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Abstract

In this paper we investigate the role of the dependency tree in a named entity recognizer upon using

a set of Graph Convolutional Networks (GCNs). We perform a comparison among different Named

Entity Recognition (NER) architectures and show that the grammar of a sentence positively influ-

ences the results. Experiments on the OntoNotes 5.0 dataset demonstrate consistent performance

improvements, without requiring heavy feature engineering nor additional language-specific

knowledge.1

1 Introduction and Motivations

The recent article by Marcheggiani and Titov (Marcheggiani and Titov, 2017) opened the way for a novel

method in Natural Language Processing (NLP). In their work, they adopt a GCN (Kipf and Welling, 2016)

approach to perform semantic role labeling, improving upon previous architectures. While their article

is specific to recognizing the predicate-argument structure of a sentence, their method can be applied to

other areas of NLP. One example is NER.

High performing statistical approaches have been used in the past for entity recognition, notably

Markov models (McCallum et al., 2000), Conditional Random Fields (CRFs) (Lafferty et al., 2001), and

Support Vector Machines (SVMs) (Takeuchi and Collier, 2002). More recently, the use of neural networks

has become common in NER.

The method proposed by Collobert et al. (Collobert et al., 2011) suggests that a simple feed-

-forward network can produce competitive results with respect to other approaches. Shortly thereafter,

Chiu and Nichols (Chiu and Nichols, 2015) employed Recurrent Neural Networks (RNNs) to address

the problem of entity recognition, thus achieving state-of-the-art results. Their key improvements were

twofold: using a bi-directional Long Short-Term Memory (LSTM) in place of a feed-forward network and

concatenating morphological information to the input vectors.

Subsequently, various improvements appeared: using a CRF as a last layer (Huang et al., 2015) in

place of a softmax function, a gated approach to concatenating morphology (Cao and Rei, 2016) and

predicting nearby words (Rei, 2017). All such methods, however, understand text as a one dimensional

collection of input vectors; any syntactic information – namely the parse tree of the sentence – is ignored.

We believe that dependency trees and other linguistic features play a key role on the accuracy of NER

and that GCNs can grant the flexibility and convenience of use that we desire. In this paper our contribution

is twofold: on one hand, we introduce a methodology for tackling entity recognition with GCNs; on the

other hand we measure the impact of using dependency trees for entity classification upon comparing the

results with prior solutions. At this stage our goal is not to beat the state-of-the-art but rather to quantify

the effect of our novel architecture.

1A version of this system can be found at https://github.com/contextscout/gcn_ner.
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Figure 1: An example sentence along with its dependency graph. GCNs propagate the information of a

node to its nearest neighbours.

As a final note, we notice that treebanks offer more information than a one dimensional sequence of

words. This information is not used in conventional RNNs systems. Our paper opens the way for exploiting

the syntax and dependency structures available in a treebank.

The remainder of the article is organized as follows: in Section 2 we introduce the theoretical framework

for our methodology, then the features considered in our model and eventually the training details. Section

3 describes the experiments and presents the results. We discuss relevant works in Section 4 and draw the

conclusions in Section 5.

2 Methods and Materials

2.1 Theoretical Aspects

Graph Convolutional Networks (Kipf and Welling, 2016) operate on graphs by convolving the features of

neighbouring nodes. A GCN layer propagates the information of a node onto its nearest neighbours. By

stacking together N layers, the network can propagate the features of nodes that are at most N hops away.

While the original formulation did not include directed graphs, they were further extended in

Marcheggiani and Titov to be used on directed syntactic/dependency trees. In the following we rely on

their work to assemble our network.

Each GCN layer creates new node embeddings by using neighbouring nodes and these layers can be

stacked upon each other. In the undirected graph case, the information at the kst layer is propagated to the

next one according to the equation
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v =ReLU
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where u and v are nodes in the graph. N is the set of nearest neighbours of node v, plus the node v itself.

The vector hku represents node u’s embeddings at the kst layer, while W and b are a weight matrix and a

bias – learned during training – that map the embeddings of node u onto the adjacent nodes in the graph;

hu belongs to R
m, W ∈Rm×m and b∈Rm.

