints them (hakkero haravo-i/v and hakkerofi@} /v) together
with the input word. In addition, the program prints a weight of the results (which
is not yet used in the guessing but probably one can find useful ways to incorporate
weights into the process).

6 Selecting the correct entry interactively

In Section § we ended up with a FST which maps any inflected word form into a set
of possible LEXC entries. Neither the XFST scripts not the HFST command line tools
lend themselves for the kind of looping and testing that one would need for interfacing
the guessing FST with a human user in a natural way. Fortunately, this is quite easy
when using the HFST that is embedded in Python 3.

A very simple script can read in the FST produced as above. In a loop, the program
canread in a word form and search the FST for any entries which were associated with
it. Searching can be done with an efficient lookup function which produces the results
in a form that the script can easily test. If there still are several entries remaining, the
script asks for another form of the same word. An intersection of the new and the
previous set of results is calculated. If only one result remains, that is the answer. If
several results remain, then the user must enter a further form.

The above procedure solves the problem in most cases but not in all. Two tentative
lexical entries can overlap so that one generates all forms which the other one does
but it generates some additional forms which the other does not. The user can then
find the solution if the entry which she is searching has a lager set of forms. If the
correct entry would have only forms also acceptable for the other entry, the problem
cannot be solved by just entering more forms. In this situation, the user needs to

68

enter a negative example, i.e. a form which would be allowed by the wrong candidate
lexeme but not by the correct. The program, then, subtracts the entries corresponding
to such a word-form.

The following is an example where the user enters brassata and brassasin in order
to narrow down the possible LEXC entries. The negative example brassajaa (prefixed
with a minus sign) resolves the problem that the two tentative entries (sala-A/v and
pala-V/v) are overlapping so that the former is included in the latter.

ENTER FORMS OF A WORD
brassata
{'brassa ale-ne/v', 'brassa sala-A/v', 'brassa pala-V/v',
'brassat{t@}{aPe} /v', 'brassat{a@e} /v'}
brassasin
{'brassa sala-A/v', 'brassa pala-V/v'}
-brassajaa
{'brassa sala-A/v'}
RESULT:
brassa sala-A/v ;

As the reader can readily see, the script is just a starting point which can be made
more sophisticated, c.f. (Espla-Gomis et all, 2017). Instead of just accepting correct or
incorrect forms from the user the program might generate critical forms and ask the
user whether they are correct or not. Forms which are valid inflected forms of one
but not all tentative entries are useful in this respect. There are several possibilities
in selecting which forms to ask.

One could make the guesser more helpful by restricting the inflectional forms
to so called principal parts i.e. a minimum set of forms which is still sufficient for
determining the correct entry. With this restriction, one can use the guesser FST
together with its inverse. The given word form goes through the guessing FST and
results in a set of tentative entries. Each of the entries is fed to the inverse FST. In this
way one gets a set of principal forms for each entry candidate. These lists could be
shown to the user who then can select one list and thus the underlying entry.

One may also process the sets of forms of each lexeme candidate and hide common
word forms. One idea is that a sequence of word forms would be presented in a
particular order. The sequence would only contain forms which are not common to
all tentative entries. At the top of the list would be those forms which belong to
the least number of entries. The user would then respond by telling which is the
first acceptable form of the target entry. If all forms in front of that one are marked
as negative examples then the interaction between the program and the user might
converge even more rapidly.

7 Corpus-assisted guessing of entries

A list of all word forms occurring in a large corpus is quite valuable when choosing
among different possible entry candidates. The correct entry is more likely to have
some word forms in the corpus than the entries for non-existing lexemes. After the
first step when the user has given a word form to the guesser, the program has a set
of alternative entries which could generate that word form, e.g.:

69

radkkasi
{'raakka sala-A/v', 'raikkas{ale} /v',
'radkkas{e@} /v', 'raak{k@}ra sala-A/v'}

Let us consider each of these entries in turn. The set of word forms occurring in the
corpus which are also generated by the entry is interesting.E What happens if one
feeds these word forms into the algorithm described above. The algorithm may find
a unique solution if the set contains enough forms. Such solutions are likely to be
the correct ones we are looking for. Sometimes there may several possibile answers
because the corpus contains forms of other (similar looking) lexemes and even typing
errors. In case there are many (unique) solutions, one can choose the one having the
largest set of word forms or the program might ask the user to choose the correct one.

