
S Bandyopadhyay, D S Sharma and R Sangal. Proc. of the 14th Intl. Conference on Natural Language Processing, pages 456–465,
Kolkata, India. December 2017. c©2016 NLP Association of India (NLPAI)

Neural Networks for Semantic Textual Similarity

Derek S. Prijatelj
Duquesne University
Pittsburgh, PA 15282
prijateljd@duq.edu

Jonathan Ventura
University of Colorado

Colorado Springs, CO 80918
jventura@uccs.edu

Jugal Kalita
University of Colorado

Colorado Springs, CO 80918
jkalita@uccs.edu

Abstract

Complex neural network architectures
are being increasingly used to learn
to compute the semantic resemblances
among natural language texts. It is
necessary to establish a lower bound of
performance that must be met in or-
der for new complex architectures to be
not only novel, but also worthwhile in
terms of implementation. This paper
focuses on the specific task of determin-
ing semantic textual similarity (STS).
We construct a number of models from
simple to complex within a framework
and report our results. Our findings
show that a small number of LSTM
stacks with an LSTM stack comparator
produces the best results. We use Se-
mEval 2017 STS Competition Dataset
for evaluation.

1 Introduction

Scholars have attempted to capture the se-
mantics in natural language texts in a for-
mal manner for centuries. Even today, the
true meaning of a word can neither be quan-
tified nor computed, but methods have been
developed to express meaning numerically in
terms of co-occurrence and association. This
is called distributional semantics, and it plays
a key role in current approaches to represen-
tation of meaning, where although the actual
meaning remains unknown, computations can
be performed with words or phrases that share
the same usage, and therefore, have similar
meaning. The theoretical foundation lies in
the so-called distributional hypothesis, which
states that words that share the same context
tend to share similar meaning (Harris, 1954).

This hypothesis, which is claimed to hold true
for words, has been used to obtain vector rep-
resentations or embeddings for words (Mikolov
et al., 2013; Le and Mikolov, 2014). Build-
ing on such word embeddings, various meth-
ods have been proposed to obtain the meaning
of phrases, sentences, paragraphs and whole
texts. These include complex linear-algebra
based approaches, and more recently a vari-
ety of neural network architectures (Le and
Mikolov, 2014; Kiros et al., 2015). This re-
search concerns itself specifically with the sem-
antic representation of sentences, and com-
pares the different representations in the task
of semantic textual similarity matching.

Semantic textual similarity matching is the
task of determining the resemblance of the
meanings between two sentences. The dataset
used for this task is SemEvals’ 2017 Semantic
Textual Similarity corpus1 2. The task specifi-
cally is to output a continuous value on the
scale from [0, 5] that represents the degree
of semantic similarity between two given En-
glish sentences, where 0 is no similarity and 5
is complete similarity. In terms of machine
learning, this is a regression problem. The
2017 STS corpus contains 1186 English sen-
tence pairs with a corresponding rating and
249 pairs as the test set. The test set has
been labeled with the average of multiple hu-
man expert ratings that SemEval calls the
“gold standard”. The distribution of ratings
is stated to be as uniform throughout as it
could be, and the ratios of ratings for the test
set are similar to the training set’s ratings.

The models that are examined in this re-

1http://alt.qcri.org/semeval2017/task1/
index.php?id=data-and-tools

2http://ixa2.si.ehu.eus/stswiki/index.php/
Main_Page456



search are simple neural network architectures
compared to some of the more complicated
models that are popular in recent natural lan-
guage processing research (Wan et al., 2016;
Wu et al., 2017b; Fu et al., 2016; Guo et al.,
2016; Liu et al., 2016a; Liu et al., 2017b; Liu
et al., 2017a; Liu et al., 2016b). Examining
the simple neural network architectures better
posits a perspective on creating new architec-
tures for practical applications. If a simple ar-
chitecture can perform equivalently or better
than a more complex model being proposed,
the new model is simply a new way to accom-
plish a task using a resource-hungry method.
Our simple models use perceptrons to sim-
ple LSTMs and bidirectional LSTMs and are
evaluated on the STS task. The major com-
ponents in these models are the pre-trained
word vectors, the sentence embeddings, and
the comparator of the two sentence embed-
dings that performs the regression.

