
Identifying Polysemous Words and Inferring Sense Glosses
in a Semantic Network

Maxime Chapuis
ENSIMAG

maxime.chapuis@ensimag.fr

Mathieu Lafourcade
LIRMM

mathieu.lafourcade@lirmm.fr

Introduction
The present paper aims at detecting polysemous words from their hypernyms. For instance, a native

speaker knowing that the French word frégate (frigate) is a ship and a bird can easily guess that frégate
is polysemous. Indeed, it is difficult to conceive something being both a ship and a bird at the same time.
We can say that those two hypernyms are "incompatible". If one had a list of all incompatible hypernyms
(which will be referred as incompatibility rules later in this paper), one could easily detect polysemous
words. Is it possible to create such a list ? Can it be done automatically ? To answer these questions we
experimented on the French lexical-semantic network JeuxDeMots, Lafourcade (2007), which a free and
open resource.

Identifying polysemous words is crucial in order to understand a text. It is usually done by detecting
high density components in co-occurrence graphs created from large corpora, as in Véronis (2003).
Similar methods have been used by Dorow and Widdows (2003) and Ferret (2004) to discover word
senses also in corpora. To detect the different dense areas of their graphs, Dorow and Widdows (2003)
used the Markov Cluster Algorithm, van Dongen (2000). These methods are very effective, but they
highly depend on the corpora used to create the graphs which might induce many biases. To choose the
proper glosses for naming the different word senses, Dorow and Widdows (2003) used the hypernyms
present in the lexical network WordNet, Fellbaum (1998). WordNet is also used by Ferret (2004) to
evaluate his results. We experimented our approach on the French lexical-semantic network JeuxDeMots,
and there is no other complete enough french resources equivalent to WordNet to automatically compare
our results to. Hence, we had to rely on some manual evaluation.

In this paper, we will first present the JeuxDeMots network and some of its specificities. Then, we
will detail the method we used (a) for generating list of incompatible hypernym and then (b) for inferring
glosses for naming word senses, followed by some evaluations.

1 Methods for Dealing with Incompatibilities and Glosses

1.1 Few Aspects of the JeuxDeMots Lexical-Semantic Network

JeuxDeMots (JDM), Lafourcade (2007) is a French lexical-semantic network. It is a knowledge base
containing lexical and semantic information. The network is composed of terms (nodes) and relations
(edges). The relations between nodes are typed, oriented and weighted. Around 100 relation types
are defined, such as synonymy, antonymy, generic (hypernymy), specific (hyponymy) and refinements.
Refinements are representations of word senses or usages.

The different refinements of a given term T take the form of (T, glosses) pairs, as T>glose1, T>glose2,
..., T>glosen. Glosses are terms that help the reader to identify the proper meaning of T. For instance,
the French term frégate (frigate), which is a ship and a bird, has two refinements, frégate>navire and
frégate>oiseau. Thus, a term T is linked to its refinements in the network, through a specific relation
type (r_semantic_raff).

1.2 Generating Incompatibility Rules

The algorithm used to generate the rules relies on the refinements present in JDM to partition sets of
hypernyms (there are around 26 000 refined terms and more than 69 000 refinements in the network).

Let T be a refined term of JDM with two refinements A and B. Suppose that T has only two hyper-
nyms and that one is a hypernym of A and the other a hypernym of B. Partitioning the hypernyms of T
is trivial because you only have to put one hypernym in a partition and the other in a different partition.