The plain algorithm would require another word form in order to proceed. The
corpus-assisted algorithm would find the solution right away from the first word form:

radkkasi
CORPUS CONTAINS: { raakattiin, raakk&aan,
raadkkadvat, radkaten, radkannyt, radkitty,
radkattdisi, radkataan, radkkaisi, raakata,
raakkéasi, raskkis }

raak{k@}ra sala-A/v ;

Using the HFST finite-state tools, it is easy to implement the enhanced guesser.
We already have G, a FST which maps a word form into the set of possible entries
{e1,...,er}. We must prepare the corpus data in advance in order to support the
interactive guessing of the entries. The distinct word forms (types) occurring in a
corpus can be easily produced as a list. This list can be converted into a FSA, say W
using the hfst-strings2fst command line tool. The composition C' = W o G maps each
word form in the corpus into the entries which could generate them. The inverse of
this mapping, H = C~! gives us the word forms in the corpus that an entry could
generate. This mapping H is used in the corpus-assisted version of the entry guesser.
See Appendix [A] for some examples of corpus-assisted for Finnish verbs guessing are
given. It appears that such methods could be used for building lexicons for lesser
resourced languages.

8 Guessing entries from a corpus

One can modify the computer-assisted guessing so that it works without human in-
tervention. The input side (projection) of the transducer H accepts all entries that
we need to consider. It is a finite-state machine and it can easily be converted into
a plain list (of strings). Once this is done, the algorithm may proceed by considering
each entry at a time and test whether the entry ought to be accepted or not.

The mapping H which was defined above, maps every entry e into those word
forms occurring in the corpus which the entry would accept. As in the previous sec-
tion, we evaluate the goodness of an entry e in E by using the set of word forms in

9One could simply choose the entry with the longest list but here we wish to stress the correctness of
guesses.

70

H(e;) and by feeding them into the algorithm and see whether the list makes the
algorithm to converge into exactly one entry. If successful, we have a good candi-
date for an entry. If unsuccessful, we have not enough evidence to exclude the other
candidate entries because some of them also generate all word forms in the list.

An experiment of this method is described in Appendix [B. The results were en-
couraging although the guesser only covered verbs and all noun and adjective forms
presented harmful noise to the procedure. For a random sample of word form types
taken out from a large text corpus of Finnish, the method provided some 77 % cor-
rect results when using very simple criteria. Further research on the topic is clearly
needed. One could assign weights to the affixes and use them when excluding less
likely entries.ld

One could easily combine the information from a corpus with the interactive
guessing. A word form given by the user would first be expanded to a set of ten-
tative entries. Then, each tentative entry would be tested against the corpus in order
to see whether the corpus would give conclusive evidence for exactly one of the en-
tries. In such cases, the entry could be directly selected and the interaction would
be faster. Even partial evidence could be utilized byt that would probably need some
further research and testing.

9 Experiment with Finnish verbs

The examples presented in the preceding sections were taken from an experiment with
Finnish verb morphology. There was a long term interest to deal with older Finnish
texts and therefore the Reverse Dictionary of Modern Standard Finnish (RDMSF) which
reflects the language in the first half of the 20th century was taken as the basis rather
than Kielitoimiston sanakirja (KS) which reflects the present day use. RDMSF allows
more liberal use of ending allomorphs and stem variants than the KS. The extra forms
are readily understood even by present day speakers but seldom used any more al-
though they are quite commonly found in earlier texts.

The examples in the preceding sections were made using a the RDMSF conjugation
tables and example words of the dictionary and two-level rules and a lexicon with
verbal ending which had been prepared earlier for other purposes. A couple days
were spent in establishing 78 regular expression patterns for the 45 conjugations used
in RDMSF. A Unix makefile was prepared to control the use of a number of small
command line and Python scripts. In this way, it was convenient to rebuild the FSTs
for conversion, analysis and guessing.