2 Related Work

Pursuing better semantic representation for
phrases and sentences, and the use of such
representation to solve natural language pro-
cessing tasks have become popular due to the
influence of distributional semantics, in par-
ticular representations obtained using artificial
neural networks.

2.1 Semantic Representation

Mikolov invigorated the interest in distribu-
tional semantics with his team’s creation of
Word2Vec, a means for representing the co-
occurrences of words in written text as ele-
ments in a vector space (Mikolov et al., 2013).
This method is fairly successful, but by its very
nature, it creates embeddings for single words
(and common short phrases) only. Stanford
University developed another method of com-
puting the distributional semantics of words,
and this method is known as GloVe. GloVe is
similar to Word2Vec in that it computes the
co-occurrence frequency of words and creates
a vector of a specified dimension to represent
a word, but the methods they use are more
linear-algebra based (Pennington et al., 2014).
Either may be used for natural language pro-
cessing tasks depending on preference or per-
formance of the pre-trained word embeddings.

In this research, 300 dimensional GloVe word
vectors are used as the initial state of the word
vectors.

Various methods have been developed to
embed a sentence represented by a sequence
of words, each with its own vector. Some of
these methods involve the use of neural net-
works, including, but not limited to, LSTMs
and their variations (Wan et al., 2016; Palangi
et al., 2016; Chen et al., 2016; Liu et al.,
2017b). Most of these methods compute sen-
tence representations using methods similar to
those applied for word embeddings or as di-
rect extensions of such methods (Kiros et al.,
2015; Le and Mikolov, 2014). (Arora et al.,
2016) proposed a “simple but tough-to-beat
baseline for sentence embeddings” called the
SIF embedding method. SIF involves taking
the average of all the word vectors in a sen-
tence and removing the first principal compo-
nent. Arora et. al have reported it to be a
satisfactory baseline and it has been found to
provide strong results for many tasks.

2.2 Semantic Matching

A recently developed neural net approach
to semantic matching is the Matrix Vector-
LSTM (MV-LSTM) (Wan et al., 2016). MV-
LSTM finds the paired sentence embeddings
by processing the respective lists of word
vectors individually through separate bidirec-
tional LSTMs. The resulting sentence embed-
dings are then compared via a Matrix Vector,
otherwise known as a similarity tensor. The
important features of the similarity tensor are
obtained through k-max pooling and the k-
max pools are processed via a multilayered
perceptron.

There exist other recent architectures for
the semantic matching of sentences and they
have been used in the recent SemEval STS
2017 competition. These architectures are
listed in Table 3. ECNU accomplishes the
STS task by combining traditional natural lan-
guage processing methods with modern deep
learning through the use of an ensemble of
classifiers to average the two different parts’
scores (Tian et al., 2017). This method at-
tempts to use the best of both methods to
overcome the limitations in each other. An
ensemble of classifiers is a method of using var-
ious classifiers, in this case the traditional and457



deep learning methods, and combining their
votes via some mathematical method, which
in ECNU’s case is simple averaging. (Hen-
derson et al., 2017) create the MITRE model,
which also uses an ensemble, but instead has
5 systems in their ensemble. Their systems
include a simple bag-of-words model, a re-
current convolutional neural network, an en-
hanced BiLSTM inference model, alignment
measures of strings, and the open source Take-
Lab Semantic Text Similarity System (Šarić et
al., 2012). Thus, both the MITRE and ECNU
systems use ensembles in an attempt to har-
ness the wisdom of the individual components
in their final classification for the STS task.

The BIT model makes use of WordNet to
create what is called a “semantic information
space (SIS)” (Wu et al., 2017a). SIS attempts
to obtain unique meaning of words by estab-
lishing the shared words of a certain mean-
ing as a unique information space. WordNet
(Miller, 1995) is a human created database
that defines how English words share mean-
ing, similar to an extended thesaurus. BIT at-
tempts to leverage the knowledge in WordNet
entered by actual humans to create a better
system and achieve competitive results. HCTI
uses a convolutional neural network in order to
handle the STS task (Yang, 2017). The con-
volutional neural network is simple, yet yields
competitive results.

