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Abstract

Multiword expressions can have both idiomatic and literal occurrences. Distinguishing these two
cases is considered one of the major challenges in MWE processing. We suggest that literal
readings should be considered in both semantic and syntactic terms, which motivates their study
in a treebank. We propose heuristics to automatically pre-identify candidate sentences that might
contain literal readings of verbal VMWEs, and we apply them to an existing Polish treebank.
We also perform a linguistic study of the literal readings extracted by the different heuristics.
The results suggest that literal readings constitute a rare phenomenon. We also identify some
properties that may distinguish them from their idiomatic counterparts.

1 Introduction

Multiword expressions (MWEs) are word combinations, such as all of a sudden, a hot dog, to pay a visit
or to pull one’s leg, which exhibit lexical, syntactic, semantic, pragmatic and/or statistical idiosyncrasies.
They encompass closely related linguistic objects such as idioms, compounds, light verb constructions,
rhetorical figures, institutionalised phrases or named entities. A prominent feature of many MWEs,
especially of verbal idioms such as to pull one’s leg, is their non-compositional semantics, i.e. the
fact that their meaning cannot be deduced from the meanings of their components, and from their
syntactic structure, in a way deemed regular for the given language. For this reason, MWEs pose special
challenges both to linguistic modeling (e.g. as linguistic objects crossing boundaries between lexicon
and grammar) and to Natural Language Processing (NLP) applications, especially those which rely on
semantic interpretation of text (e.g. information retrieval, information extraction or machine translation).

Another challenging property of manyMWEs, as in example (1), is that we can encounter their literally
understood counterparts, as in (2). However, it is not clear what should be considered an occurrence
of a literal reading of an MWE. Should “coincidental” co-occurrences of its lexicalized components,1
like in (4) as opposed to (3), also be considered its literal occurrences? Should variants like (6), which
considerably change the “canonical” syntactic dependencies between the components, compared to (5),
still be considered idiomatic occurrences? Finally, what should be the status of word plays which
deliberately refer to both the idiomatic and the literal reading of an MWE, as in (7)?
(1) The man was pulling my leg but I didn’t believe him.
(2) The kid was

::::::
pulling

:::
my

:::
leg to make me play with him.

(3) The preparations were not thoroughly planned after all.
(4) After all the preparations we finally left.
(5) The Samsung boss can still pull the strings from prison.
(6) The article addresses the political strings which the journalist claimed that the senator pulled.
(7) (Polish) Wyciągnięcie rąk uchroniło go od wyciągnięcia nóg ‘Stretching hands prevented him

from stretching legs’⇒ Stretching his hands prevented him from dying
For a given MWE E with lexicalized components e1, . . . , en, we define its literal reading occurrence,

or literal reading (LR) for short, as a co-occurrence of the lexemes e1, . . . , en in a context in which:

1The lexicalized components of an MWE are those which are always realized by the same lexeme. For instance in to pay a
visit the head verb is always a form of pay but the determiner a can be freely replaced, as in paid many visits. In this paper the
lexicalized components of MWEs are highlighted in boldface.

64



(i) it is not a MWE; and (ii) one of the typical senses of each of e1, . . . , en is activated; and (iii) the
syntactic constraints among e1, . . . , en are preserved, i.e. either the same or equivalent dependencies hold
between E’s components as in its canonical (citation) form. Dependencies are equivalent if the syntactic
variation can be neutralized while preserving the overall meaning. For instance (6) can be reformulated
into: The journalist claimed that the senator pulled political strings, and this article addresses them.
Therefore, the syntactic constraints between e1 = pull and e2 = strings visible in (5) are preserved in
(6). According to this definition, only example (2) above is considered an LR.2 Example (4) does not
fulfill condition (iii), while (1), (3), (5) and (6) do not fulfill (i-ii), since their are idiomatic readings (IRs).
In example (7), the expression wyciągnięcie rąk stretching hands points to a typical meaning of the
verb wyciągnąć stretch. By analogy, the reader is also induced to think of a literal meaning of the noun
nogi legs. However, the idiomatic meaning of wyciągnięcie nóg ‘stretching legs’⇒ dying is still intact
and thus it fails condition (i). Note that, due to the presence of condition (iii), the study of literal readings
of MWEs is best done in a treebank.

