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Abstract

Word associations are a common tool in
research on the mental lexicon. Studies re-
port that bilinguals produce different word
associations in their non-native language
than monolinguals, and propose at least
three mechanisms responsible for this dif-
ference: bilinguals may rely on their native
associations (through translation), on collo-
cational patterns, and on the phonological
similarity between words. In this paper, we
first test the differences between monolin-
gual and bilingual responses, showing that
these differences are consistent and signifi-
cant. Second, we present a computational
model of bilingual word associations, im-
plemented as a semantic network paired
with a retrieval mechanism. Our model
predicts bilingual word associations better
than monolingual baselines, and translation
is the main mechanism explaining its suc-
cess, while collocational and phonological
associations do not improve the model.

1 Introduction

In a free association task, participants are given a
cue word (e.g., apple) and produce the first word
that comes to their mind (e.g., red or fruit).1 Free
associations have been a common tool in the study
of the mental lexicon because the observed pattern
of associations can reflect the nature and strength of
connections between words in semantic memory.

We focus on free associations as a means to bet-
ter understand the structure and processing of the
mental lexicon in bilinguals. Bilingual word as-
sociations have been studied for decades (see an

1In a so-called continued version of this task, participants
give more than one response, but for consistency we always
consider only the first response to each cue in this study.

overview in Meara, 2009). Despite a number of
important findings, which we summarize in the fol-
lowing section, high-level conclusions about the as-
sociation norms in bilinguals’ non-native language
are unclear – not only because of high variabil-
ity in bilingual populations (DeKeyser, 2013), but
also due to methodological factors (as explained by
Boulton, 2003; Krzemińska-Adamek, 2014). Of
specific concern for us is the lack of robust statisti-
cal analyses of the results. Many studies provide a
selective qualitative analysis of the responses, and
their findings can be inconsistent. In particular, it
is unclear whether there are significant differences
between native and non-native word associations
(as compared, for example, to the instability of
responses within a group of speakers over time).

We address this issue by providing a statistical
analysis of the differences in English word asso-
ciation responses of Dutch[L1]–English[L2] bilin-
guals (collected by van Hell and de Groot, 1998)
compared to English monolingual word association
norms. After demonstrating a quantifiable differ-
ence between them, we then present the first com-
putational model of bilingual word associations,
which we use to investigate how the structure and
processing of the bilingual lexicon could lead to
the observed differences.

2 Related work

2.1 Non-native word associations

In general, non-native speakers’ responses tend to
differ from those of native speakers (e.g., Wolter,
2001; Zareva, 2007; Antón-Méndez and Gollan,
2010; Hui, 2011). Non-native speakers often pro-
duce responses that are translation equivalents of
responses they would give in their native language
(Meara, 1978) – in other words, L1 mediates their
L2 responses (Nam, 2014). Such translations are
produced more frequently when the cue word and
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its translation are cognates2 (Taylor, 1976; van
Hell and de Groot, 1998). Also, collocational
responses (called ‘syntagmatic’; e.g., duty–free,
opportunity–take: Politzer, 1978; Riegel and Zi-
vian, 1972) and phonological responses (favor–
flavor: Meara, 1978; Namei, 2004) tend to be pro-
duced by non-native speakers more frequently than
by monolinguals. Multiple examples of all these
effects are well-documented, yet open questions
remain regarding how systematic these differences
are between bilinguals and monolinguals.

Van Hell and de Groot (1998, henceforth vHdG)
carry out a free association experiment with Dutch–
English bilinguals (i.e., native Dutch speakers who
have been learning English). For us, their study
is interesting in two respects. First, vHdG work
with two similar groups of bilinguals and test one
of the groups twice, which allows us to measure
the consistency of responses between two groups
of bilinguals, as well as within a single group. Sec-
ond, large-scale monolingual association norms are
available for both Dutch and English, which helps
us both with our statistical analyses and in building
a computational model. We use vHdG’s data (1) to
carry out a systematic comparison of monolingual
and bilingual responses, and (2) to train and test a
computational model that helps us predict whether
the effects described above are systematic or not.