FCICU is a model for solving the STS task
through the use of a sense-based and surface-
based alignment similarity method coupled
with an existing semantic network (Hassan
et al., 2017). FCICU uses BabelNet (Navigli
and Ponzetto, 2012) and an alignment method
to perform multilingual tasks in the SemEval
2017 competition. FCICU is an unsupervised
model.

The DT TEAM’s model (Maharjan et al.,
2017) uses Support Vector Regression (Smola
and Schölkopf, 2004), Linear Regression, and
Gradient Boosting Regressor with various fea-
tures that are carefully selected. DT TEAM’s
model uses many methods to generate the fea-
tures on which their model depends. The
DT TEAM’s performance in the English-
English STS task was second overall with
highly competitive scores. The ITNLPAiKE
model (Liu et al., 2017c) also uses a Support

Vector Regression model with feature engi-
neering. The features ITNLPAiKE uses are
ontology based, word embedding based, cor-
pus based, alignment based and literal based
features. The ITNLPAiKE model had rel-
atively competitive results in the English-
English STS task, and the authors found that
the ontology, word embedding, and alignment
based features were the most beneficial fea-
tures that they tested.

3 Examined Models

We examine a number of models that all share
the same architecture: Pre-trained word em-
beddings, a sentence embedding component,
and a comparator component. Figure 1 de-
picts this shared architecture. The sentence
embedding component takes the sequence of
word vectors that represents a sentence and
combines them into a single vector that rep-
resents the meaning of the original sentence.
The comparator component is the part of the
model that evaluates the similarity between
the two sentence vectors and performs regres-
sion to output the sentence pair’s similarity
score on a continuous inclusive scale from 0 to
5. For all components and individual neural
network units of the model, ELU activations
(Clevert et al., 2015) are used. The initial
weights of each unit are randomly initialized
using the He normal distribution (He et al.,
2015). For all models, RMSprop (Tieleman
and Hinton, 2012) is used as the optimizer
with a learning rate of 1e-4. Mean squared
error is the loss function for all models as
well. The metrics that are calculated are mean
squared error, and the Pearson correlation co-
efficient (PCC), or Pearson R. The SemEval
STS competition uses the PCC as the primary
metric of a model’s performance.

We examine different sentence embeddings,
as well as semantic matching processes as the
comparator component of the models. These
methods are compared to modified versions of
the MV-LSTM. A modified version also re-
places the similarity tensor with Euclidean dis-
tance to establish an understanding of the sim-
plified models’ performance; its results are not
reported. One of the models (called the L2-
LSTM) uses of bidirectional LSTMs for learn-
ing the sentence embeddings from the paired458



Figure 1: The overall architecture of the sim-
ple models for the STS task. Two sentence
strings are are the inputs and one float in the
range [0, 5] is the output.

list of word vectors. We keep the multi-layered
perceptron at the end of the comparator com-
ponent for most models.

3.1 Pre-Trained Word Vectors

The models start with the input of two sen-
tences represented by strings. The words in
the sentences are replaced by word vectors us-
ing the provided pre-trained word embeddings,
which in this case is a set of GloVe word vec-
tors. This specific set of word vectors have 300
dimensions and were pre-trained on 840 billion
tokens taken from Common Crawl3. Different
pre-trained word vectors may be used in place
of this specific pre-trained set. After being em-
bedded into the pre-trained word vectors, the
data is randomly shuffled and then sent to the
sentence embedding component.

3.2 Sentence Embedding

The model component is responsible for tak-
ing a list of word vectors that represent a sen-
tence and embedding them into a single vec-
tor to represent the entire sentence. The sen-
tence vector compresses the size of the data
that represents the sentence, but synthesizes
important semantic information contained in
the sentence.

3.2.1 Smooth Inverse Frequency (SIF)

(Arora et al., 2016) propose a method of sen-
tence embedding called smooth inverse fre-
quency (SIF) as a simple baseline for all sen-
tence representations to surpass. The method
involves taking the mean of all word vectors
in a list and removing the first principal com-
ponent. They found that this simple method

3https://nlp.stanford.edu/projects/glove/

for sentence embedding creates satisfactory re-
sults. The hypothesis is that SIF removes the
effect of most common words that occur in
documents, and is akin to removing stop words
from consideration. SIF serves as the method
of sentence representation tested in all models
in this research.