Let’s go further and assume that A and B have now multiple hypernyms. The algorithm still creates
two partitions but this time, it selects among the hypernyms of T, every hypernym h which is only in A
or only in B, and puts it in the corresponding group. These groups can be expressed as:

GA = {h ∈ hypernyms(T) ∧ h ∈ hypernyms(A) ∧ h /∈ hypernyms(B)}
GB = {h ∈ hypernyms(T) ∧ h /∈ hypernyms(A) ∧ h ∈ hypernyms(B)}

(1)

This process can be generalised to n sets of hypernyms. Let’s assume now that T has n refinements
R1, R2, ..., Rn, then the algorithm selects among the hypernyms of T, every hypernym h which is only
present in one refinement and creates the corresponding groups. The previous expression becomes:

∀j 6= i, GRi = {h ∈ hypernyms(T) ∧ h ∈ hypernyms(Ri) ∧ h /∈ hypernyms(Rj)} (2)

This algorithm gives us a way to group the hypernyms of T. Let’s run it on an example:

hypernyms (T) = {a , b , c , d , e , f }
hypernyms (R1) = {a , b , c , g}
hypernyms (R2) = {a , d , h}
hypernyms (R3) = {e , f , i , j }

GR1 = {b , c } GR2 = {d} GR3 = {e , f }

The hypernym a is present in both R1 et R2, therefore it is ignored (it does not meet the condition
(2)). The hypernyms b and c are both hypernyms of T and are only in the refinement R1, thus they end
up in the group corresponding to R1. It goes the same way for d, e and f which are only in R2 and R3.
The hypernyms g, h, i et j are ignored because they are not hypernyms of T.

The hypothesis we made is that, if for a term T with n senses the algorithm produces the groups
G1, G2, ..., Gn, the hypernyms of a group are incompatible with the hypernyms of all the other groups,
meaning that for i 6= j:

∀x ∈ Gi,∀y ∈ Gj , x incompatible y (3)

The generated rules are represented as:

hypernym1 | hypernym2 | o r i g i n | GroupID1 | GroupeID2

where :

• hypernym1 and hypernym2 are two incompatible hypernyms ;

• origin is the refined term used to generate the rule ;

• GroupID1 (resp. GroupID2) is a unique integer identifying the group where hyperonyme1 (resp.
hyperonyme2) belongs.

Here is an example of a rule:

n1 =" p a p i l l o n > i n s e c t e " | n2 =" o i s e a u > a n im a l " | o r i g i n =" empereur " | g Id1 =2192 | g Id2 =2191

The hypernym papillon>insecte (butterfly>insect) is incompatible with oiseau>animal (bird>animal).
The rule was generated using the term empereur which in French is both the name of a butterfly and
the name of a bird. The hypernym papillon>insecte belongs to the group 2192 and oiseau>animal to
the group 2191. The group identifiers will be used later in section 1.4 to choose the right glosses of the
refinements.

However, you should proceed with caution when using this method because the JDM network is not
complete yet. It contains many silences1 which could lead to the production of false rules. Let’s take the
example of the French term aubergine (eggplant) and its two refinements "aubergine>plante potagère"
(eggplant) and "aubergine>contractuelle" (policewoman) :

hypernyms (a u b e r g i n e) = { p l a n t e , femme , pe r sonne , e u c a t y o t e , e t r e v i v a n t }
hypernyms (a u b e r g i n e > p l a n t e p o t a g e r e) = { p l a n t e , e u c a r y o t e , e t r e v i v a n t }
hypernyms (a u b e r g i n e > c o n t r a c t u e l l e) = {femme , pe r sonne , e t r e v i v a n t }

If you follow the algorithm as it was presented, you will produce the following rules : plante incom-
patible femme, plante incompatible personne, eucaryote incompatible femme, eucaryote incompatible
personne. The absence of eucaryote (eukaryote) in the hypernyms of aubergine>contractuelle leads the
the production of two false rules (eucaryote incompatible femme and eucaryote incompatible personne).
One solution to the problem would be to add the hypernym eucaryote to aubergine>contractuelle. How-
ever, the fact that a policewoman is a eukaryote seems to be irrelevant even if ontologically true.

Another solution is to intentionally ignore the hypernyms which are high in the hierarchy. For in-
stance être vivant(living being) or métazoaire (metzoan) seem too general to give us useful information.
Therefore, the algorithm uses a list of around 50 hypernyms to ignore such as biconte (bikont), uniconte
(unikont), chose (thing) , organisme (organism), etc. .