2.2 Existing computational models

Graph-based models (or semantic networks) have
been widely used in research on semantic memory
(see an overview by Beckage and Colunga, 2016).
Despite their ‘localist’ approach in which a word
is simply represented by a node (rather than us-
ing distributed representations), such models are
a useful tool in the study of lexical access and
acquisition. In particular, they have successfully
replicated patterns of human verbal behavior in
free word association (Enguix et al., 2014; Grue-
nenfelder et al., 2015), semantic fluency tasks (Ab-
bott et al., 2015; Nematzadeh et al., 2016), lexical
growth/acquisition (Stella et al., 2017; Bilson et al.,
2015), assessment of semantic similarity (Jackson
and Bolger, 2014; De Deyne et al., 2016), etc.

Naturally, a graph is only a static representation
of the lexicon, although its structure presumably
reflects lexical processing (Beckage and Colunga,
2016). To simulate the actual processing dynam-

2In literature on bilingualism, cognates are commonly de-
fined as translations that have similar forms.

ics, various mechanisms have been proposed, such
as spreading activation, random walk, entangle-
ment, etc. (Galea et al., 2011; Zemla and Auster-
weil, 2017). In a spreading activation model, the
activation starts at a given node and spreads across
the graph over adjacent edges proportionally to
edge weights (Anderson, 1983; Roelofs, 1992). Re-
cently, De Deyne et al. (2016) used this approach
on a free association graph to predict human simi-
larity judgments for weakly-related concepts. We
use a similar approach to model bilingual free as-
sociations in our computational model.

3 Data analysis

While vHdG explored various aspects of bilin-
gual word associations, they did not compare the
bilingual responses they collected to independent
monolingual data. Here, we quantitatively com-
pare vHdG’s data against monolingual association
norms, to see whether the non-native responses
are indeed systematically different from those of
native speakers. As vHdG argue, there is a lot of
variability among bilinguals. Therefore, we need
to compare the between-group differences (mono-
linguals vs. bilinguals) against within-group differ-
ences (two sets of bilinguals), to ensure that any
between-group difference we find is due to more
than the variation in responses among bilinguals.

3.1 Distance measures

Our goal is to compare two sets of responses to a
particular cue word against each other. For this, we
use two measures. The first is based on average pre-
cision, widely used in information retrieval. This
measure treats one (unordered) set of responses
as a gold standard and compares this set against
another (ordered) set, considering only the top n
responses. Because we are interested in measur-
ing the distance between the two sets, we employ a
complementary measure ρ to assess the distance be-
tween an unordered (shorter) set X and an ordered
(longer) set Y :

ρn(X,Y ) = 1−
∑n

k=1 (Pk(X,Y )× 1k)

|X ∩ Y | (1)

where 1k is an indicator function taking the value
of 1 if Yk ∈ X and 0 otherwise, and Pk is the
precision at k:

Pk(X,Y ) =
|X ∩ Y1:k|

k
(2)
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where Y1:k is the subset consisting of the first k
responses in Y .

While average precision is frequently used in in-
formation retrieval, a shortcoming of this measure
is that the order of responses in X does not matter.
In practice, however, some of the responses can
be several times more frequent than others. To ac-
count for this fact, we use a second measure, total
variation distance υ, which considers two proba-
bility distributions X ′ and Y ′, associated with the
likelihoods of responses in X and Y , respectively:
e.g., X ′ ∼ {L(Xi), 1 ≤ i ≤ |X|}, where the like-
lihood is proportional to the response frequency in
the human data (and later, to the association score
in our model). The measure υ is then defined as:

υn(X,Y ) =
1

2

∑

ri∈{X∪Y1:n}

∣∣X ′(ri)− Y ′1:n(ri)
∣∣

(3)
Sometimes response ri does not appear in one of
the lists; if, e.g., ri is not in Y , we take Y ′(ri) = 0.

For both measures, we test two values of n: n =
3 to compare only the top three responses per cue
in the data, and n = |X| to compare the maximum
possible number of responses per cue. Note that in
the latter case, n varies per cue word, depending
on the number of responses in X . We denote the
respective measures as ρ3, υ3, and ρmax, υmax.

To focus on systematic differences between word
associations and eliminate the noise from occa-
sional responses and various word forms, in all the
reported analysis we remove hapax legomena (re-
sponses that are only given by one participant) and
lemmatize all the responses, using Frog (van den
Bosch et al., 2007) for Dutch and NLTK WordNet
lemmatizer (Bird et al., 2009) for English.