Following the example in Marcheggiani and Titov, we prefer to exploit the directness of the graph

in our system. Our inspiration comes from the bi-directional architecture of stacked RNNs, where two

different neural networks operate forward and backward respectively. Eventually the output of the RNNs

is concatenated and passed to further layers.

In our architecture we employ two stacked GCNs: One that only considers the incoming edges for each

node
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Figure 2: bi-directional architectures: (a) LSTM; and, (b) GCN layers.

and one that considers only the outgoing edges from each node
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After N layers the final output of the two GCNs is the concatenation of the two separated layers

hNv =
−→
h N

v ⊕
←−
h N

v . (4)

In the following, we refer to the architecture expressed by Equation 4 as a bi-directional GCN.

2.2 Implementations Details

2.2.1 Using the dataset

We employ the OntoNotes 5.0 dataset (Weischedel, 2013) for training and testing. This dataset annotates

various genres of text for the purpose of entity recognition and co-reference resolution. The annotated

sentences are provided with Part-of-Speech (PoS) tags and syntactic information. While we include the

PoS tags in our tests, the Phrase Structure Grammar (PSG) structures in the OntoNotes 5.0 are not used. The

dependency graphs that are fed to the graph convolutional network are instead computed by an external

parser, Spacy v1.8.2 (Honnibal and Johnson, 2015).

In principle we could have translated the syntactic trees in the dataset to dependency graphs using - for

example - the CCGBank manual (Hockenmaier and Steedman, 2007). We will investigate this approach

in future works, while this paper lays down the technique for boosting entity recognition using GCNs.

2.2.2 Models

Our architecture is inspired by the work of Chiu and Nichols (Chiu and Nichols, 2015),

Huang et al. (Huang et al., 2015), and Marcheggiani and Titov (Marcheggiani and Titov, 2017). We

aim to combine a Bi-directional Long Short-Term Memory (Bi-LSTM) model with GCNs, using CRF as the

last layer in place of a softmax function.

We employ seven different configurations by selecting from two sets of PoS tags and two sets of word

embedding vectors. All the models share a bi-directional LSTM which acts as the foundation upon which

we apply our GCN. The different combinations are built using the following elements:
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Bi-LSTM We use a bi-directional LSTM structured as in Figure 2(a). The output is mediated by two fully

connected layers ending in a CRF (Huang et al., 2015), modelled as a Viterbi sequence. The best results

in the dev set of OntoNotes 5.0 were obtained upon staking two LSTM layers, both for the forward and

backward configuration. This is the number of layers we keep in the rest of our work. This configuration –

when used alone – is a consistency test with respect to the previous works. As seen in Table 1, our findings

are compatible with the results in (Chiu and Nichols, 2015).

Bi-GCN In this model, we use the architecture created in (Marcheggiani and Titov, 2017) where a GCN

is applied on top of a Bi-LSTM. This system is shown in Figure 2(b) (right side). The best results in the dev

set were obtained upon using only one GCN layer, and we use this configuration through our models. We

employ two different embedding vectors for this configuration: one in which only word embeddings are

fed as an input, the other one where PoS tag embeddings are concatenated to the word vectors.

Input vectors We use three sets of input vectors. First, we simply employ the word embeddings found

in the Glove vectors (Pennington et al., 2014):

xinput=xglove. (5)

In the following, we employ the 300 dimensional vector from two different distributions: one with 1M

words and another one with 2.2M words. Whenever a word is not present in the Glove vocabulary we use

the vector corresponding to the word “entity” instead.

The second type of vector embeddings concatenates the Glove word vectors with PoS tags embeddings.

We use randomly initialized Part-of-Speech embeddings that are allowed to fine-tune during training:

xinput=xglove⊕xPoS. (6)

The final quality of our results correlates to the quality of our Part-of-Speech tagging. In one batch we

use the manually curated PoS tags included in the OntoNotes 5.0 dataset (Weischedel, 2013) (PoS (gold)).

These tags have the highest quality.

In another batch, we use the PoS tagging inferred from the parser (PoS (inferred)) instead of using the

manually tagged ones. These PoS tags are of lower quality. An external tagger might provide a different

number of tokens compared to the ones present in the training and evaluation datasets. This presents a

challenge. We skip these sentences during training (1602 sentences out of 112300), while considering the

entities in such sentences as incorrectly tagged during evaluation.