The motivation to study the phenomenon of LRs of MWEs, and of its frequency in particular, is both
of linguistic and of computational nature. Firstly, psycholinguistic studies put special interest in the
interplay between LRs and IRs, as well as their distributional and statistical properties, when discovering
how idioms are stored and processed in human mind (Cacciari and Corradini, 2015). Secondly, the links
between LRs and IRs readings can inform us which morpho-syntactic variation is allowed or prohibited
by someMWEs, and why (Sheinfux et al., 2017; Pausé, 2017). Additionally, an opposition of the contexts
in which LRs and IRs readings occur may yield better methods to automatically distinguish them (Peng
et al., 2014; Peng and Feldman, 2016).

This last task is considered one of the major challenges in automatic processing of MWEs (Constant
et al., 2017). Its quantitative importance can be estimated by measuring the idiomaticity rate, i.e. the
ratio of occurrences of an MWE with idiomatic reading to both its idiomatic and literal occurrences in a
corpus (El Maarouf and Oakes, 2015). If the overall (i.e. aggregated for all MWEs) idiomaticity rate is
relatively low, distinguishing IRs and LRs readings becomes, indeed, a major challenge, as claimed by
Fazly et al. (2009). If, conversely, it is high, or even close to 100%, the task can be neglected for many
applications. Also, as shown by (Waszczuk et al., 2016), a high idiomaticity rate can considerably speed
up parsing, if appropriately taken into account by a parser’s architecture.

In this paper we are interested in verbal MWEs (VMWEs), in which syntactic flexibility can be
particularly rich. We exploit an existing multilingual corpus (Savary et al., 2017) in which VMWE
annotations are accompanied by morphological and dependency annotations, but literal occurrences are
not tagged (Sec. 2). We propose several heuristics to automatically detect possible literal occurrences of
known, i.e. manually annotated, VMWEs (Sec. 3). Thenwemanually categorize the resulting occurrences
using a typology which accounts for true and false positives, as well as for linguistic properties of LRs as
opposed to IRs (Sec. 5). We report on results in a Slavic language: Polish (Sec. 5). Finally, we conclude
and discuss perspectives for future work (Sec. 6).

2 Corpus
We use the openly available PARSEME corpus3manually annotated for VMWEs in 18 languages (Savary
et al., 2017). Among its 5 VMWE categories, three are relevant to this Polish-dedicated study:

• Idioms (IDs) are verbal phrases of various syntactic structures, mostly characterized by non-
compositional meaning, as in (8). Due to the fact that many idioms were conceived as metaphors,
they maintain a large potential of LRs, as exemplified in (9).
(8) dawno już powinien był wyciągnąć nogi ‘long-ago already should-he have stretched legs’

⇒ he should have died long ago
(9) położyłem się na trawie i

::::::::::::
wyciągnąłem

::::
nogi ‘I-lay-down on the-grass and stretched legs’

• Light-verb constructions (LVCs) are VERB (PREP) (DET) NOUN combinations in which the verb
V is semantically void and the noun N is a predicate expressing an event or a state, as in (10). The

2Henceforth, we use wavy and dashed underlining for true and false LRs, respectively. Straight underlining denotes focus.
3http://hdl.handle.net/11372/LRT-2282
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idiomatic nature of LVCs lies in the fact that the verb may be lexically constrained and does not
contribute any semantics to the whole expression. LVCs are mostly semantically compositional,
therefore the notion of a LR is less intuitively motivated for them. A LR of an LVC should be
understood as a co-occurrence of its lexemes which does not have all the required LVC properties.
This occurs, for instance, when N is not predicative or does not express and event or a state, as
in (11), where udziały ‘shares’ denotes an amount of financial assets. Figures 1a and 1b present
another occurrence of this VMWE, and of its LR, respectively.
(10) mieć swój udział w debacie ‘have one’s share in debate’⇒ to take part in the debate
(11)