3.2 Same vs. different bilinguals

First, we test if our measures are sensitive enough
to find expected differences between sets of free
association responses. For this, we compare the
difference in responses from two different sets of
bilinguals to the difference in responses from a
single set of bilinguals at two different times –
i.e., we expect more variation in the two response
sets in the former case than in the latter, in line
with vHdG’s results. We use their data, in which
one group of bilinguals, B1, performed the free
association task twice (B1-1 and B1-2), while an-
other group performed it only once (B2). We

Figure 1: Distances (in terms of υ3) between the
responses given by different groups of participants.

then expect that ρ3(B1-1, B1-2) < ρ3(B1-1, B2),3

and the same for υ3, ρmax, and υmax. We com-
pute the ρ and υ values for responses given by
vHdG’s bilinguals to each of the 58 cue words.4

Figure 1 (left panel) shows the distances in terms
of υ3 only (the differences in distances on the three
other measures are more pronounced). We sta-
tistically compare the distances using Wilcoxon
signed-rank test on pairwise differences per cue
word. The results confirm our prediction on all
measures: mean ρ3(B1-1, B1-2) = 0.35 is less than
mean ρ3(B1-1, B2) = 0.47 (p = .002); for υ3, the
respective means are 0.40 and 0.49 (p = .003); for
ρmax, the means are 0.38 and 0.49 (p = .004); for
υmax, they are 0.35 and 0.46 (p = .002). The con-
sistency of the observed differences across the four
measures suggests that the same set of bilinguals
gives more consistent responses across sessions
than two different sets of bilinguals, and this effect
cannot be explained by random variation. Ideally,
we would carry out a similar analysis for monolin-
gual speakers, but individual-level data for mono-
lingual speakers is not available at the moment.

3.3 Bilinguals vs. English monolinguals

Given that our measures are sensitive to differ-
ences across response populations, we can now
turn to our main goal of verifying differences in the
responses of non-native speakers (that is, Dutch–
English bilinguals tested in English) compared to
native English speakers. We expect more consis-
tency in the responses given by the two groups of
bilinguals (B1-1 vs. B2), compared to bilinguals vs.

3Responses in the second session (B1-2) may be biased,
so we use B1-1 in comparisons to B2 here and to other sets
below.

4For consistency, two cues that did not appear in English
association norms were excluded from all analyses.
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monolinguals (B1-1 ∪ B2 vs. ME);5 see Figure 1
(left panel). (For English monolingual responses
ME , we use the University of South Florida asso-
ciation norms: Nelson et al., 2004.) The results
confirm our prediction: mean ρ3(B1-1, B2) = 0.47
is less than mean ρ3(B1-1 ∪ B2,ME) = 0.63
(p = .003); for υ3, the respective means are 0.49
and 0.60 (p = .014); for ρmax, the means are 0.49
and 0.65 (p = .002); for υmax, they are 0.46 and
0.60 (p = .002). In short, despite the high varia-
tion in bilinguals’ responses, there is still signifi-
cantly more consistency between groups of bilin-
guals than between monolinguals vs. bilinguals.

3.4 Bilinguals vs. Dutch monolinguals

Finally, we check whether the difference reported
in the previous section is only observed in bilin-
guals’ L2 (English), or is also found in their
L1 (Dutch). Intuitively, we expect little differ-
ence between the responses of Dutch monolin-
guals and Dutch–English bilinguals tested in Dutch.
In other words, there should be a similar degree
of consistency in the responses given by, on the
one hand, the two groups of bilinguals (B1-1 vs.
B2), and on the other hand, by bilinguals vs.
monolinguals (B1-1 ∪ B2 and MD); see Figure 1
(right panel). (For Dutch monolingual responses
MD, we use the Dutch association norms from
De Deyne et al., 2013, while the Dutch bilingual
data is available from vHdG’s experiment.) Sta-
tistical tests again confirm our predictions: mean
ρ3(B1-1, B2) = 0.47 is not different from mean
ρ3(B1-1 ∪ B2,M) = 0.51 (p = .601); for υ3, the
respective means are 0.52 and 0.49 (p = .148); for
ρmax, they are 0.50 and 0.56 (p = .243); for υmax,
they are 0.47 and 0.51 (p = .625).

To summarize our human data analyses, we have
shown quantitatively that Dutch–English bilinguals
give systematically different responses in English
(their L2) from English monolinguals. While such
a difference has long been observed, to our knowl-
edge we are the first to statistically analyze this
difference and show that it is greater than the incon-
sistency in responses across participants. Besides,
this difference is specific to bilinguals’ L2, as we
did not observe it in bilinguals’ L1 Dutch.

