Development of an Open Source Natural
Language Generation Tool for Finnish

Mika Hamalainen
University of Helsinki
Department of Modern Languages
mika.hamalainen@helsinki.fi

Jack Rueter
University of Helsinki
Department of Modern Languages
jack.rueter@helsinki.fi

Abstract

We present an open source Python library to automatically produce syntac-
tically correct Finnish sentences when only lemmas and their relations are pro-
vided. The tool resolves automatically morphosyntax in the sentence such as
agreement and government rules and uses Omorfi to produce the correct mor-
phological forms. In this paper, we discuss how case government can be learned
automatically from a corpus and incorporated as a part of the natural language
generation tool. We also present how agreement rules are modelled in the system
and discuss the use cases of the tool such as its initial use as part of a computa-
tional creativity system, called Poem Machine.

Tiivistelma

Téssé artikkelissa esittelemme avoimen ldhdekoodin Python-kirjaston kielio-
pillisten lauseiden automaattista tuottamista varten suomen kielelle. Kieliopilli-
set rakenteet pystytddn tuottamaan pelkkien lemmojen ja niiden vélisten suh-
teiden avulla. Tyokalu ratkoo vaadittavan morfosyntaktiset vaatimukset kuten
kongruenssin ja rektion automaattisesti ja tuottaa morfologisesti oikean muodon
Omorfin avulla. Esittelemme tavan, jolla verbien rektiot voidaan poimia auto-
maattisesti korpuksesta ja yhdist4a osaksi NLG-jarjestelmad. Esittelemme, miten
kongruenssi on mallinnettu osana jarjestelmaa ja kuvaamme ty6kalun alkuperéi-
sen kayttotarkoituksen osana laskennallisesti luovaa Runokone-jarjestelmaa.

1 Introduction

Natural language generation is a task that requires knowledge about the syntax and
morphology of the language to be generated. Such knowledge can partially be coded

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
The source code is released in GitHub https://github.com/mikahama/syntaxmaker

51

Proceedings of the 4th International Workshop for Computational Linguistics for Uralic Languages (IWCLUL 2018), pages 51-58,
Helsinki, Finland, January 8-9, 2018. (©2018 Association for Computational Linguistics

mika.hamalainen@helsinki.fi
jack.rueter@helsinki.fi
http://creativecommons.org/licenses/by/4.0/
https://github.com/mikahama/syntaxmaker

by hand into a computational system, but part of the knowledge is better obtained
automatically such as case government for verbs.

Having a computer create poetry automatically is a challenging task. Even more
so in the context of a morphologically rich language such as Finnish which makes gen-
erating grammatical sentences, even when they are not creative, a challenge. There-
fore having a syntactically solid system as a part of the poem generation process is
extremely important.

In this paper, we present an open-source tool for producing syntactically correct
Finnish sentences. This tool is used as a part of an NLG pipeline in producing Finnish
poetry automatically. The poem generation part of the pipeline is out of the scope of
this paper.

2 Related work

Previously in the context of poetry generation in Finnish (Toivanen et al.,|2012), the
problem of syntax has been solved by taking a ready-made poem, analyzing it mor-
phologically and replacing some of the words in it, inflecting them with the mor-
phology of the original words. This, however, does not make it possible to generate
entirely new sentences, and it fails to take agreement or government rules into ac-
count, instead it expects agreement and government to be followed automatically if
words with sufficient similarity are used in substitutes.

Another take on generating Finnish poetry in a human-computer co-creativity
setting (Kantosalo et al.||2015) was to use sentences extracted from the Project Guten-
berg’s children’s literature in Finnish. These sentences were treated as “poetry frag-
ments” and they were used to generate poems by combining them together in a ran-
domized fashion. This method indeed gives syntactically better results than the one
described in (Toivanen et al||2012), as it puts human-written sentences together, but
it doesn’t allow any variation in the poem apart from the order of the sentences in the
poem.

Reiter| (1994) identifies four different steps in an NLG pipeline. Those are content
determination, sentence planning, surface generation, and morphology and format-
ting. In the content determination step, an input is given to the NLG system, e.g. in
the form of a query to obtain desired information from the system. Based on this
query, a semantic representation is produced addressing the results to the query. In
other words, this step decides what information is to be conveyed to the user in the
final output sentence, but also how it will be communicated in the rhetorical planning
of the sentence.

The sentence planner will then get the semantic representation as input and pro-
duce an abstract linguistic form which contains the words to be used in the output
and their syntactic relations. This step bears no knowledge of how the syntax will
actually be realized, i.e., agreement or government rules, instead it applies the chosen
words and how they are related to one another.

The last two steps of the pipeline deal with the actual realization of the syntax in
the sentence. It is the task of the surface generator to handle the linguistic expression
of the abstract linguistic structure. It means resolving agreement, forming questions
in a syntactically correct manner, negation and so on. The actual word forms required
are produced in the morphology step.