::::
mieć

:::::::
udziały w spółce ‘have shares in company’⇒ to have shares in a company

• Inherently reflexive verbs (IReflVs), pervasive in Romance and Slavic languages but not in English,
are combinations of a verbV and a reflexive cliticRCLI , such that one of the 3 non-compositionality
conditions holds: (i) V never occurs withoutRCLI as is the case for the VMWE in (12); (ii)RCLI
distinctly changes the meaning of V , like in (13); (iii) RCLI changes the subcategorization frame
of V , like in (15) as opposed to (16). IReflVs are semantically non-compositional in the sense that
RCLI is not an argument of the verb. LRs never occur for type (i) but they do occur for types (ii)
and (iii), due to homonymy with compositional V-RCLI combinations which express true reflexive
or reciprocal meanings, as in (14), or impersonal or middle passive alternation, as in (17).
(12) bał się wody ‘feared RCLI water’⇒ he was afraid of water
(13) nie oglądaj się na innych ‘not watch RCLI on others’⇒ do not count on the others
(14)

::::::::
oglądam

:::
się w lustrze ‘I-am-watching myself in the mirror’

(15) spotykać się z przyjaciółmi ‘meet RCLI with friends.inst’⇒ meet friends
(16) spotykać przyjaciół ‘to meet friends.acc’
(17) nie

:::::::
spotyka

:::
się takich ludzi ‘not meets RCLI such people’⇒ such people are never met

The Polish part of the training corpus contains 11,578 sentences, for a total of 191,239 tokens and 3,149
annotated instances of VMWEs.4 For most languages, including Polish, the VMWE annotation layer
is accompanied by morphological and syntactic layers (ML and SL, respectively), as shown in Fig. 1a
and 1b. In ML, a lemma, a POS and morphological features are assigned to each token. SL represents
syntactic dependencies between tokens. For Polish, both ML and SL use the Universal Dependencies
(UDs) tagsets.5 ML was created partly manually and partly automatically, and SL automatically, using
UDPipe6 with its pre-trained Polish model. While the PARSEME corpus is manually annotated and
categorized for IRs of VMWEs, it is not annotated for their LRs. Therefore, we developed several
heuristics which allow us to identify them automatically.

3 Identifying literal readings

We use no external resources, therefore we can only identify LRs for VMWEs which are annotated
at least once in the corpus. In order to fully reliably perform this task, we would have to ensure that
conditions (i), (ii) and (iii) from page 1 hold. Condition (i) can be automatically fulfilled by discarding
predictions that coincide with annotated VMWEs. Condition (ii) cannot be checked automatically, given
that the available annotation layers do not account for semantics. It must, thus, be subject to manual
verification. Condition (iii) is closely linked to the SL annotations but checking it fully reliably can be
hindered by at least two factors. Firstly, some dependency annotations in SL can be incorrect, especially
if SL was constructed automatically. Secondly, defining conditions under which two sets of dependency
relations are equivalent seems challenging and highly language-dependent. Given the large number of
possible syntactic structures of VMWEs, an exhaustive catalog of such equivalences would be huge, or

4The annotation was performed by a single native Polish annotator. The inter-annotator agreement (IAA) in VMWE
identification was measured in terms of the F-measure and κ, with the scores of 0.529 and 0.434, respectively. The IAA in
VMWE categorisation (based on the VMWE identified jointly by two annotators) assessed in terms of the F-measure, and equal
to 0.939. All IAA scores were based on a small sample of the corpus, anotated in parallel by another Polish speaker who only
had few experience with the guidelines and did not annotate the final corpus. Therefore, these IAA scores are rather weak
indicators of the annotation quality.

5http://universaldependencies.org/guidelines.html
6https://ufal.mff.cuni.cz/udpipe

66



Wi¦kszy udziaª w zatrudnieniu b¦d¡ miaªy te �rmy
(a) wi¦kszy udziaª w zatrudnienie by¢ mie¢ ten �rma

ADJ NOUN ADP NOUN AUX VERB ADJ NOUN
inan.acc.cmp.masc.sing acc.masc.sing prep.loc inan.loc.neut.sing imp.ind.plur.3.fut.fin inan.imp.fem.ind.plur.past.fin nom.pos.fem.plur nom.fem.sing

Bigger part in employment will have these companies

amod

dobj

case

nmod

aux amod

nsubj
root

Oddadz¡ cz¦±¢
::::::::
udziaªów , któr¡ dzi±

:::
ma skarb pa«stwa

(b) odda¢ cz¦±¢ udziaª , który dzi± mie¢ skarb pa«stwo
VERB NOUN NOUN PUNCT ADJ ADV VERB NOUN NOUN

perf.ind.plur.3.pres.fin acc.fem.sing inan.gen.masc.pl inan.acc.pos.fem.sing pos imp.ind.sing.3.pres.fin inan.nom.masc.sing gen.neut.sing