5We use B1-1 ∪ B2, as this combined data set provides
more responses for the comparison; using B1-1 or B2 instead
gives very similar results.

4 Computational model

We develop a computational model intended to in-
vestigate the difference found above between bilin-
guals and monolinguals in free association. Our hy-
pothesis is that bilingual associations in L2 are in-
fluenced by their L1 through connections between
the lexicons of their two languages. We create
a bilingual Dutch–English semantic network as a
weighted directed graph G with a set of nodes N ,
where N consists of cue and response words ob-
tained from (monolingual) word association norms
in the two languages: De Deyne et al. (2013) for
Dutch and Nelson et al. (2004) for English.6 We
next describe the various types of edges connecting
the nodes, and the spreading activation mechanism
used as a retrieval mechanism.

4.1 Edge types and weights
Dutch and English associative edges, which con-
nect nodes within the same language, effectively
create two monolingual sub-networks.

L1 associative edges (DA) start at a Dutch cue
word and end at all its Dutch responses, based on
the monolingual Dutch association norms. The
edge weights are proportional to conditional proba-
bilities p(response|cue) obtained from the norms.

L2 associative edges (EA) are created the same
way, using the English association norms. The two
resulting sub-networks are then connected to each
other with two following types of edges.

Translation equivalent edges (TE) connect
nodes that are translations of each other. Transla-
tions are obtained from two dictionaries: FreeDict7

and dict.cc.8 In many cases a node n has more
than one translation (e.g., a and b). To determine
which one is more frequent, we use OpenSubti-
tles,9 a bilingual corpus of Dutch–English subtitles
(Lison and Tiedemann, 2016). Word alignment was
performed on a random sample of 50 million sen-
tences using the method of Liang et al. (2006), and
conditional probabilities of each Dutch–English
and English–Dutch translation were extracted. If
a and b are translations of node n, edges Ena and
Enb are weighted proportionally to the conditional
probabilities p(a|n) and p(b|n).

Cognate edges (CG) are placed between trans-
lation equivalents that have similar orthographic

6All words were lemmatized, and hapax legomena and
multiword responses were removed.

7http://freedict.org
8http://www.dict.cc
9http://www.opensubtitles.org
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forms. Cognates are believed to enjoy a special
status in bilinguals (van Hell and de Groot, 1998;
Voga and Grainger, 2007). These edges are defined
using a similarity measure S, which is comple-
mentary to the normalized Levenshtein distance
(Ciobanu and Dinu, 2013). Given two words wi

and wj , S is computed as:

S(wi, wj) = 1− L(wi, wj)

max(|wi|, |wj |)
(4)

where L(wi, wj) is the Levenshtein distance be-
tween the words, and |w| is the number of charac-
ters in w. We consider wi and wj to be cognates
when they are translation equivalents in our dic-
tionary, and S(w1, w2) ≥ 0.5. This rather low
threshold was chosen to capture cognates that are
spelled differently due to morphological or etymo-
logical reasons, yet are similar in their pronuncia-
tion: swell–zwellen, photography–fotografie, etc.

Finally, we consider two extra types of edges,
which connect English nodes to each other. As
we mentioned earlier, there is some evidence that
bilinguals tend to produce more orthographic and
syntagmatic responses in their non-native language,
and the following types of edges are intended to
test whether this is a systematic effect.

Orthographic edges (OR) connect English
words with similar spelling; they are weighted us-
ing the measure S defined above. We chose a
higher threshold than for cognates, 0.75, to pre-
vent the English network from becoming too dense.
Here, for simplicity we assume that word spelling
captures not only orthographic, but also phonologi-
cal similarity between words, although in principle,
phonological edges could be added as an indepen-
dent type in the model.