The test set of selected entries was converted using the conversion FST. The result-
ing entries were then combined with verbal affixes and compose-intersected with the
rule FSTs. The string pairs represented by this FST was produced in a human readable
form. The list consisted of pairs of base form plus features and and the corresponding
surface form:

14ta+V+INF1+NOM:iata
14t4+V+INF2+ACT+INE:idtessa
14t4+V+INF2+ACT+MAN:i&ten

HFST-LEXC has a facility for weighted entries and these would automatically propagate to the map-
pings that were described above. The same applies to the FSA for word form types in the corpus whose
frequencies could be utilized when assigning weights to them.

71

14t4+V+INF2+PSS+INE:idttédessa
14t4+V+PAST+ACT+1PL:ik&simme
1i4ta+V+PAST+ACT+1SG:iké&sin
14ta+V+PAST+ACT+2PL:ikésitte

The list was checked manually and some errors were detected in the affix tables
and one in the rules. After modifications, the test data appeared to be clean of errors.

The conversion was tested against the full list of 16,000 verb entries in the dictio-
nary. The test revealed some points where the patterns had to be made more general in
order to accept less typical verb entries in some conjugations. The analysis was tested
superficially by entering word forms randomly picked up from Nykysuomen sanakirja
(Sadeniemi, 1951-1961) and verifying that the results were correct. The same kind of
testing was done with the guesser.

10 Further work

There is a plan to continue the present work and produce a full scale Finnish mor-
phological analyzer and guesser which could be used for various purposes, including
the analysis of Finnish texts from the 19th century. The present approach makes such
an analyzer quite flexible for extending and tuning. One could easily add and change
inflectional patterns so that the historical endings and stem patterns would be bet-
ter covered. The kind of a morphophonemic lexicon which is used in this approach
lends itself also to applications within historical linguistics and comparing related lan-
guages with each other, cf. (Koskenniemi, 2013d). Whereas the existing open source
morphological analyzer OMORFI of Pirinen (2015) is designed for a wide coverage
lexicon and is normative, the proposed one OFITWOL would be permissive and de-
scriptive. OMORFTI aims at excluding old and dialectal inflections whereas OFITWOL
aims at including them, cf. the arguments in Koskenniemi and Kuuttj (2017).

Handling Finnish dialects by using the morphophonemic lexical representations
would also be an interesting topic to study. It is not always possible to relate word
forms in standard Finnish with forms in dialects because a word form alone does
not contain the relevant information. Morphophonemes combine the information of
the various stems of a lexeme and various forms of affixes. These morphophonemic
forms might contain the sufficient information for generating old or dialectal forms
of Finnish out of the morphophonological representations of OFITWOL.

References

Malin Ahlberg, Markus Forsberg, and Mans Hulden. 2015. Paradigm classification
in supervised learning of morphology. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics, Denver, Col-
orado, pages 1024-1029. http://www.aclweb.org/anthology/N15-1107.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite State Morphology. Studies in
Computational Linguistics, 3. University of Chicago Press. Additional info, see:
www . stanford.edu/~laurik/fsmbook/home.html.

72

http://www.aclweb.org/anthology/N15-1107
http://www.aclweb.org/anthology/N15-1107
http://www.aclweb.org/anthology/N15-1107
www.stanford.edu/~laurik/fsmbook/home.html

Grégoire Détrez and Aarne Ranta. 2012. Smart paradigms and the predictabil-
ity and complexity of inflectional morphology. In Proceedings of the 13th Con-
ference of the European Chapter of the Association for Computational Linguis-
tics. Association for Computational Linguistics, Avignon, France, pages 645-653.
http://www.aclweb.org/anthology/E12-1066.

Miquel Espla-Gomis, Rafael C. Carrasco, Victor M. Sanchez-Cartagena, Mikel L. For-
cada, Felipe Sanchez-Martinez, and Juan Antonio Pirez-Ortiz. 2017. Assisting non-
expert speakers of under-resourced languages in assigning stems and inflectional
paradigms to new word entries of morphological dictionaries. Language Resources
and Evaluation 51(4):989-1017.