The formal mathematical representation of
SIF is as follows: vs = 1

s

∑
w∈s

a
a+p(w)vw where

a = 1−α
αZ , vs = vs − uu>vs, where s is the cur-

rent sentence, w represents a word in the sen-
tence, vw is the vector representation of the
word, α is a hyperparameter, Z is the normal-
izing constant (the partition function) that is
roughly the same in all directions, p represents
the estimated probabilities of the words, and
u is the calculated first principal component.

3.2.2 LSTM

Sentences are sequences of words where order
matters and each word may modify any other’s
meaning despite their location in the sentence.
Given that sentences are sequences, it is only
natural to use the version of the recurrent neu-
ral network known as the LSTM. The version
of the LSTM used throughout model is based
on the original from (Hochreiter and Schmid-
huber, 1997). This sentence embedding com-
ponent consists of a single LSTM per sentence
with a number of hidden units in parallel equal
to that of the word embedding’s number of di-
mensions.

The traditional LSTM used is defined as
follows:

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wfxt + Ufht−1 + bf )

ot = σg(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σc(ct)

where xt is the input vector, ht is the output
vector, ct is the cell state vector, W , U and b
are the parameter matrices, and vectors ft, it,
and ot are the forget, input, and output gate
vectors respectively. σ represents the activa-
tion functions where σg is an ELU function
and σc is the hard sigmoid. Figure 2 depicts
this LSTM block architecture.459



Figure 2: Example of the traditional LSTM
architecture with the modified activation func-
tions. The two arrows exiting from the side
are the LSTM’s recurrent connections. This
image was modified from Christopher Olah’s
original image5.

3.2.3 Stacked LSTMs

The stacked LSTMs’ construction is the same
as the the single LSTM, except that instead of
one LSTM per sentence there are two stacks of
LSTMs of equal length. All hyper-parameters
are the same otherwise. Various sized stacks
of LSTMs are experimented with, including 2,
3, 4, 5, and 10. Multiple LSTMs should be
able to capture the kernels of meaning in a
sentence. As stated by (Palangi et al., 2016),
the higher the number of LSTMs in the stack,
the better the predicted performance of the
sentence embedding.

A stack of LSTMs is simply multiple LSTMs
whose output is the input to the next LSTM
in the stack. The version of LSTM stacks used
in this research is sequential, meaning that
the processed sequence data from the LSTM is
saved and outputted to the next LSTM. The
final LSTM of the stack outputs a matrix with
the dimensions of batch size, and time steps.
Figure 3 indicates the input and output di-
mensions previously described.

Figure 3: Example of the input and output
dimensions of the layers in a small stack
of LSTMs as depicted by the Keras API
at https://keras.io/getting-started/

sequential-model-guide/.

3.3 Comparator

The comparator examines the two sentence
embeddings and performs regression on them
to find a continuous value on the inclusive
range from 0 to 5. This continuous value in-
dicates the level of similarity between the two
sentences, where 0 is no semantic similarity
and 5 is complete semantic similarity.

3.3.1 Perceptron

The simplest of all the comparators, the per-
ceptron with ELU as its activation is used as
the regression operation. The weights are ini-
tialized at random using the He normal dis-
tribution. The outputs from the sentence em-
beddings are concatenated and sent to a fully
connected dense layer, which then connects to
a single output node.

3.3.2 LSTM

In order to learn the relationship between the
words in the two sentences, an LSTM takes
the concatenated sequence output from the
two LSTM sentence embedding components.
This single LSTM performs the regression on
the two embeddings and learns how the two
embeddings relate to one another.

3.3.3 Stacked LSTMs

Applying the reasoning behind deep LSTM
stacks as proposed by (Palangi et al., 2016),460



a stack of LSTMs is used as the comparator
of LSTM sentence embeddings. The process
is the same as the single LSTM comparator,
but instead with a stack of LSTMs. Varying
sizes of stacks are used, but match the size of
the LSTM stacks in the sentence embedding
component.