Syntagmatic edges (SY) reflect collocations or
pairs of words that frequently co-occur. Some-
times participants produce syntagmatic responses
in the free association task, such as duty–free,
opportunity–take, or apple–red. While our DA and
EA edges capture such responses, there is some evi-
dence that bilinguals produce more of these in their
non-native language, so we add these SY edges.
Specifically, we consider the most frequent bigrams
and trigrams (one million each; from the Corpus of
Contemporary American English: Davies, 2008),
convert trigrams into skip-bigrams (take oppor-
tunity), and exclude stopwords (using the NLTK
list: Bird et al., 2009) and words that do not appear
in the English free association norms. For each

Figure 2: A part of the bilingual network.

pair of words, we compute their total number of
co-occurrences in both bigrams and skip-bigrams,
F (w1, w2), and their total individual frequency,
F (w1) and F (w2). Each weight for SY edge Eij is
set proportional to the respective conditional prob-
ability:

p(wj |wi) =
F (wi, wj)

F (wi)
(5)

Figure 2 shows a small part of the bilingual net-
work with various types of edges.

4.2 Normalization of edge weights
We further weight each type of edges differently,
to reflect their relative importance in the spreading
activation process. These relative weights are the
main parameters of our model. The model has
six edge weight coefficients κ: κDA, κEA, κTE, κCG,
κOR, and κSY, set as discussed in Section 5.2.

We normalize the edge weights of all outgoing
edges of each node n to sum to 1, so that n passes
on to its neighbors collectively the same amount
of activation that it received. To do so, we first
consider all outgoing edges of n a particular type
– e.g., DA. We normalize the weights of all DA

edges so that they sum to 1, and then multiply each
weight by the respective coefficient, κDA. The same
is done for all edge types. After that, we normalize
the weights of all outgoing edges of n to sum to 1.

4.3 Retrieval algorithm
Given graph G with nodes N and edges E, the
activation algorithm starts at a cue node ncue, and
activation spreads over edges to neighboring nodes,
proportionally to the edge weights. This process is
bounded in time by a parameter T , which is the up-
per limit of number of edges the activation can pass
through. At the end, the model returns a ranked
set of nodes (responses) M = {n1, n2, .., nk} and
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Figure 3: Spreading activation in the two models
over a small part of bilingual network.

the respective likelihood value of each response,
L(ni):

L(ni) =
∑

t={0..T}
At(ni) (6)

where At(ni) is the activation score of ni at time t:

At(ni) =
∑

nj∈{N\ni}
At−1(nj)w(Eji) (7)

where Eji is the edge connecting nj to ni, and
w(Eji) = 0 if the two are not connected. Initially,
A0(ncue) = 1; for all other nodes A0(ni) = 0.

5 Experimental setup

5.1 Task, models, and baselines

We test our model on the English free association
task given to bilinguals in vHdG – i.e., Dutch–
English speakers were given English cue words
and asked to respond in English.

We consider two versions of spreading activation
in the model, unconstrained and constrained (see
Figure 3). In both versions, we set T – the max-
imum path length of spreading activation – to be
3, following the intuition that bilinguals may trans-
late the English cue into Dutch (time t = 1), think
of Dutch word associations (t = 2), and translate
them back into English (t = 3).

In the unconstrained version (UCS) of the
model, activation crosses all types of edges at each
time step. Note that a T value of 3 enables ac-
tivation to spread from the English to the Dutch
subnetwork and back, but also allows activation to
spread beyond the direct English associates. The
next version of the model controls for this.

The constrained version (CS) simulates a bilin-
gual who accesses direct English associates of the
cue word, as well as English translations of direct
Dutch associates of Dutch translations of the cue

word. That is, they combine their direct English as-
sociations with direct Dutch associations. At t = 1,
activation passes from the cue node to its English
associates and to its Dutch translations, via EA and
TE/CG edges, respectively. At time t = 2, acti-
vation passes only from the just-activated Dutch
nodes via DA edges to their Dutch associates. Fi-
nally, at t = 3, activation passes only from the
newly activated Dutch nodes (the associates of cue
translations) via TE and CG edges back to English
nodes. Conceptually, this version implements a
speaker who relies on the word translation mecha-
nism.

Because we have shown that human bilingual
responses to the English free association task dif-
fer from those of monolinguals, we need to com-
pare our model’s performance to a monolingual
(English) baseline. The association norms base-
line (BASE-AN) corresponds to the English word
association data set itself: i.e., we use EA edges
only in the English subnetwork and set the max-
imum path length T = 1. An improvement over
BASE-AN ensures that our model is producing a
better match to bilingual data than simply out-
putting English monolingual associations. We also
use a second monolingual baseline with the same
subnetwork and edges; this spreading activation
baseline (BASE-SA) instead uses T = 3, as in our
model. This setting enables access to indirect En-
glish associations of the cue word (as in our model),
but only through English connections (unlike our
model). Comparing our model to BASE-SA indi-
cates any improvement we see in our model is due
to accessing the Dutch subnetwork (our theoreti-
cal claim) and not simply due to making indirect
associations in English.