Mans Huldén. 2014. Generalizing inflection tables into paradigms with finite state
operations. In Proceedings of the 2014 Joint Meeting of SSIGMORPHON and SIGFSM.
Association for Computational Linguistics, Baltimore, Maryland, pages 29-36.
http://www.aclweb.org/anthology/W14-2804.

Kimmo Koskenniemi. 1983. Two-level Morphology: A General Computational Model
for Word-Form Recognition and Production. Number 11 in Publications. University
of Helsinki, Department of General Linguistics.

Kimmo Koskenniemi. 2013a. Finite-state relations between two histori-
cally closely related languages. In Proceedings of the workshop on com-
putational historical linguistics at NODALIDA 2013; May 22-24; 2013;
Oslo; Norway. Linkoping University Electronic Press; Linkdpings uni-
versitet, number 87 in NEALT Proceedings Series 18, pages 53-53.
http://www.ep.liu.se/ecp/article.asp?issue=087&article=004&volume=.

Kimmo Koskenniemi. 2013b. |An informal discovery procedure for two-level rules.
Journal of Language Modelling 1(1):155-188.
http://jlm.ipipan.waw.pl/index.php/JLM/article/view/62.

Kimmo Koskenniemi and Pirkko Kuutti. 2017. K + K = 120: Papers dedicated to Laszlo
Kalman and Andras Kornai on the occasion of their 60th birthdays, Research Insti-
tute for Linguistics, Hungarian Academy of Sciences, chapter Indexing Old Literary
Finnish text, page 32 p.

Krister Lindén, Erik Axelson, Sam Hardwick, Tommi A. Pirinen, and Miikka Silfver-
berg. 2011. Hfst — framework for compiling and applying morphologies. In Cerstin
Mahlow and Michael Piotrowski, editors, Systems and Frameworks for Computa-
tional Morphology 2011 (SFCM-2011). Springer-Verlag, volume 100 of Communica-
tions in Computer and Information Science, pages 67-85.

Tommi A. Pirinen. 2015. Development and use of computational morphology of
finnish in the open source and open science era: Notes on experiences with omorfi
development. SKY Journal of Linguistics 28:381-393.

Aarne Ranta. 2011. Grammatical Framework: Programming with Multilingual Gram-
mars. CSLI Publications, Stanford. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7
(Cloth).

Matti Sadeniemi, editor. 1951-1961. Nykysuomen sanakirja, volume 1-6. Werner
Soderstrom Osakeyhti6, 4 edition.

73

http://www.aclweb.org/anthology/E12-1066
http://www.aclweb.org/anthology/E12-1066
http://www.aclweb.org/anthology/E12-1066
http://www.aclweb.org/anthology/W14-2804
http://www.aclweb.org/anthology/W14-2804
http://www.aclweb.org/anthology/W14-2804
http://www.ep.liu.se/ecp/article.asp?issue=087&article=004&volume=
http://www.ep.liu.se/ecp/article.asp?issue=087&article=004&volume=
http://www.ep.liu.se/ecp/article.asp?issue=087&article=004&volume=
\http://jlm.ipipan.waw.pl/index.php/JLM/article/view/62
\http://jlm.ipipan.waw.pl/index.php/JLM/article/view/62

Tuomo Tuomi. 1980. Suomen kielen kddnteissanakirja / Reverse Dictionary of Modern
Standard Finnish. Number 274 in Toimituksia. Suomalaisen Kirjallisuuden Seura, 2
edition.

A Test of corpus-assisted guessing of entries

The assisting corpus used here was a list of word forms starting with r from the SKTP
collection of textstd. The lists used here consists of some 115,000 word form types.
Only a small portion (less than 1/10) of them was actually forms of verbs. The word
forms that were tested as input were manually selected from another list, the Finnish
PAROLE corpus. Some forms occurring six times in the Parole corpus were picked up
and fed to the program. Nouns, nominal derivations and also verb forms with clitic
particle were excluded from the selection. This unsystematic, small and biased test
gave very promising results, i.e. the correct solution was found directly:

rydstéden
(1) << ryoést{aPe} /v >> rydstdd, rydstivéat, rydstetd,
rydésti, ryostédvat, rydstd, rydstetddn, rydstetty,
rydéstényt, ryostden, rydstettiin, rydstettévéd, rybstéessi,
ryéstén, rydéstémme, ryodstéisi