3.4 Simplified MV-LSTM: L2-LSTM

Unlike the other simple models that come in
parts, this model comes together as a whole. A
simplified version of the MV-LSTM from (Wan
et al., 2016) is also tested among the simple
models. This model matches the MV-LSTM
exactly except for the similarity tensor which
is replaced with an Euclidean distance calcula-
tion to compare the similarity to the two sen-
tence embeddings. Bidirectional LSTMs are
used for the sentence embeddings and the Eu-
clidean distance is followed by a multilayered
perceptron with 3 layers that cuts their den-
sity in half from the previous layer. The first
layer has 5 nodes. This simplified version of
the MV-LSTM is referred to as the L2-LSTM.

4 Implementation

The implementation was done using Keras6 on
an Ubuntu system with GPU support. The
training data is given to the neural networks
with mean squared error as their loss, due to
this being a regression problem. The model is
evaluated using cross-validation.

5 Evaluation Process

The STS Benchmark comprises a selection of
the English datasets used in the STS tasks
organized in the context of SemEval between
2012 and 2017. The selection of datasets in-
cludes text from image captions, news head-
lines and user forums. There are a total of
1186 ranked sentence pairs from various do-
mains such as image captions, Twitter news,
questions, answers, headlines, plagiarism, and
post-editing. Table 1 shows a few pairs of sen-
tences and their gold standard STS rankings
from this dataset.

Each model is evaluated on the sentence
similarity task. The results of various models
are compared in terms of Pearson Correlation

6https://keras.io/

Coefficient, as mentioned earlier. The Pearson
Correlation Coefficient is as follows:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where n is the number of samples, xi and yi
are the single samples indexed with i, x̄ and ȳ
are the two samples’ respective means.

6 Results

The results indicate that models with a bet-
ter capacity for memory storage are better
suited for solving the STS task optimally. The
simplified MV-LSTMs also perform approxi-
mately the same as a perceptron, and thus
should be discarded from use in practical ap-
plication for the STS task. However, these are
only simplified versions of the MV-LSTM.

6.1 LSTM

The single LSTM embeddings for both the
perceptron comparator and the single LSTM
comparator performed worse than any of the
models that included a stack of LSTMs. This
indicates that the memory of a single LSTM
compared to that of a stack of LSTM is un-
able to learn the semantic essence of a sen-
tence. This encourages the use of models with
increased memory due to their ability to learn
important semantic features of a sentence.

6.2 Stacked LSTMs

The stacked LSTMs performed the best over-
all with the paired stack of 10 LSTMs for em-
bedding and a perceptron comparator as the
best of all LSTM stack embedding and per-
ceptron comparator models. The stack of 2
LSTMs with a stack of 2 LSTMs as the com-
parator performed the best out of all of the
models with a .05 lead over the second place
model, the stack of 10 LSTMs and perceptron
model. The success of the LSTM stacks indi-
cates that these models are able to learn ker-
nels of meaning in the sentences and compare
them correctly to one another. The quality
performance from these models raise the stan-
dards for newer, more complex models for the
STS task.

6.3 Simplified MV-LSTM: L2-LSTM

The L2-LSTM performed worse than any of
the other models, except for the perceptron461



Rank Sentence 1 Sentence 2

3 In the US, it will depend on the school. It really depends on the school and the
program.

2 I did this one time as well. I have this habit as well.

5 You do not need to worry. You don’t have to worry.

3 I remained under the banyan tree, ex-
hausted by my daily ritual of dragoon-
ing the men every two hours.

I remained under the banyan tree, ex-
hausted by my daily ritual of herding
the cats every two hours.

0 You need to read a lot to know what
you like and what you don’t.

You should tell a good story and
sometimes you have to tweak real-
ity/history to do so.

1 If you are not sure how to do it, don’t
do it at all.

If not, don’t do that and spend that
time with something you like to do.

Table 1: Example sentence pairs from the SemEval STS 2017 dataset

Simple Models’ Mean Pearson R across 10 K-Fold Cross Validation

Model Name Pearson R In-Sample Pearson R

2 LSTM Stack and 2 LSTM Stack 0.8608 0.9963

10 LSTM Stack and Perceptron 0.7824 0.9082

2 LSTM Stack and Perceptron 0.7595 0.8757

3 LSTM Stack and Perceptron 0.7235 0.8275

4 LSTM Stack and Perceptron 0.7150 0.8269

5 LSTM Stack and Perceptron 0.4538 0.6465

1 LSTM and Perceptron 0.4301 0.5445

1 LSTM and 1 LSTM 0.4163 0.9902

L2-LSTM 50 epochs 0.2740 0.3537

SIF and Perceptron 0.2214 0.8795

L2-LSTM 100 epochs 0.2183 0.3066

Table 2: The mean Pearson R out-of-sample and in-sample from k-fold cross validation where
k = 10. The LSTM and LSTM Stack embeddings were all computed with 50 epochs. The
SIF embedding and perceptron comparator were calculated with 100 epochs. The model names
are ordered by embedding component and comparator, except for the L2-LSTM model which
is combined embedding and comparator. In-Sample Pearson R is the Pearson R of the model
evaluated on the data used to train the model.