5.2 Model evaluation

In the test task, the model receives a set of cue
words and generates multiple responses to each
cue. Only English nodes can serve as responses,
and their probabilities are normalized to sum to 1.
The model responses are compared to human data
using the measures defined in Section 3.1.

Our main goal is to test which types of edges
systematically contribute to predicting bilinguals’
(non-native) free word associations, and which do
not. We have six parameters of the model related
to edge weights (κ weights for the six types of
edges) and a relatively low number of test items
(58 cue words). To prevent overfitting, we perform
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Table 1: Distances between model and human re-
sponses (averaged per cue word and per iteration).
Best performance for each measure is in bold.

Avg. score
ρ3 υ3 ρmax υmax

BASE-AN 0.63 0.60 0.65 0.59
BASE-SA 0.63 0.61 0.66 0.61
UCS 0.63 0.60 0.63 0.58
CS 0.59 0.57 0.61 0.56

cross-validation on our data set, initially fitting only
some of the κ parameters. Specifically, we first
determine the best weights for the word association
edges (κDA and κEA, which are essential for the
task) and for the cross-language edges (κTE and
κCG, which ensure that activation can pass from
English to Dutch and back). We later test whether
adding other edge types (SY and OR) improves the
model.

For cross-validation, we use the Monte-Carlo
method with 10, 000 iterations: in each iteration,
the 58 cue words are randomly split into 48 training
items and 10 test items. For each training sub-
sample, we consider values {0, 1, 5, 10, 20, 25} for
each edge weight (κDA, κEA, κTE, κCG), run a grid
search to find the best combination, and choose
the four combinations (one per evaluation measure)
which minimize the distance between the human
and the model responses. These combinations are
then evaluated on the respective test sub-sample.

6 Results

6.1 Testing the basic model
Table 1 provides average cross-validation scores
for the two baselines and the two models. Recall
that our scores are distances from human data, so
lower values are better. We see that BASE-AN is a
stronger baseline than BASE-SA. The UCS model
shows little to no improvement over the baselines,
and we only consider the CS model henceforth. The
CS model shows a noticeable improvement over the
stronger BASE-AN baseline, of 0.03–0.04 in terms
of absolute distances, an improvement of 5%–6%.

Although the best combinations of edge weights
of the CS model differ per iteration, one of
them appears much more frequently than the oth-
ers, over 12, 000 times: (κDA, κEA, κTE, κCG) =
(10, 5, 20, 25). To determine whether this combi-
nation makes significantly better predictions than
the baselines, we test it on the full data set with

responses to 58 cue words and run a series of
Wilcoxon signed-rank tests (one per measure). The
results show that the model (average scores ρ3 =
0.57, υ3 = 0.56, ρmax = 0.60, υmax = 0.55) is
significantly better than both baselines on all mea-
sures, apart from υ3 when compared to BASE-AN.

The comparisons to the baselines show that the
CS model, but not the UCS model, predicts bilingual
responses better than simply using monolingual
responses, and it does so by using edges that link
translations across English and Dutch.

6.2 Testing the model with extra edges
Here we see if adding the further two types of edges
– OR and SY – improves the model predictions. We
use the CS model with the best parameter combina-
tion, (κDA, κEA, κTE, κCG) = (10, 5, 20, 25). Again,
we cross-validate the model, this time running a
grid search to find the best weights of the extra
edges only, κOR and κSY. We look for the most fre-
quent parameter combinations. The combination
of the best CS model without the extra edges – that
is, (κOR, κSY) = (0, 0) – is about as frequent as
a particular combination with syntagmatic edges
– (κOR, κSY) = (0, 1), and both of these perform
the same on the full data set. Thus, OR and SY do
not improve the model’s performance overall. We
return to this issue in the discussion.