rakasti
(1) << rakast{aPe} /v >> rakastettava, rakastettaisi,
rakastaisitte, rakastaisit, rakasteta, rakastettu, rakastatte,
rakastaisivat, rakastaen, rakastakaamme, rakastaisimme,
rakastivat, rakastit, rakasta, rakastat, rakastin, rakastamme,
rakastetaan, rakastettiin, rakasti, rakastanut, rakastaisin,
rakastakaa, rakastavat, rakastan, rakastaisi, rakastimme,
rakastaa, rakastettaisiin

roihuaa
(1) << roihu halu-A/v >> roihuttiin, roihunnut, roihusivat,
roihuta, roihusi, roihua, roihutessa, roihuten, roihuaa,
roihuavat
(2) << roihua{k@}{a@e} /v >> roihuaa, roihuakin

rikkoontuivat
(1) << rikkoon{tn}u /v >> rikkoontuessa, rikkoontua,
rikkoontuivat, rikkoontuisi, rikkoontuu, rikkoontui,
rikkoontunut, rikkoontunee, rikkoontuvat, rikkoonnu

ryhtyvéat

1'The Downloadable Version of the Finnish Text Collection, “sktp-dl, ftc-dl”, ID: http://urn.fi/urn:
nbn:fi:1b-2016050206, The resource is available in FIN-CLARIN Kielipankki - the Language Bank of
Finland at http://urn.fi/urn:nbn:fi:1b-2014052719

74

http://urn.fi/urn:nbn:fi:lb-2016050206
http://urn.fi/urn:nbn:fi:lb-2016050206
http://urn.fi/urn:nbn:fi:lb-2014052719

(1) << ryhty /v >> ryhtyi, ryhtyne, ryhtyk&amme, ryhtykdot,
ryhtykédén, ryhtyy, ryhtyen, ryhtyvat, ryhtyisivat, ryhtyisi,
ryhtykds, ryhtyisimme, ryhtynevédt, ryhtynyt, ryhtynen,
ryhtyivat, ryhty, ryhtyessd, ryhtyisin, ryhtyad, ryhtynee

(2) << ryh{td}y /v >> ryhtyi, ryhtyne, ryhtyk&imme, ryhtyksédt,
ryhtykéén, ryhtyy, ryhtyen, ryhtyvat, ryhdyimme, ryhdytténe,
ryhdyttiin, ryhdytt&kédn, ryhdyttdkd, ryhdymme, ryhdyn,
ryhtyisivat, ryhdyin, ryhtyisi, ryhtyk&a, ryhdyitte,
ryhtyisimme, ryhtynevédt, ryhdy, ryhdytténeen, ryhdyté&én,
ryhdyttéesséd, ryhtynyt, ryhtynen, ryhtyivat, ryhdyttédisiin,
ryhdytte, ryhdytty, ryhtyess&d, ryhtyisin, ryhtya, ryhdyta,
ryhdyttédisi, ryhdyttédva, ryhdyit, ryhtynee, ryhdyt

(3) << ryhtyv{aPe} /v >> ryhtyvén, ryhtyvaa, ryhtyvat, ryhtyva

repedisi
(1) << re{pv}e katke-A/v >> repeidvdt, revennyt, repesin,
repeédn, repesi, revetessd, repedisi, repedd, repee,
repedisivit, repesivédt, revetd, reped

re{pv}te katke-A/v ;

rajasi
(1) << rajas{e@} /v >> rajasta, rajasivat, rajasi, rajasimme,
rajastaan
(2) << raja sala-A/v >> rajaat, rajaavat, rajattu, rajaan,
rajattaneen, rajaten, rajatkaa, rajata, rajaamme, rajasivat,
rajaisimme, rajattiin, rajattaisi, rajaisivat, rajasimme,
rajattaisiin, rajasi, rajaisi, rajattaessa, rajattava, rajaisit,
rajaisin, rajannut, rajaa, rajataan

B Test of guessing entries from a corpus

The evaluation of the method sketched in Section | was based on the same word form
list out of SKTP as in the Appendix [A]. Python scripts were written to implement the
method and the corpus of word form types beginning with r was processed. The
following is a list of a sample of 30 proposed lexicon entries out of that list. Not all
results proposed by the algorithm were taken because there was much noise in those
based on just a few word forms® Thus only entries which covered at least eight
distinct word forms were considered here. They are taken out of a total list of some
350 proposed entries. through equal interval sampling. Seven out of the 30 appear to
be incorrect (marked with -), others are OK (marked with +).