Will-return part of-shares which today has treasury of-state

dobj nmod

punct
dobj

advmod

acl

nsubj nmod

root

Figure 1: Morphosyntactic annotations for an occurrence context of the VMWEmieć udział ‘have share’
⇒ take part (a) and its LR (b). Translations: (a) These companies will participate in employment more
intensively. (b) They will return the part of the shares that the treasury has today.

even potentially infinite, due to long-distance dependencies in recursively embedded relative clauses, as
illustrated in example (6). In order to cope with these obstacles, we designed four heuristics which should
cover a large majority of LRs in complementary ways, while maintaining the amount of false positives
relatively low (i.e. the heuristics are skewed towards high recall). They rely on the following definitions.

Each sequence of words is a function s : {1, 2, . . . , |s|} →W , whereW are word forms. The sequence
s can be noted as s := {s1, s2, . . . s|s|}, where si := (i, wi) is a single token. A sequence can thus be
denoted as a set of pairs: s = {(1, w1), (2, w2), . . . , (|s|, w|s|)}. For example, the sentence in Fig. 1a
can be represented as a sequence s = {(1,Większy), (2, udział), . . . , (8,firmy)} . For a given token
si = (i, wi), lemma(si) is its case-folded lemma form (or nil if unavailable in ML), and surface(si)
is its case-folded surface form. For instance in Fig. 1a, lemma(s6) = mieć, surface(s6) = miały, and
surface(s1) = większy. As not every token may have lemma information, we define lemmasurface(si)
as the lemma if available, and as the surface form otherwise. If s is a sentence, each token si is associated
with its parent, denoted as parent(si), through a syntactic label, denoted as label(si). Some tokens
may have parent nil (and label root). In Fig. 1a, label(s2) = dobj, parent(s2) = s6, label(s6) = root,
and parent(s6) = nil. For a given sequence s, its subsequence q is an injection defined as an order-
preserving sequence over tokens of s, i.e. q : {1, 2, . . . , |q|} → s such that, if i < j, q(i) = sk and
q(j) = sl, then k < l. The definitions of lemmas and surface forms extend straightforwardly to tokens
of a subsequence: lemma((i, sk)) := lemma(sk) and surface((i, sk)) := surface(sk). For instance in
Fig. 1a, the subsequence corresponding to the tokens in bold can be formalized as q = {(1, s2), (2, s6)} =
{(1, (2, udział)), (2, (6,miały))}, and lemma(q2) = lemma((2, s6)) = lemma(s6) = mieć, etc.

In a subsequence q, the definition of a parent still relies on the dependencies in the underlying sequence
s but is restricted to the tokens in q. Formally, for a given 1 6 i 6 |q|, if there exists 1 6 j 6 |q| such
that parent(q(i)) = q(j), then parentsub(qi) := qj . Otherwise parentsub(qi) := nil. For instance in
Fig. 1a, q1 = (1, s2), q2 = (2, s6), parentsub(q1) = q2 and parentsub(q2) = nil. In Fig. 1b, where
the subsequence consisting of the underlined tokens forms a non-connected graph, the parents of both
components are nil, i.e. q1 = (1, s3), q2 = (2, s7), and parentsub(q1) = parentsub(q2) = nil.

In the pre-processing step we extract each occurrence of an annotated VMWE in a sentence s as a
subsequence of s, noted m = {m1,m2, . . . ,m|m|}. For each known VMWE m extracted in this way,
and for each sentence s′ = {s′1, s′2, . . . , s′|S|}, we then look for literal matches of m in s′. We define
a literal match as an injection φ : m → s′, where for every t ∈ m, we have lemmasurface(t) ∈
{lemma(φ(t)), surface(φ(t))}, and the image of m is not annotated as a VMWE itself. For instance,
for the VMWEm = {(1, s2), (2, s6)} from Fig. 1a, we obtain the following literal match in the sentence
from Fig. 1b: φ = {((1, s2), s′3), ((2, s6), s′7)}. The set of such bijections can be huge and include a
large number of false positives, i.e. coincidental co-occurrences ofm’s components in the same sentence.
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::::::
udziaªy , które

:::
ma Google

shares , which has Google
(a)

acl

::::
maj¡ jednakowe

::::::
udziaªy

have same shares

(b)

dobj

ma wzi¡¢ udziaª
has to-take part

(c)

xcomp dobj

udziaª ma znaczenie
share has importance

(d)

nsubj

Figure 2: True and false LRs of mieć udział ‘have share’⇒ take part, with extracts of SL.