Note that both for the UCS and CS models, we
start by first fitting the κ values for associative
edges and cross-language (translation and cognate)
edges, because the literature generally agrees that
L2 speakers use the translation mechanism at least
to some extent (e.g., Meara, 2009). The other
two mechanisms – collocations and form similar-
ity – are tested as additions to the model. Effec-
tively, this makes our basic CS model implement
the learner relying on word associations (DA and
EA edges) and translation equivalence (TE and CG

edges), but not on collocation patterns or ortho-
graphic similarity between L2 words. One could
also design a model without cross-language edges –
that is, relying on L2 word associations (EA edges)
together with collocations and/or orthography (OR

and/or SY edges), which we do not present in this
study for the lack of space.

6.3 Best model and error analysis
Here we look in detail at the best CS model and
provide an error analysis. (For simplicity, we con-
sider the model without SY edges.) This model
weights direct monolingual associations more in
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Figure 4: An illustration of the spreading activation
in the best CS model (CG edges are not shown).

Dutch than in English: κDA = 10 vs. κEA = 5.
Translation equivalents are also strongly connected
to each other (κTE = 20), and cognates even more
so (κCG = 25, which is in addition to the existing
TE edge between them). This pattern of weights
ensures that the translation operation is “cheap”,
and Dutch associates are readily activated; together
these effectively make the contributions of English
and Dutch associations similar in size. Figure 4
provides a toy example showing why this is the
case. At the first step, a small share of the acti-
vation passes from the English cue to the English
association, while the lion’s share goes to the Dutch
translation. At the second step, less than half of the
activation at the Dutch translation proceeds to its
associate; then in the third step, this activation is
passed to the Dutch associate’s translation.

This figure also shows why we cannot make
conclusions about the contribution of a particular
factor (e.g., translation equivalence, or the strength
of English and Dutch word associations) based on
the κ value of the corresponding edge type alone.
Even though κTE = 20, κDA = 10, and κEA = 5,
the contributions of native and non-native word
associations to the final set of responses given by
the model are similar, because English associations
(the top right rhombus) are connected directly to
the cue word, and the activation reaches them im-
mediately upon the presentation of the cue, while
Dutch associations (the top left rhombus) are fur-
ther away from the cue word, and activation gets
more dispersed as it passes through the network.

Table 2 shows the performance of the best model
(vs. BASE-AN) for the best and worst cue words.
For the majority of these cues the model is better
than the baseline. For eight of these (apple, block,
bottle, chance, memory, season, shame, shoulder),
the improvement is consistent across the four mea-
sures. While the baseline relies on English word
associations only, the model benefits from consid-
ering Dutch associations. This is because many

Table 2: Cue words for which the absolute differ-
ence between CS and BASE-AN is higher than 0.25
on at least one measure.

Improvement over BASE-AN

Cue ρ3 υ3 ρmax υmax

apple 0.56 0.41 0.30 0.32
block 0.11 0.21 0.33 0.24
bottle 0.56 0.40 0.23 0.15
chance 0.33 0.13 0.25 0.12
farm 0.00 0.06 0.60 0.27
flower 0.22 0.26 0.04 0.00
memory 0.17 0.34 0.03 0.16
season 0.83 0.55 0.63 0.52
shame 0.33 0.26 0.33 0.26
shoulder 0.67 0.34 0.29 0.20

attempt −0.33 −0.03 −0.13 0.00
daughter −0.33 −0.20 −0.33 −0.20
hospital −0.33 −0.15 0.08 0.09
winter 0.00 −0.18 −0.25 −0.22

bilinguals’ responses (e.g., chance→possibility,
shame→red, farm→farmer) are missing in the
monolingual data. In addition, some responses
appear in the English monolingual data too, but
are uncommon (e.g., apple→pear, green). In both
cases, it is the translation edges that are responsible
for the model’s better performance.

Cue words on which the model is consistently
worse than the baseline are attempt, daughter, and
winter. For hospital, the model is only worse in
predicting the top three responses. We find several
reasons that may explain the model’s errors.

Lack of data for some cues. The cue attempt
is translated as poging, which activates a Dutch
associate probeersel [‘trial’]. Because this word is
not a cue in the Dutch association norms, all its ac-
tivation is passed over its translation edges directly
to trial, which yields relatively less activation for
the more common response suicide.