1.3 Checking Produced Rules
Despite the previous filtering, the list of rules still contains false or non-productive rules. A rule is

considered valid if there are at least two examples to back it up and productive if it produces at least one
result. This is a way to remove rules that are too specific from the list. For each rule (A incompatible B),
the algorithm searches in the network the terms which have both A and B as hypernyms. Let x be a term
having A and B as hypernym. If x is already refined in JDM, x is considered as an example of the rule
and will be used to validate it (there is at least one example to each rule: the term used to generate it). If
x is not refined, it is considered as a result of the rule.

We have noticed that rules which have more results than they have examples tend to be false, therefore
they are not validated by the algorithm. Being restrictive when validating the rules is not really a problem.
Since they are created in groups (cf section 1.2), there is some redundancy in the list, the results of the
rules created from the same groups usually overlap.

Another criteria we used to validate a rule, is that A should not be a hypernym of B and B should
not be a hypernym of A, otherwise the rule is most likely false. For instance, the rule "félin (feline)
incompatible mammifère (mammalian)" is false because a feline is a mammalian.

At the end of this process, we end up with a list of validated rules. The results of these rules are
annotated as "to refine or to correct". Indeed, a term can be detected as polysemous because of an
incorrect relation of hypernymy. Therefore the results should be double-checked by an expert. The
results are stored as: the term detected polysemous, followed by the rules violated by the term. Here is
an example of result for the term danois:

d a n o i s
n1 =" mammifere " | n2 =" l a n g u e " | o r i g i n =" mangue " | g Id1 =1342 | g Id2 =1340
n1 =" mammifere c a r n i v o r e " | n2 =" langue >7 526 6" | o r i g i n =" p e r s a n " | g Id1 =10767 | g Id2 =10765
n1 =" langue >75 266 " | n2 =" animal >117095" | o r i g i n =" mara " | g Id1 =919 | g Id2 =918
n1 =" langue >75 266 " | n2 =" mammifere " | o r i g i n =" mara " | g Id1 =919 | g Id2 =918

In this example, danois has been detected as polysemous because in French this term refers to both
the Danish language and a dog breed.

1.4 Choosing Glosses

To further automate the process, we created an algorithm capable of finding the glosses of a refine-
ment in most cases. The idea is to use the rules violated by a word to find the different glosses. Let

1A silence is the absence of a relation which should be present between two terms

R1, R2, ...Rn be the rules violated by the term T . It is possible, thanks to the group identifiers previously
created (see section 1.2), to reconstruct groups of hypernyms. Thus, the hypernyms of the Ri rules are
grouped by their group identifiers. These "local" groups ("local" because they are created using the rules
of a specific result) are called the Li. If we apply this to the example danois, we find the following Li

groups:

L1342 = {mammifère}, L919 = {langue>langage}, L10767 = {mammifère carnivore}
L10765 = {langue>langage}, L1340 = {langue}, L918 = {mammifère, animal>zoologie}

(4)

Applying the same process to the entire list of rules gives you back the groups initially created in
section 1.2. These "general" groups ("general" because they are created using every rule of the list) are
called the the Gi. The Gi groups give information about the Li groups, especially which of the Li groups
can be merged together. When creating the Gi groups, if a group contains a refinement, we decided to
add the general term of said refinement to the group. We obtain the following Gi groups for the example
danois:

G1342 = {mammifère}, G919 = {langue, langue>langage}
G10767 = {mammifère carnivore, carnivore, félin,mammifère}

G10765 = {langue, langue>langage}, G1340 = {langue}
G918 = {mammifère, animal, animal>zoologie, rongeur}

(5)

Because of the way they are created, we have the following relation between the Li and the Gi:
∀i, GroupID(Li) = GroupID(Gi) and Li ⊆ Gi (6)

After that, the algorithm merges the "local" groups which have an intersection with the "general"
groups different from null. For instance, if (L1342 ∩G918) 6= ∅, it merges L1342 and L918. The merge of
the groups can be written as:

(Li ∩Gj 6= ∅)⇒ merge(Li, Lj) (7)