52

3 The Finnish NLG tool

The tool, Syntax Maker, described in this paper focuses on the surface generation step
of the NLG pipeline described by [Reiter|(1994). It is used as a part of a complete NLG
pipeline for producing Finnish poetry and is currently in place in the Poem Machineﬂ
system. This tool was made as a part of the poem generation system in order to solve
the problem of creating novel, grammatical sentences not tackled by the previous
Finnish poem generators. Taking an NLG point of view hasn’t been studied before in
the case of Finnish poetry, which is a shame since Finnish, unlike English, has a rich
morphosyntax. This rich morphosyntax must be given proper attention if the com-
putational creativity system is to be given more freedom to produce sentences of its
own, using its own choice of words in a sentence that might cause other words around
them to undergo morphological change as dictated by agreement and government.
Syntax Maker only knows the morphology needed in the level of tags. For exam-
ple, it knows what case to use for a noun and what person to use for a verb. Actual
morphological forms are generated using Omorfi (Pirinen et al.|2017).

3.1 Syntactic representation

Syntax Maker is designed to take the abstract linguistic structure of a sentence as its
input. This structure consists of part-of-speech specific phrases each of which have
their head word in lemmatized form. The phrases are nested under each other so that
the highest possible root of the tree is a verb phrase.

When the phrases are nested together, they need to be added in proper slots to
fulfill the requirements of agreement and government. For example, a noun phrase
that is to act as a direct object of a verb phrase has to be nested in the verb phrase
slot dir_object. In dealing with verb phrases, Syntax Maker automatically deduces
the possible slots based on the verbs used as heads. In other words, Syntax Maker,
determines the valency of a verb automatically and assigns values such as transitive,
ditransitive or intransitive. On an abstract level, the phrases and their structures are
defined manuallyﬂ

Using phrase structures gives us an easier way to implement the needed func-
tionalities. Since the structure of phrases is similar for different parts-of-speech, we
can reuse the same code across different parts-of-speech. The division into part-of-
speech specific phrases gives us more freedom in expressing their peculiarities such as
agreement and government rules and what kind of phrases can be nested under them.
These structures come with a predefined word order, but it’s not enforced by Syntax
Maker. In other words, the word order in a phrase can be shuffled at will without
losing the government or agreement information. Even with an altered word order,
Syntax Maker can resolve the proper morphology correctly. The phrase structures are
defined in JSON outside of the source code of Syntax Maker written in Python.

3.2 Handling government

Case government rules for adpositions have been hand coded. This can be attributed
to the fact that there is only a very limited number of adpositions in Finnish, and
it takes little time for a native speaker to write down the case required of a noun

!http://runckone.cs.helsinki.fi/
2 These structures are available on https://github.com/mikahama/syntaxmaker/blob/master/
grammar . json

53

http://runokone.cs.helsinki.fi/
https://github.com/mikahama/syntaxmaker/blob/master/grammar.json
https://github.com/mikahama/syntaxmaker/blob/master/grammar.json

phrase when it serves as complement to a given adpositional phrase. The analogous
treatment of verbs, however, would be overly time consuming and laborious, and
hence this has been automated.

As Finnish is an accusative language, the object is marked with a specific case. The
case used depends on the verb in question and thus has to be specified for each verb
separately. We obtain the case government information together with verb transitiv-
ity automatically from The Finnish Internet Parsebank (Kanerva et al.,[2014) syntactic
bi-grams.

Each line of the automatically parsed Parsebank bi-gram data consists of two word
forms connected by a syntactic relation in the order in which they appeared in the
sentence. These word forms are accompanied by their lemma, part-of-speech, mor-
phology and syntactic annotation.

To extract the cases in which nouns have been linked to verbs, we look for lines in
which the first word form has V as its part-of-speech tag and the second word form
has N part-of-speech and NUM_Sg in its morphology. The reason why we limit the
search to singular nouns only is that, in Finnish, a verb that takes its object in geni-
tive in singular, takes it in nominative in plural, e.g. syon kakun and syén kakut but
not “syon kakkujen. Therefore taking plural objects into account as well would intro-
duce more undesired complexity. Furthermore, we ignore all nouns where the lemma
and word from are the same. This is done because the noun in question would then
either be in the nominative, which is not an object case, or it will have been given
an improper analysis in which case no lemmatization has been performed. Exam-
ples of this kind of wrong analyses in the corpus are kattella/kattella/N/NUM_Sg and
kasteleen/kasteleen/N/NUM_Sg. For each bi-gram filling these criteria, we store the
lemma of the verb and the case the related noun was in. This gives us a dictionaryﬂ
of verbs and frequencies for noun cases associated with each verb.