Lack of word frequency information. For
some cues (e.g., hospital, winter), the top human
responses are words that are generally more fre-
quent in English than are their Dutch translations
(nurse vs. verpleegster, spring vs. lente).10 In these
cases, high frequency of English response words
may lead speakers to rely more on English than on
Dutch associations, which our model does not take

10As informed by relative word frequency information in
English and Dutch subtitles (van Heuven et al., 2014; Brys-
baert and New, 2009; Keuleers et al., 2010).
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into account.
Language change. The data sets are not from

the same time period (Dutch: 2010s; English:
1970s; bilingual: 1990s), so some responses that
the model fails to reproduce may be attributed to
language change: e.g., the response duty→army
appears in the two older data sets, but not in the
monolingual Dutch data, perhaps because conscrip-
tion in the Netherlands was suspended in 1997.

7 Conclusion

We first showed that Dutch–English bilinguals in
their L2 English give responses different from those
of English monolinguals, but their L1 Dutch re-
sponses are not significantly different from those
of Dutch monolinguals. While related observations
have been reported in the literature (Wolter, 2001;
Zareva, 2007; Antón-Méndez and Gollan, 2010;
Hui, 2011, etc.), here we use a set of 58 cue words
to demonstrate that this difference is consistent and
is significantly larger than the difference between
responses given by two groups of bilinguals.

Next, we presented a computational model based
on a graph constructed from two monolingual word
association data sets that were connected with ad-
ditional cross-language edges. Our model predicts
bilingual responses better than the monolingual
baselines. The edge weights in the best model sug-
gest that the contribution of L1 and L2 word associ-
ations is approximately equal in a group of Dutch–
English bilinguals, and that translation equivalents
(and cognates even more so) are strongly connected
in the bilingual lexicon (in line with the findings
on bilingual lexical access: e.g., Kroll et al., 2006;
Dimitropoulou et al., 2011). Bilinguals may often
translate L2 cues into L1, generate L1 associations,
and translate them back into L1. In contrast, syn-
tagmatic and orthographic responses that have been
reported (e.g., Meara, 1978; Namei, 2004; Politzer,
1978) are not useful on the data set we used. Our
results also suggest that it is not the case that bilin-
guals simply activate a broader cluster of L2 words
and sample from those.

Van Hell and de Groot (1998) showed that bilin-
guals’ responses might depend on the type of
the cue word (e.g., noun–verb, abstract–concrete,
cognate–non-cognate). As we intended to test how
consistently various types of responses are pro-
duced across multiple cue words, we did not adjust
the weights depending on the word type (except
for cognates). Future research will consider en-

riching our network with such semantic and syn-
tactic properties, as well as word frequency infor-
mation. Another fruitful direction is to consider
how to learn the association weights themselves,
from textual and/or perceptual input (e.g., Grif-
fiths et al., 2007; Gruenenfelder et al., 2015; Ne-
matzadeh et al., 2016), rather than building them in
from human norms; this would enable us to more
realistically model the emergence of the bilingual
lexicon.

Acknowledgments

We are grateful to Janet van Hell for sharing with
us the word association data collected in her exper-
iment with bilingual speakers.

References
Joshua T. Abbott, Joseph L. Austerweil, and Thomas L.

Griffiths. 2015. Random walks on semantic net-
works can resemble optimal foraging. Psychologi-
cal Review 122(3):558–569.

John R. Anderson. 1983. A spreading activation theory
of memory. Journal of Verbal Learning and Verbal
Behavior 22(3):261–295.

Inés Antón-Méndez and Tamar H. Gollan. 2010. Not
just semantics: Strong frequency and weak cognate
effects on semantic association in bilinguals. Mem-
ory & Cognition 38(6):723–739.

Nicole M. Beckage and Eliana Colunga. 2016. Lan-
guage networks as models of cognition: Under-
standing cognition through language. In A. Mehler,
A. Lücking, S. Banisch, P. Blanchard, and B. Job, ed-
itors, Towards a theoretical framework for analyzing
complex linguistic networks, Springer, Berlin, Ger-
many, pages 3–28.

Samuel Bilson, Hanako Yoshida, Crystal D. Tran, Eliz-
abeth A. Woods, and Thomas T. Hills. 2015. Seman-
tic facilitation in bilingual first language acquisition.
Cognition 140:122–134.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: Analyz-
ing text with the natural language toolkit. O’Reilly,
Sebastopol, CA.

Alex Boulton. 2003. Transfer and translation in L2
word associations: Comparing learner data across
languages. In J.-C. Bertin, editor, 24th GERAS con-
ference: Transfert(s). GERAS. https://hal.archives-
ouvertes.fr/hal-00114289.

Marc Brysbaert and Boris New. 2009. Moving be-
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