when compared to the MV-LSTM with 50
epochs. This indicates that either the bidi-
rectional LSTMs are not suitable for learning
the semantics between the two sentences, or
the similarity comparison with the Euclidean
distance is not as effective as the power of the
learning the sequences with LSTMs. Given its
performance roughly matches that of a percep-
tron, the L2-LSTM is a model not to be used
given its similar performance to, but greater
complexity than the perceptron.

6.4 Comparison with SemEval STS
2017 Results

We compare our results with papers and sys-
tems from SemEval STS 2017 (Cer et al.,
2017). These papers and systems use Pearson
Correlation Coefficient also for evaluation. Ta-
ble 3 presents the results of the top-performing
systems from the SemEval 2017 contest.

We must note that the papers published
in SemEval 2017 used the Training, Devel-
opment, Evaluation datasets whereas we per-
formed 10-fold cross-validation. Thus, the re-
sults are not quite comparable, but we feel
that cross-validation may be a better way to462



Figure 4: The mean Pearson R across all test and validation sets in k-fold cross validation where
k = 10.

Team Paper PCC Results (3 or fewer runs)

ECNU (Tian et al., 2017) .8515, .8181, .8387

BIT (Wu et al., 2017a) .8400, .8161, .8222

HCTI (Yang, 2017) .8113, .8156

MITRE (Henderson et al., 2017) .8053, .8048

FCICU (Hassan et al., 2017) .8272, .8280, .8217

RTV none .8541, .8541, .8547

DT TEAM (Maharjan et al., 2017) .8536, .8360, .8329

ITNLPAiKE (Liu et al., 2017c) .8231, .8231, .8159

Table 3: Results of SemEval STS 2017 Competition in terms of Pearson Correlation Coefficient,
as published in (Cer et al., 2017)

evaluate than using a hand-selected Evalua-
tion dataset, but this point remains debatable.
In spite of this discrepancy, we claim that one
of our methods, namely “2 LSTM Stack and 2
LSTM Stack” shows better performance than
the approaches in Table 3.

7 Further Research

The performance of the simplified MV-LSTMs
bring into question the adequacy of the orig-
inal MV-LSTM for the STS task. The next
step is to evaluate the performance of the MV-
LSTM in the STS task and compare it to that
of the LSTM stacks. The results indicate that
models with a higher capacity for memory are
better suited to learn the semantic representa-
tion of the sentences and appropriately com-

pare them. These results encourage further re-
search in memory augmented neural networks
for use in learning the semantics of natural
languages. Exploring the implementation of
more complicated memory augmented neural
networks, such as the DNC model created by
(Graves et al., 2016), is the next step in pursu-
ing better performance in sentence embedding
and semantic textual similarity matching.

8 Conclusion

The performances of various simple neural net-
work models have been examined on the task
of semantic textual similarity matching us-
ing SemEval’s provided dataset. The model
to perform the best with a Pearson correla-
tion of 0.8608, based on the mean k-fold cross463



validation, is the model where a stack of 2
LSTMs embedded the sentences and were then
compared with another stack of 2 LSTMs af-
ter concatenating the two sentence embedding
stacks’ sequences output. This supports the
findings that natural language tasks are se-
quence problems where the elements in the
sequence have interconnected relatedness, in
which neural networks with memory are bet-
ter at learning. Our findings also suggest that
there exist coherent subgroups of words in
a sentence whose meanings can learned and
composed to obtain the unique meaning of a
sentence. This supports the findings that MV-
LSTM also obtains. The evaluation of these
simple models for semantic textual similar-
ity serves as the lower bound to compare all
other models that have increased complexity
in their design. All future researchers should
ensure that their new model architectures sur-
pass these lower bounds.