Therefore, we restrain the set of such injections with the following criteria.

• WindowGap: Under this criterion, all matched tokens must fit into a sliding window with no more
than g external elements. Formally, let J be the set of all matched indexes in the sentence s′, i.e.
J = { j | mi ∈ m, s′j = φ(mi) }. Then φ is only considered to match ifmax(J)−min(J) + 1 6
g + |m|. For m in Fig. 1a and s′ in Fig. 1b we have J = {3, 7} and |m| = 2. Thus, the tokens
corresponding to udziałów ma are a literal match only if g > 3. In the case of Fig. 2, every reading
can be matched with g > 2.

• BagOfDeps: Under this criterion, a literal match must be a connected graph, but the directions and
the labels of the dependencies are ignored. Formally, there must be a token mroot ∈ m for which
parent(mroot) = nil. Moreover, for every token mi ∈ m \ {mroot}, there exists a token mk ∈ m
such that parent(φ(mi)) = φ(mk). For instance, the readings in Fig. 2a, 2b and 2d are matched
under this criterion, but not those in Fig. 2c and Fig. 1b.

• UnlabeledDeps: Under this criterion, a literal match must be a connected directed graph in which
the dependency labels are ignored but the parent relations are preserved. Formally, this criterion
adds a restriction to BagOfDeps: mk must be such that mk = parentsub(mi). For instance, the
readings in Fig. 2b and 2d are matched under this criterion, but not those in Fig. 2a, 2c and Fig. 1b.

• LabeledDeps: Under this criterion, a literal match must be a connected directed graph in which
both the parent relations and the dependency labels are preserved. Formally, this criterion adds a re-
striction to UnlabeledDeps: For everymi ∈ m\{mroot}, we must have label(mi) = label(φ(mi)).
Only the reading in Fig. 2b is matched under this criterion.

4 Results

The above heuristics, which are language-independent, were used to automatically pre-select LR candi-
dates of VMWEs occurring in the training part of the Polish PARSEME corpus. For each of the 3,149
annotated VMWE instances, each of the four heuristics (with g = 2)7 was used to extract literal matches,
their POS sequences and the sentences in which they occur. We then performed a manual tagging of
each LR candidate.8 Out of the resulting 416 literal matches, 72 (17.3%) were manually tagged as true
LRs, i.e. conforming to the definition in Sec. 1. These 72 occurrences correspond to 32 distinct VMWEs.
The remaining 344 matches were due to one of these 3 reasons: (i) coincidental co-occurrences of
VMWE components, as in example (4) and Fig. 2c–d, (ii) true VMWEs, wrongly omitted in the original
annotation (29 such cases were detected), (iii) false VMWEs, which should have never been annotated (8
occurrences of 3 such expressions were detected).

Tab. 1 shows the per-category and the overall efficiency of the four heuristics from Sec. 3 in the task
of finding LRs of VMWEs (the best results are highlighted in bold).9 The overall F-scores (even if more
than twice better for IDs than for other categories) indicate that automatic identification of LRs is a hard
task. Obviously, mixing all heuristics gives optimal recall (since only those occurrences which were
extracted by at least one of them are examined here). In particular, WindowGap and BagOfDeps are

7The average length of a gap in a VMWE in the Polish PARSEME corpus is equal to 0.53 and its mean absolute deviation
(MAD) is equal to 0.77. Since the LRs had not been manually annotated, analogous data for the gaps contained in LRs were
not available in advance. But when the LRs identified in this study (see below) are concerned, the average length of a gap and
its MAD are equal to 1.1 and 1.2 respectively.

8One Polish native speaker, a co-author of this paper, participated in this task. She was also the main annotator of the VMWE
layer in the Polish PARSEME corpus.