The resulting dictionary is then used to determine the transitivity of a verb and the
most frequent case for its object(s). This dictionary consists also of a plethora of non-
verbs such as Ljubuski and Dodonpa as a result of erroneous parsing in the Parsebank
data. This, however, causes no problems in the system because the dictionary also
contains a extensive number of real, lemmatized verbs. Given that Syntax Maker
operates on the level of surface generation, it is not actively involved in choosing the
words in the NLG task. This means that, unless Syntax Maker is specifically instructed
to use a non-verb it happens to know as a verb, it won’t. This noise in the verb noun
case dictionary, however, has no real effect on the grammaticality of the generated
sentences.

The transitivity and most frequent case of the object is determined for a given verb
by the verb noun case dictionary. The system is coded to accept the genitive, partitive,
elative and illative as possible direct object cases and the essive, translative, ablative,
allative and illative cases as indirect object cases. When the system defines whether
a verb can take a direct object, it requires the relative frequency of one of the direct
object cases to be above 23% of all the possible cases the verb has been seen with. For
ditransitivity, the threshold is 18% for an indirect object case. Ditransitivity will not
be considered if the verb is determined not to have a direct object. These threshold
values have been adjusted by hand after looking at the performance of the system
with a handful of verbs used in testing.

The genitive serves another use in Finnish syntax in addition to marking the direct

3 The verb-noun case dictionrary is released on https://github.com/mikahama/syntaxmaker/
blob/master/verb_valences_new.json

54

https://github.com/mikahama/syntaxmaker/blob/master/verb_valences_new.json
https://github.com/mikahama/syntaxmaker/blob/master/verb_valences_new.json

object. If the most frequent direct object case is genitive, we preform an additional
check to see that it really is being used as an object function. The verb has to also
has enough partitive case, over 23%, so that we can safely say that genitive indeed
can be used as an object. This is because in Finnish, verbs that take their direct object
in the genitive, also accept partitive in certain contexts such as in the expression of
differences in aspect or negation.

3.3 Modelling agreement

Agreement, unlike government, is something that does not need to be extracted from
a corpus. It is a rather straightforward thing and can be modelled with hand-written
rules. In Finnish the predicate verb agrees in person and number with the subject,
and adjective attributes agree in case and number with the head noun.

Since all the phrase types in our system are modelled in a similar way, it is easy to
introduce agreement rules in the phrase structures. In a phrase structure, we define
a key that is either parent referring to the parent phrase of the current phrase or a
key to the list of component. Component lists all the possible syntactic positions for
nested phrases such as subject or dir_object. Even though there aren’t many agree-
ment relations in Finnish, by modelling them in the external grammar file, we hope
to make it easier to add more languages to the system in the future.

When Syntax Maker produces a sentence, it starts to process the syntactic tree
phrase by phrase. For each phrase, it looks at the defined agreement relationship and
copies the morphological information from the phrase defined to be agreed with. The
agreement relation in the grammar file states the morphological tags which should be
copied, for example in the case of an adjective phrase, the tags are CASE and NUM.

3.4 Modifying the verb phrase

Apart from just providing basic grammaticality by resolving agreement and govern-
ment, Syntax Maker also provides means to modify verb phrases to produce more
complex, yet grammatical sentences.

Syntax Maker can be used to negate sentences. When a sentence is negated, a
new phrase with the head ei is added to the components of the verb phrase as aux.
The new phrase has an agreement relation parent->subject: PERS, NUM and the verb
phrase containing the predicate verb is tagged as NEG so that it will be conjugated as
such when the full sentence is produced as text. The case of the direct object is also
changed to partitive if the most frequent direct object case of the verb is genitive, in
compliance with Finnish grammar.

Mood and tense are also handled by Syntax Maker. In the case of the prefect,
the auxiliary verb olla is set as the new head of the verb phrase and the old head is
moved to a new subordinate phrase with the part-of-speech value PastParticiple and
agreement parent->subject: NUM. This makes sense from the point of view of Syntax
Maker since olla is the verb that is conjugated normally while the participle form only
agrees with the number of the subject. Other auxiliary verbs can be added in a similar
fashion, where the auxiliary verb substitutes the original head and the verb is moved
to a nested phrase with the morphology required by the auxiliary verb.

Passive voice is handled by creating a dummy phrase as a subject with the mor-
phological tags PERS = 4 and NUM = PE. This will automatically make the verb agree
with the dummy phrase’s morphology and produce the correct form as output. Also,

55

if the verb takes its direct object in genitive, the government rule is changed so that
the direct object will be in the nominative.

A sentence can also be turned into an interrogative one. This adds an additional
morphological tag CLIT = KO to the head of the verb phrase and moves it to the
beginning of the whole sentence. Syntax Maker does not produce punctuation, so a
question mark has to be appended to the end of the sentence at a different level in the
NLG pipeline.