References

[Arora et al.2016] Sanjeev Arora, Yingyu Liang,
and Tengyu Ma. 2016. A simple but tough-to-
beat baseline for sentence embeddings. Interna-
tional Conference on Learning Representations.

[Cer et al.2017] Daniel Cer, Mona Diab, Eneko
Agirre, Inigo Lopez-Gazpio, and Lucia Specia.
2017. Semeval-2017 task 1: Semantic textual
similarity-multilingual and cross-lingual focused
evaluation. arXiv preprint arXiv:1708.00055.

[Chen et al.2016] Jifan Chen, Kan Chen, Xipeng
Qiu, Qi Zhang, Xuanjing Huang, and Zheng
Zhang. 2016. Learning word embeddings from
intrinsic and extrinsic views. arXiv preprint
arXiv:1608.05852.

[Clevert et al.2015] Djork-Arné Clevert, Thomas
Unterthiner, and Sepp Hochreiter. 2015. Fast
and accurate deep network learning by ex-
ponential linear units (elus). arXiv preprint
arXiv:1511.07289.

[Fu et al.2016] Jian Fu, Xipeng Qiu, and Xuanjing
Huang. 2016. Convolutional deep neural net-
works for document-based question answering.
In International Conference on Computer Pro-
cessing of Oriental Languages, pages 790–797.
Springer.

[Graves et al.2016] Alex Graves, Greg Wayne, Mal-
colm Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska-Barwińska, Sergio Gómez
Colmenarejo, Edward Grefenstette, Tiago Ra-
malho, John Agapiou, et al. 2016. Hybrid com-

puting using a neural network with dynamic ex-
ternal memory. Nature, 538(7626):471–476.

[Guo et al.2016] Jiafeng Guo, Yixing Fan, Qingyao
Ai, and W Bruce Croft. 2016. Semantic match-
ing by non-linear word transportation for in-
formation retrieval. In Proceedings of the 25th
ACM International on Conference on Informa-
tion and Knowledge Management, pages 701–
710. ACM.

[Harris1954] Zellig S Harris. 1954. Distributional
structure. Word, 10(2-3):146–162.

[Hassan et al.2017] Basma Hassan, Samir Abdel-
Rahman, Reem Bahgat, and Ibrahim Farag.
2017. Fcicu at semeval-2017 task 1: Sense-based
language independent semantic textual similar-
ity approach. Proceedings of SemEval-2017.

[He et al.2015] Kaiming He, Xiangyu Zhang, Shao-
qing Ren, and Jian Sun. 2015. Delving
deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. CoRR,
abs/1502.01852.

[Henderson et al.2017] John Henderson, Elizabeth
Merkhofer, Laura Strickhart, and Guido
Zarrella. 2017. Mitre at semeval-2017 task
1: Simple semantic similarity. Proceedings of
SemEval-2017.

[Hochreiter and Schmidhuber1997] Sepp Hochre-
iter and Jurgen Schmidhuber. 1997. Long
short-term memory. Neural Computation,
9(8):1735–1780.

[Kiros et al.2015] Ryan Kiros, Yukun Zhu, Rus-
lan R Salakhutdinov, Richard Zemel, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler.
2015. Skip-thought vectors. In Advances in neu-
ral information processing systems, pages 3294–
3302.

[Le and Mikolov2014] Quoc Le and Tomas Mikolov.
2014. Distributed representations of sentences
and documents. In Proceedings of the 31st
International Conference on Machine Learning
(ICML-14), pages 1188–1196.

[Liu et al.2016a] Pengfei Liu, Xipeng Qiu, Jifan
Chen, and Xuanjing Huang. 2016a. Deep fu-
sion lstms for text semantic matching. In Pro-
ceedings of Annual Meeting of the Association
for Computational Linguistics.

[Liu et al.2016b] Pengfei Liu, Xipeng Qiu, and Xu-
anjing Huang. 2016b. Recurrent neural network
for text classification with multi-task learning.
arXiv preprint arXiv:1605.05101.