9Matches due to errors in the VMWE annotations were kept in Tab. 1. Correcting these errors would require a re-execution
of the heuristics, which could bias our evaluation towards the underlying tool.
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Category WindowGap BagOfDeps UnlabeledDeps LabeledDeps All
P R F P R F P R F P R F P R F

ID 0.41 0.88 0.56 0.50 0.19 0.27 0.67 0.13 0.21 n/a 0.00 n/a 0.43 1.00 0.60
IReflV 0.15 1.00 0.26 0.14 0.63 0.23 0.15 0.63 0.25 0.14 0.37 0.20 0.13 1.00 0.23
LVC 0.17 0.73 0.28 0.20 0.65 0.30 0.15 0.38 0.21 0.14 0.19 0.16 0.17 1.00 0.29
ALL 0.18 0.88 0.30 0.17 0.54 0.26 0.16 0.43 0.23 0.14 0.22 0.17 0.17 1.00 0.30

Table 1: Precision, recall and F-measure of the four heuristics.

largely complementary: only 41,7% of LRs are extracted by both of these methods. Also expectedly,
the WindowGap method outperforms each other individual method as far as recall is concerned. It also
has optimal overall scores, even if it remains behind BagOfDeps and UnlabeledDep in precision for
individual VMWE categories. Not surprisingly, the recall of the BagOfDeps is systematically higher
than the recall of UnlabeledDeps, which in turn is systematically higher than the recall of LabeledDeps –
since these heuristics rely on increasing degrees of syntactic constraints. However, this does not result in
higher precision scores. To the contrary: BagOfDeps has the best precision of the three methods. This
phenomenon may be partially explained by the presence of errors in SL.

All the results shown here rely on a maximum-coverage hypothesis (MCH), i.e. the assumption that
the four heuristics, with g = 2, allow us to extract all LRs of the previously annotated VMWEs. This
hypothesis is strong. Potentially, there could be a LR whose components have a gap longer than 2, and
which was not extracted e.g. due to non-connectivity in the dependency graph as in Fig. 1b, or due to an
error in the SL. Ideally, we should, thus, examine all co-occurrences of the lexicalized components of a
given VMWE, whatever their distance in the sentence. However, we estimate that this would triple the
number of exact matches and require a much higher manual annotation effort. We thus performed a less
labor-intensive experiment to assess the reliability of MCH. We applied the WindowGap heuristic with a
gap length of 9,999 (which exceeds all sentence lengths in the corpus) to the first 1,000 sentences of the
corpus, which yielded 41 literal matches. Then, the matches previously seen (i.e. extracted by any of the
four previously used heuristics) were eliminated, and the resulting 30 occurrences were manually labeled
according to the same scenario as above. All of them were false positives, which suggests that the four
heuristics would hardly ever miss any LRs among their literal matches.

As seen in Sec. 3, our heuristics are skewed towards high recall, which makes them practical for pre-
identifying and manually validating LR candidates, but not optimal for automatic classification of IRs
and LRs. Previous methods proposed for the latter task include (Fazly et al., 2009), where unsupervised
MWE identification is based on statistical measures of lexical and syntactic flexibility of MWEs. The
notion of a LR seems to have a much larger scope than in our approach: it notably includes variants
stemming from replacement of lexicalized components by automatically extracted similar words, e.g. spill
corn vs. spill the beans. The test data are restricted to the 28 most frequent verb-object pairs, and their
manually validated IRs and LRs, i.e. accidental co-occurrences of the MWE components are excluded
from performance measures (unlike in our approach). Their precision and recall in LR identification
range from 0.18 to 0.86 and from 0.11 to 0.61, respectively. These results are hard to compare to Tab. 1,
due to the very different understanding of the task and its experimental settings.