4 Evaluation

In this part, we evaluate how accurately Syntax Maker can produce verb phrases. We
limit this evaluation to the automatically extracted information used by Syntax Maker
because it is more prone to errors than the hand written rules. This means that we are
evaluating two things in the generated output: the predicted valency i.e. how many
objects the verb can take and the predicted case for the object.

In order to do the evaluation, we take a hundred Finnish verbs at random from the
Finnish Wiktionaryﬂ These verbs are then given as input to Syntax Maker to produce
verb phrases out of them. The valency and object cases are then checked by hand to
conduct the evaluation phase.

too low | too high | correct
valency prediction 28% 5% 67%

Table 1: Accuracy in predicting valency

Syntax maker predicts the number of objects correctly 67% of the time and 28%
of the time too low. This is acceptable in the task of poem generation where we
are interested in generating syntactically correct poems. Having too few objects in
the generated output only creates an ellipsis that doesn’t result in incorrect syntax.
However, in other NLG tasks outside of the scope of poem generation, the objects
might be important and thus having a higher accuracy is something to work towards.

case correct | case incorrect | no object
object case prediction 50% 4% 46%

Table 2: Accuracy in predicting object case

In the test set, Syntax Maker produced a wrong case only 4% of the time. 46% of
the verbs were either truly intransitive or didn’t take an object according to Syntax
Maker. In other words, by just taking into account the transitive verbs recognized by
Syntax Maker, the accuracy reached to 93%. This means that Syntax Maker is very
good at coming up with the correct case but not as good at determining the valency
accurately.

5 Future work

At the current state, Syntax Maker doesn’t handle all parts of the Finnish grammar.
For instance, it doesn’t have the functionality to express aspectual difference by alter-

* From a Wiktionary dump on https://dumps.wikimedia.org/fiwiktionary/

56

https://dumps.wikimedia.org/fiwiktionary/

ing between genitive and partitive objects. In addition, it has only a limited knowl-
edge of the transitivity of verbs. Novel automated ways should be studied to solve
this shortcoming.

In the future, Syntax Maker should be tested as a part of the NLG pipeline in uses
other than poetry generation as well. This might reveal new requirements for the
system that do not appear in the task of poetry generation. This might also reveal
missing functionalities both in the generation of syntax and the API provided by the
library that are needed in other NLG tasks.

Including small Uralic languages in this tool is also in our interest for the future.
This is because having an NLG system would be especially useful in the case of minor-
ity languages, for example in generation of news automatically in these languages.

6 Conclusions

In this paper we have presented an open source Python library called Syntax Maker.
The library was made to be used as a low-level syntax producer in a new NLG pipeline
for producing Finnish poetry and is currently in place in a computational creativity
system known as Poem Machineﬂ By embracing the notion of separation of concerns
in the software architecture of the system, Syntax Maker can be used in a multitude
of contexts outside of computational creativity applications as an all-purpose tool
for producing grammatical Finnish. To achieve this goal, a method for extracting
the information needed to resolve verbal agreement automatically was presented and
evaluated.

Acknowledgments

This work has been supported by the Academy of Finland under grant 276897 (CLiC)

References

Jenna Kanerva, Juhani Luotolahti, Veronika Laippala, and Filip Ginter. 2014. Syntactic
n-gram collection from a large-scale corpus of internet finnish. In Proceedings of
the Sixth International Conference Baltic HLT.

Anna Kantosalo, Jukka Toivanen, and Hannu Toivonen. 2015. Interaction evaluation
for human-computer co-creativity: A case study. In Proceedings of the Sixth Inter-
national Conference on Computational Creativity. pages 276-283.

Tommi A Pirinen, Inari Listenmaa, Ryan Johnson, Francis M. Tyers, and Juha
Kuokkala. 2017. Open morphology of finnish. LINDAT/CLARIN digital library at
the Institute of Formal and Applied Linguistics, Charles University. http://hdl.han-
dle.net/11372/LRT-1992|

Ehud Reiter. 1994. Has a consensus nl generation architecture appeared, and is it
psycholinguistically plausible? In Proceedings of the Seventh International Workshop
on Natural Language Generation. INLG *94.

%> Poem Machine can be used on http://runokone.cs.helsinki.fi/

57

http://hdl.handle.net/11372/LRT-1992
http://hdl.handle.net/11372/LRT-1992
http://hdl.handle.net/11372/LRT-1992
http://runokone.cs.helsinki.fi/

Jukka Toivanen, Hannu Toivonen, Alessandro Valitutti, and Oskar Gross. 2012.
Corpus-based generation of content and form in poetry. In Proceedings of the Third
International Conference on Computational Creativity.

58

	Introduction
	Related work
	The Finnish NLG tool
	Syntactic representation
	Handling government
	Modelling agreement
	Modifying the verb phrase

	Evaluation
	Future work
	Conclusions