Finally, we add the morphological information to the feature vector for the third type of word embed-

dings. The reason – explained in (Cao and Rei, 2016) – is that out-of-vocabulary words are handled badly

whilst using only word embeddings:

xinput=xglove⊕xPoS⊕xmorphology. (7)

We employ a bi-directional RNN to encode character information. The end nodes of the RNN are concate-

nated and passed to a dense layer, which is integrated to the feature vector along with the embeddings and

PoS information. In order to speed up the computation, we truncate the words by keeping only the first

12 characters. This operation is only done when computing the morphology vector, the word embeddings

still refer to the full word. Truncation is not commonly done, as it hinders the network’s performance; we

leave further analysis to following works.

Dropout In order to tackle over-fitting, we apply dropout to all the layers on top of the LSTM. The

probability to drop a node is set at 20% for all the configurations. The layers that are used as input to the

LSTM do not use dropout.

Network output At inference time, the output of the network is a 19-dimensional vector for each input

word. This dimensionality comes from the 18 tags used in OntoNotes 5.0, with an additional dimension

which expresses the absence of a named entity. No Begin, Inside, Outside, End, Single (BIOES) markings

are applied; at evaluation time we simply consider a name chunk as a contiguous sequence of words

belonging to the same category.

40



Figure 3: Feature vector components. Our input vectors have up to three components: the word

embeddings, the PoS embeddings, and a morphological embedding obtained through feeding each word

to a Bi-LSTM and then concatenating the first and last hidden state.

2.2.3 Training

We use TensorFlow (Abadi et al., 2015) to implement our neural network. Training and inference is done

at the sentence level. The weights are initialized randomly from the uniform distribution and the initial

state of the LSTMs are set to zero. The system uses the configuration in Appendix A.

The training function is the CRF loss function as explained in (Huang et al., 2015). Following their

notation, we define [f ]i,t as the matrix that represents the score of the network for the tth word to have

the ith tag. We also introduce Aij as the transition matrix which stores the probability of going from tag

i to tag j. The transition matrix is usually trained along with the other network weights. In our work we

preferred instead to set it as constant and equal to the transition frequencies as found in the training dataset.

The function f is an argument of the network’s parameters θ and the input sentence [x]T1 (the list of

embeddings with length T ). Let the list of T training labels be written as [i]T1 , then our loss function is

written as

S
(

[x]T1 ,[i]
T
1 ,θ,Aij

)

−
∑

[j]T
1

exp
(

[x]T1 ,[j]
T
1 ,θ,Aij+[f ][i]t,t

)

, (8)

where

S
(
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T
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)

=
T
∑

1

(

A[i]t−1,[i]t+f(θ,Aij)
)

. (9)

At inference time, we rely on the Viterbi algorithm to find the sequence of tokens that maxi-

mizes S
(

[x]T1 ,[i]
T
1 ,θ,Aij

)

. We apply mini-batch stochastic gradient descent with the Adam opti-

miser (Kingma and Ba, 2014), using a learning rate fixed to 10−4.

3 Experimental Results

In this section, we compare the different methods applied and discuss the results. The scores in Table 12

are presented as an average of 6 runs with the error being the standard deviation; we keep only the first

significant digit of the errors, approximating to the nearest number.

The results show an improvement of 2.2± 0.5% upon using a GCN, compared to the baseline result

of a bi-directional LSTM alone (1st row). When concatenating the gold PoS tag embedding in the input

vectors, this improvement raises to 4.6±0.6%. However, the gold tags in the OntoNotes 5.0 only refer to

the sentences within the dataset. Therefore, the performance of the system on new sentences must rely on

inferred PoS tags.

The F1 score improvement for the system while using inferred tags (from the parser) is lower:

3.2±0.6%.