5 Corpus study

Given the manually identified true LRs, we can estimate the idiomaticity rate (IdRate) as follows:

IdRateCAT =
|IRCAT |

|LRCAT |+ |IRCAT |
(18)

where IRCAT is the set of (idiomatic) VMWE occurrences of category CAT10, LRCAT is the set of
true LRs of VMWEs of category CAT, and CAT ∈ {ID, IReflV,LVC,ALL}. As shown in Tab. 2,
LRs of VMWEs in Polish are rare: the overall IdRate amounts to 0.978. This score is consistent with

10This number was updated by accounting for the VMWE annotation errors identified during the manual validation (cf.
Sec. 4).
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(Waszczuk et al., 2016), where the IdRate of Polish verbal, nominal, adjectival and adverbial MWEs
is estimated at 0.95. It is, however, in sharp contrast to (Fazly et al., 2009), where the proportion of
LRs of the most frequent English verb-object MWEs was estimated at 40%. This is probably due to the
different understanding of LRs by these authors, and their relatively restricted experimental scope (cf.
Sec. 4). Important cross-language factors might also influence the IdRate, such as the pervasiveness of
lexicalized determiners like the/a in Germanic and Romance languages vs. the lack of their equivalents
in Slavic ones.

Tab. 2 also shows the per-category IdRate. Many IDs originated as metaphors, and this is reflected
in the fact that IDs have the lowest IdRate, even if only slightly lower than other categories. IReflVs,
conversely, have the highest IdRate, despite homonymy, shown in examples (14) and (17).

Category # LRs # IRs IdRatetokens types tokens types

ID 16 5 322 219 0.953
IReflV 30 19 1547 368 0.981
LVC 26 8 1301 662 0.980
ALL 72 32 3170 1249 0.978

Table 2: Idiomaticity rate per VMWE category
and overall.

Category MORPH SYNT OTHER
tokens types tokens types tokens types

ID 7 3 8 2 1 1
IReflV 8 3 1 1 21 16
LVC 18 2 2 1 6 5
ALL (46%) 33 8 (15%) 11 4 28 22

Table 3: LRs distinguishable from VMWEs by
constraints of various types

A close-up study of the 32 distinct VMWEs corresponding to the 72 LR tokens reveals that their
individual IdRate varies greatly: from 0.20 for daje się (zauważyć X) ‘allows RCLI (notice X)’⇒ it is
possible (to notice X) to 0.94 for czuć się (dobrze) ‘feel RCLI (well)’⇒ to feel (well).

In view of automatically distinguishing LRs from IRs, we studied the morphological and syntactic
constraints imposed by VMWEs. We manually tagged the 72 LRs with one of the following labels:

• MORPH: the LR does not respect the morphological constraints imposed by the corresponding
VMWE on one of its lexicalized components. For instance, the VMWE in example (10) requires the
nominal component udział ‘share’ to occur in singular. If this constraint were known, the occurrence
in (11) could be automatically classified as literal. Morphological constraints can also concern the
head verb, e.g. the VMWE in (19) allows no overt subject and restricts the finite forms of its head
verb dać ‘allow’ to 3rd person singular. Knowing this constraint would allow us to automatically
identify (20), where the verb is inflected in 2nd person imperative, as an LR.

• SYNT: the LR violates the syntactic constraints – other than the dependencies between its lexicalized
components – imposed by the VMWE. This typically concerns dependencies between lexicalized
components and external arguments or adjuncts. E.g., while the VMWE in (19) admits no overt
subject, the LR in (21) does take a subject pięćdziesięciolatka ‘50-year-old-woman’. Also, the
VMWE from (22) requires an infinitive complement and its noun stan ‘state’ allows no modifier. If
this constraint were known, the dependent of this noun in (23) would automatically imply a LRs.

• OTHER: in order to distinguish an LR from IRs, more advanced (e.g. semantic) constraints would
have to be verifiable. E.g., an LVC with the light verb mieć ‘to have’ in present tense and occurring
under the scope of negation, as in (24), is homonymic with the existential być ‘to be’, whose negation
in present tense is realized in Polish precisely bymieć ‘to have’, as in (25). Since Polish is a pro-drop
language, the subject in (24) can be skipped, which makes both occurrences look identical. Also,
IReflVs like in (26) are polysemic with reflexive, reciprocal, impersonal or middle alternation uses,
as in (27), and divergences in syntactic constraints are inexistent or unverifiable (e.g. due to dropped
arguments). Only powerful pragmatic mechanisms would allow these cases to be distinguished.