When applying this process to the example danois, the algorithm merges its Li into two groups:

L10767 = {mammifère carnivore,mammifère, animal>zoologie}
L10765 = {langue>langage, langue}

(8)

Finally, the algorithm selects in each group the hypernym which has the biggest weight in the net-
work. These hypernyms are used as glosses of the refinements of T. For the term danois, the algo-
rithm suggests the refinement "danois>mammifére" (mammalian) for the dog breed, and the refinement
"danois>langue" (language) for the Danish language. The glosses found by the algorithm are not always
as accurate as the ones that a human would give, but they are usually true.

2 Results and Discussion
With this method, we created 25 119 rules, 2 785 of which have been validated. With these rules,

our system identified 3 171 words as polysemous. To assess the precision of these results, we conducted
two experiments. The first one aims to evaluate the performances of the detection of polysemous words.
To do that, we selected a sample of 320 terms identified as polysemous, and we checked every term
manually (it represents 10% of all the words identified) (see table 1).

Correctly identified False positive Precision Error
285 35 89% 11%

Table 1: Precision of the identification of polysemous words on a 320 terms sample

False positives are either due to incorrect rules or to errors in the network. Indeed, if a term has
incorrect hypernyms, the term might be identified as polysemous, even if it is not. However, false

positives are interesting because finding and correcting them can help to increase the overall network’s
accuracy.

The false negatives are all the unrefined polysemous words of JDM that were not identified as such.
False negatives can happen when the words do not have enough hypernyms or when the system does
not have the rules needed to identify them. Given the size of the network (more than 2 000 000 terms
and 100 000 000 relations) it is difficult to explore the network manually in order to find the number
of false negatives. It is important to note that this method is best used on nouns and named entities
because adjectives and verbs tend to have fewer hypernyms than nouns and therefore are less susceptible
to produce good results.

The goal of the second experiment was to test the accuracy of the inferred glosses. To do so, a sample
of 300 polysemous words was selected. The glosses were then sorted in two categories. They were either
considered "Correct", meaning that the system found one appropriate gloss for each discovered senses,
or considered "Ambiguous or Inaccurate", meaning that the glosses found were too ambiguous to make
the difference between the different senses, or that the system found to many glosses2.

Correct Ambiguous or Inaccurate
232 68
77% 23%

Table 2: Accuracy of inferred glosses on a 300 polysemous words sample

As you can see in table 2, the results are encouraging but the process of finding the glosses auto-
matically still needs some improvements. It is not accurate enough yet to be used without a human
verification. It is a quite difficult topic, and even when the glosses are "correct", they are less accurate
than the glosses given by humans.

Conclusion
In this paper we have presented two approaches (a) to identify polysemous words in a lexical-

semantic network, and (b) naming the discovered word senses by inferring adequate glosses. The results
obtained on the JeuxDeMots network are promising as they both contributed to the network refinement
and to the increase of its accuracy by detecting potential errors.

A possible improvement, if computation time is not critical, could be to enhance the precision of the
glosses by selecting terms that are the most connected in the neighbourhood in the network instead of
just choosing the term which weight is the highest.

References
Dorow, B. and D. Widdows (2003). Discovering Corpus-Specific Word Senses. EACL 2003, pp. 79-82.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Bradford Books.

Ferret, O. (2004). Découvrir des sens de mots à partir d’un réseau de cooccurrences lexicales. TALN
2004.

Lafourcade, M. (2007). Making people play for Lexical Acquisition with the JeuxDeMots prototype. In
7th International Symposium on Natural Language Processing (SNLP’07).

van Dongen, S. (2000). A cluster algorithm for graphs. Technical Report INS-ROOl 0, National Research
Institute for Mathematics and Computer Science, Amsterdam, The Netherlands, May..

Véronis, J. (2003). Cartographie lexicale pour la recherche d’information. TALN 2003, pp. 265-274.

2It is the case when the system fails to properly merge the groups. As a result, it proposes more glosses than the word have
senses.