1. + RAAPUSTAA raapust{aPel} /v raapustiraapustin raapustivat raapustaa raapustaisi
raapustaisin raapustan raapustanut raapustavat raapusteta raapustetaan raapustettava
raapustettiin raapustettu

2. +RAATAA raa{td}{aoe} /vraadaraadanraadatraadatte raadetaanraadettavaraadet-
tiin raadettu raadoin raataa raataen raataessa raataisi raataisivat raatanut raatavat raatoi

12The mapping proposes some entries for most word forms. Certain forms of nouns happen to be similar
to some verb forms and occasionally a couple of such misleading forms uniquely determine an entry.

75

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

raatoivat

+ RAIKUA rai{k@}u /v raiuraikua raikuen raikuessa raikui raikuisi raikuisivat raikui-
vat raikukoot raikunut raikuu raikuvat

- ("RAKASTA as juosta) rakas{e@} /v rakasta rakastaan rakastaisi rakastako rakasta-
man rakastaneen rakastava rakasten rakastu

- "RANKATA without gradation) ranka sala-A/v rankaisi rankaisin rankaisivat rankaa
rankaan rankannut rankasi rankata rankataan rankattava rankattiin rankattu
+RAPISTELLA rapistel{e@} /v rapistelirapistelivat rapistella rapistellaan rapistellen
rapistellessa rapistelee rapistelen rapistelevat

+ RASKAUTTAA raskaut{t@}{ale} /v raskautaraskautetaraskautettiin raskautettu
raskautti raskauttaa raskauttaisi raskauttanut raskauttavat

- ("RATKAA as kaivaa) ratk{aoe} /v ratkaisiratkaisimme ratkaisin ratkaisivat ratketa
ratketaan ratkettava ratkettiin ratkoi ratkoimme ratkoivat

+ RAVATA rava sala-A/v ravaisin ravaa ravaan ravaatte ravaavat ravannee ravan-
nut ravasi ravasimme ravasivat ravata ravataan ravaten ravatessa ravattaisiin ravattava
ravattiin ravattu

+ REAGOIDA reago haravo-i/v reagoi reagoimme reagoin reagoisi reagoisin reago-

isit reagoisitte reagoisivat reagoit reagoivat reagoi reagoida reagoidaan reagoiden reagoidessa

reagoimme reagoin reagoinevat reagoinut reagoit reagoitaisi reagoitaisiin reagoitava
reagoitiin reagoitu reagoivat reagoinnut

+REKISTEROITYA rekisterdity /v rekisterdity rekisterdityirekisterdityisi rekistersi-
tyisivat rekisteroityivat rekisterditynyt rekisterdityvit rekisterdityy rekisterdityd

- (*REPEA as kylped and without gradation) rep{ei@} /v repi REPIN repisi repisimme
repisin repisivit repivit repee REPET reped repien repiessi

+ REVETA re{pv}e katke-A/v repee repesi repesin repesivit repei repeéisi repeii-
sivit repedn repedvit repedd revennyt revetessa reveta

+ RIEPOTELLA riepot{t@}el{e@} /v riepotella riepotellaan riepotellessa riepotellut
riepoteltava riepoteltiin riepoteltu riepotteli riepottelisi riepottelivat riepottele riepot-
telee riepottelevat

+ RIITAUTUA riitau antau-TU/v riitauduin riitauduta riitauta riitauttaneen riitau-
tua riitautui riitautuivat riitautunut riitautuu riitautuvat

+ RIKKOONTUA rikkoon{tn}u /v rikkoonnu rikkoontua rikkoontuessa rikkoontui
rikkoontuisi rikkoontuivat rikkoontunee rikkoontunut rikkoontuu rikkoontuvat