(19) dokładnich kwot nie da się wyliczyć ‘exact amounts not allows.3.sing.fin.pres RCLI calculate’
⇒ the exact amounts cannot be calculated

(20) nie
:::
daj

:::
się zbywać ogólnikami ‘not allow.2.sing.imper RCLI dispose-of with-commonplaces’⇒

don’t be disposed of with commonplaces
(21) Pięćdziesięciolatka nie

::
da

:::
się na to złapać ‘50-year-old-woman not allows.3.sing.fin.fut RCLI

on this catch’⇒ a 50-year-old woman will not fall into this trap
70



(22) więcej nie jestem w stanie dokonać ‘more not am in state to-do’⇒ I am not able to do more
(23) trzech żołnierzy

::::
było

::
w

:::::
stanie krytycznym ‘three soldiers were in state critical’⇒ three soldiers

were in a critical state
(24) (klient) niema powodów do satysfakcji ‘(client) not has reasons for satisfaction’⇒ (the client)

has no reasons to be satisfied
(25) nie

:::
ma

:::::::::
powodów do satysfakcji ‘not has reasons for satisfaction’⇒ there are no reasons to

be satisfied
(26) kadydaci znaleźli się w trudnej sytuacji ‘candidates found RCLI in hard situation’ ⇒ the

candidates found themselves is a difficult situation
(27) kadydaci

:::::::
znaleźli

:::
się dopiero po tygodniu ‘candidates foundRCLI only after week’⇒ candidates

were found only a week later

As shown in Tab. 3, 61% of the LRs can be automatically distinguished in the treebank from IRs
if morphological and syntactic constraints imposed by VMWEs are known, e.g. encoded in a lexical
resource (Przepiórkowski et al., 2017) or learned from a corpus. The remaining 39% of LRs call for
powerful mechanisms which go beyond sentence boundaries and most lexical encoding frameworks.
Note also that the percentage of the VMWE types which exhibit any literal readings is relatively low (32
types out of 1249, i.e. 2.6%). This suggests that methods for MWE identification might benefit from
language-specific components explicitly targeting those few expressions.

6 Conclusions and future work

The main contribution of this paper is a close examination of several aspects of literal readings (LRs) of
VMWEs. Firstly, we defined the notion of an LR in terms of both the semantics of their components,
and of their syntactic dependencies, which motivates their study in a treebank. We proposed four
language-independent heuristics, oriented towards high recall and a reasonable precision, for the task of
automatically identifying LRs, given their manually performed annotations in a treebank. We applied
these heuristics to Polish data stemming from a multilingual corpus annotated for VMWEs following
universal guidelines, and we manually validated the extracted LR candidates. The resulting dataset,
available under an open license11, allowed us to show that automatic identification of LRs is a hard task,
especially when syntactic annotations are created automatically. We also discovered that up to 61% of the
LRs can be automatically distinguished from their idiomatic counterparts if data on morphological and
syntactic constraints imposed by VMWEs are available (e.g. lexically encoded or learned from a corpus).
Last but not least, we showed that LRs are relatively rare in Polish: the idiomaticity rate of VMWEs is
equal to 0.978, and only 2.6% of all VMWE types exhibit literal readings in our corpus.

The proposed heuristics can also be used as part of MWE annotation methods. In the context of
PARSEME, a similar tool was used to check the consistency of VMWE annotations in the corpus, and to
detect VMWE occurrences that were possibly missed during the annotation phase.

Future work could investigate the extent to which the results from the different heuristics are statistically
significant. The heuristics could also be extended to handle long-distance dependencies such as the one
in (6). We also plan to apply this study to other languages from various languages families, concerned
by the PARSEME corpus, so as to check the discovered tendencies. Preliminary studies in Portuguese
show that the definition of an LR needs enhancements: not only the syntactic dependencies between
the lexicalized components are to be preserved but also their POS. This condition is necessary to
avoid ambiguities, notably between the reflexive pronoun se ‘RCLI’ in IReflVs and the conjunction
se ‘if ’. Further enhancement, useful for Slavic languages, might consist in merging aspectual pairs
(perfective/imperfective) of VMWEs such as da się ‘let.perf RCLI’⇒ it will be possible (to) vs. daje
się ‘let.imp RCLI’⇒ it is possible (to). Finally, the findings on LRs may enhance MWE identification
methods. They may for instance yield useful hints for feature engineering, or may be used in a post-
processing step to eliminate LRs wrongly recognized as variants of VMWEs seen in the training corpus.

11http://clip.ipipan.waw.pl/MweLitRead
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