[Liu et al.2017a] Pengfei Liu, Xipeng Qiu, and Xu-
anjing Huang. 2017a. Adversarial multi-task
learning for text classification. arXiv preprint
arXiv:1704.05742.464



[Liu et al.2017b] Pengfei Liu, Xipeng Qiu, and Xu-
anjing Huang. 2017b. Dynamic compositional
neural networks over tree structure. arXiv
preprint arXiv:1705.04153.

[Liu et al.2017c] Wenjie Liu, Chengjie Sun, Lei Lin,
and Bingquan Liu. 2017c. Itnlp-aikf at semeval-
2017 task 1: Rich features based svr for sem-
antic textual similarity computing. Proceedings
of SemEval-2017.

[Maharjan et al.2017] Nabin Maharjan, Rajendra
Banjade, Dipesh Gautam, Lasang J Tamang,
and Vasile Rus. 2017. Dt team at semeval-2017
task 1: Semantic similarity using alignments,
sentence-level embeddings and gaussian mixture
model output. Proceedings of SemEval-2017.

[Mikolov et al.2013] Tomas Mikolov, Kai Chen,
Greg Corrado, and Jeffrey Dean. 2013. Effi-
cient estimation of word representations in vec-
tor space. arXiv preprint arXiv:1301.3781.

[Miller1995] George A Miller. 1995. Wordnet: a
lexical database for english. Communications of
the ACM, 38(11):39–41.

[Navigli and Ponzetto2012] Roberto Navigli and Si-
mone Paolo Ponzetto. 2012. Babelnet: The
automatic construction, evaluation and appli-
cation of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250.

[Palangi et al.2016] Hamid Palangi, Li Deng, Ye-
long Shen, Jianfeng Gao, Xiaodong He, Jianshu
Chen, Xinying Song, and Rabab Ward. 2016.
Deep sentence embedding using long short-term
memory networks: Analysis and application
to information retrieval. IEEE/ACM Transac-
tions on Audio, Speech and Language Processing
(TASLP), 24(4):694–707.

[Pennington et al.2014] Jeffrey Pennington,
Richard Socher, and Christopher D. Man-
ning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages
1532–1543.

[Šarić et al.2012] Frane Šarić, Goran Glavaš,
Mladen Karan, Jan Šnajder, and Bojana Dal-
belo Bašić. 2012. Takelab: Systems for

measuring semantic text similarity. In Pro-
ceedings of the First Joint Conference on
Lexical and Computational Semantics-Volume
1: Proceedings of the main conference and
the shared task, and Volume 2: Proceedings of
the Sixth International Workshop on Semantic
Evaluation, pages 441–448. Association for
Computational Linguistics.

[Smola and Schölkopf2004] Alex J Smola and Bern-
hard Schölkopf. 2004. A tutorial on sup-
port vector regression. Statistics and computing,
14(3):199–222.

[Tian et al.2017] Junfeng Tian, Zhiheng Zhou, Man
Lan, and Yuanbin Wu. 2017. ECNU at
SemEval-2017 Task 1: Leverage kernel-based
traditional NLP features and neural networks
to build a universal model for multilingual and
cross-lingual semantic textual similarity.

[Tieleman and Hinton2012] Tijmen Tieleman and
Geoffrey Hinton. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural net-
works for machine learning, 4(2):26–31.

[Wan et al.2016] Shengxian Wan, Yanyan Lan, Ji-
afeng Guo, Jun Xu, Liang Pang, and Xueqi
Cheng. 2016. A deep architecture for semantic
matching with multiple positional sentence rep-
resentations. In Thirtieth AAAI Conference on
Artificial Intelligence.

[Wu et al.2017a] Hao Wu, Heyan Huang, Ping Jian,
Yuhang Guo, and Chao Su. 2017a. Bit at
semeval-2017 task 1: Using semantic informa-
tion space to evaluate semantic textual similar-
ity. Proceedings of SemEval-2017.

[Wu et al.2017b] Zongda Wu, Hui Zhu, Guiling Li,
Zongmin Cui, Hui Huang, Jun Li, Enhong
Chen, and Guandong Xu. 2017b. An efficient
wikipedia semantic matching approach to text
document classification. Information Sciences,
393:15–28.

[Yang2017] Shao Yang. 2017. HCTI at semeval-
2017 task 1: Use convolutional neural network
to evaluate semantic textual similarity.

465