- (*RISKIA as sallia) risk{i@} /v riski riskimme riskin riskisi riskit riskien riskimme
RISKINE riskinen riskid

- (*RIVIA as sallia) riv{i@} /v rivi rivimme rivin rivisi rivit rivien RIVIESSA rivimme
rivin rivinen rivit rivid

+ ROIHUTA roihu halu-A/v roihua roihuaa roihuavat roihunnut roihusi roihusivat
roihuta roihuten roihutessa roihuttiin

(*ROKOTAA as muistaa without gradation) - rokot{a@e} /v rokotimme ROKOTIVAT
rokota rokotamme rokoteta rokotetaan rokotettaessa rokotettaisi rokotettaisiin rokotet-
tava rokotettiin rokotettu

+ ROSKATA roska sala-A/v roskaisivat roskaa roskaan roskaavat roskanne roskan-
nut roskasi roskasivat roskata roskataan

+ RUKSIA ruks{i@} /v ruksi ruksin ruksit ruksivat ruksi ruksia ruksien ruksii ruksin
ruksit ruksitaan ruksittu ruksivat

+ RUNTATA runt{t@}a sala-A/v runtannut runtata runtataan runtaten runtattava
runtattiin runtattu runttaisi runttaa runttaavat runttasi runttasin runttasivat

76

24.

25.

26.

27.

28.

29.

30.

+ RUSTATA rusta sala-A/v rustaisi rustaa rustaamme rustaavat rustannut rustasi
rustasin rustasivat rustata rustataan rustatessa rustattaessa rustattava rustattiin rustattu

+ RYHMITTYA ryhmit{t@}y /v ryhmity ryhmityin ryhmitymme ryhmityttiin ryh-
mittyen ryhmittyessd ryhmittyi ryhmittyisi ryhmittyisivat ryhmittyivat ryhmittynyt ryh-
mittyvat ryhmittyy ryhmittya

+ RYNNIA rynn{i@} /v rynnirynnin rynnivit rynni rynnien rynniessé rynnii rynnin
rynninyt rynnittiin rynnittdva rynnitd rynnitdan rynnivat rynnia

+ RYYDITTAA ryydit{t@}{&@e} /v ryyditettiin ryyditetty ryyditetdan ryyditti ryy-
dittivat ryydittden ryydittdessa ryydittaisi ryydittdnyt ryydittavat ryydittaa
+RYOVATA ryévd sala-A/vrydviisirydvannyt ryovisi rydvisivit ryovittiin ryovitty
ryovata ryovataan ryovaa ryovaavit

+RAKSYTTAA raksyt{t0}{a0e} /v riksytetty riksytetién riksytd riksytin raksytti
raksyttivat raksyttdessa raksyttanyt raksyttavat raksyttaa

+ROKITTAA rékit{t0}{a0e} /v rokitimme rokitettiin rokitetty rokitettava rokitimme
rokitti rokittivat rokittaisi rokittdnyt rokittavat rokittaa

For results 4, 5, 8, 12 and 20 also a better solution is present in the list of all so-
lutions. The incorrect entries passed the test because there happened to be some
misspelled tokens (shown as sMALL caps) forms of other verbs (shown in san serif)
or nominals (shown as emphasized) which fitted those entries but not to the correct
ones. The false results 12 and 20 would have been avoided if there were no typos in
the corpus. In the absence of the misspelled words, the fase entries would have failed
because the correct one also generates the same set of word forms (plus many oth-
ers). The list of word forms in false results 17 and 18 are almost exclusively nouns.
The false results 4, 5 and 8 contain each a set of forms from two different common
verbs. The data hints that one ought to have some method of weighing the goodness
of competing candidate entries. If some entry convincingly accounts a word form,
that word form could be excluded from the lists of other entries.

77

	Introduction
	Previous and related research
	Regular expressions for inflection classes
	Reusable affix data
	Producing the FST for guessing
	Selecting the correct entry interactively
	Corpus-assisted guessing of entries
	Guessing entries from a corpus
	Experiment with Finnish verbs
	Further work
	Test of corpus-assisted guessing of entries
	Test of guessing entries from a corpus