2The results from Ratinov and Roth and Finkel and Manning are taken from Chiu and Nichols.
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DEV TEST

Description prec rec F1 prec rec F1

Bi-LSTM + 1M Glove + CRF 80.9 78.2 79.5±0.3 79.1 75.9 77.5±0.4
Bi-LSTM + 1M Glove + CRF + GCN 82.2 79.5 80.8±0.3 82.0 77.5 79.7±0.3
Bi-LSTM + 1M Glove + CRF + GCN + PoS (gold) 82.1 83.7 82.9±0.3 82.4 81.8 82.1±0.4
Bi-LSTM + 2.2M Glove + CRF + GCN + PoS (gold) 83.3 84.1 83.7±0.4 83.6 82.1 82.8±0.3
Bi-LSTM + 2.2M Glove + CRF + GCN + PoS (inferred) 83.8 82.9 83.4±0.4 82.2 80.5 81.4±0.3
Bi-LSTM + 2.2M Glove + CRF + GCN + PoS (gold) + Morphology 86.6 82.7 84.6±0.4 86.7 80.7 83.6±0.4
Bi-LSTM + 2.2M Glove + CRF + GCN + PoS (inferred) + Morphology 85.3 82.3 83.8±0.4 84.3 80.1 82.0±0.4

Chiu and Nichols 84.6±0.3 86.0 86.5 86.3±0.3
Ratinov and Roth 82.0 84.9 83.4±0.0
Finkel and Manning 84.0 80.9 82.4±0.0
Durrett and Klein 85.2 82.9 84.0±0.0

Table 1: Results of our architecture compared to previous findings.

For comparison, increasing the size of the Glove vector from 1M to 2.2M gave an improvement of

0.7 ± 0.5%. Adding the morphological information of the words, albeit truncated at 12 characters,

improves the F1 score by 2.2±0.5%.

Our results strongly suggest that syntactic information is relevant in capturing the role of a word in a

sentence, and understanding sentences as one-dimensional lists of words appears as a partial approach.

Sentences embed meaning through internal graph structures: the graph convolutional method approach

– used in conjunction with a parser (or a treebank) – seems to provide a lightweight architecture that

incorporates grammar while extracting named entities.

Our results – while competitive – fall short of achieving the state-of-the-art. We believe this to be

the result of a few factors: we do not employ BIOES annotations for our tags, lexicon and capitalisation

features are ignored, and we truncate words when encoding the morphological vectors.

Another improvement could come from converting the manually parsed trees in the OntoNotes 5.0

dataset into dependency graphs. Using these graphs during training would eliminate any possible

erroneous contributions coming from the external parser.

Our main claim is nonetheless clear: grammatical information positively boosts the performance of

recognizing entities, leaving further improvements to be explored.

4 Related Works

There is a large corpus of work on named entity recognition, with few studies using explicitly non-local

information for the task. One early work by Finkel et al. (Finkel et al., 2005) uses Gibbs sampling to

capture long distance structures that are common in language use. Another article by the same authors

uses a joint representation for constituency parsing and NER, improving both techniques. In addition,

dependency structures have also been used to boost the recognition of bio-medical events (McClosky et al.,

2011) and for automatic content extraction (Li et al., 2013).

Recently, there has been a significant effort to improve the accuracy of classifiers by going beyond vector

representation for sentences. Notably the work of Peng et al. (Peng et al., 2017) introduces graph LSTMs

to encode the meaning of a sentence by using dependency graphs. Similarly Dhingra et al. (Dhingra et al.,

2017) employ Gated Recurrent Units (GRUs) that encode the information of acyclic graphs to achieve

state-of-the-art results in co-reference resolution.

5 Concluding Remarks

We showed that dependency trees play a positive role for entity recognition by using a GCN to boost the

results of a bidirectional LSTM. In addition, we modified the standard convolutional network architecture

and introduced a bidirectional mechanism for convolving directed graphs. This model is able to improve
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upon the LSTM baseline: Our best result yielded an improvement of 4.6± 0.6% in the F1 score, using a

combination of both GCN and PoS tag embeddings.

Finally, we prove that GCNs can be used in conjunction with different techniques. We have shown that

morphological information in the input vectors does not conflict with graph convolutions. Additional tech-

niques, such as the gating of the components of input vectors (Rei et al., 2016) or neighbouring word pre-

diction (Rei, 2017) should be tested together with GCNs. We will investigate those results in future works.
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A Configuration

Parameter Value

Glove word embeddings 300 dim

PoS embedding 15 dim

Morphological embedding 20 dim

First dense layer 40 dim

LSTM memory (2×) 160 dim

Second dense layer 160 dim

GCN layer (2×) 160 dim

Final dense layer 160 dim

Output layer 16 dim

Dropout 0.8 (keep probability)

Table 2: Summary of the configuration used for training the network.
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