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Abstract

We introduce the notion of a multi-vector sentence representation based on a “one vector per
proposition” philosophy, which we term skip-prop vectors. By representing each predicate-argument
structure in a complex sentence as an individual vector, skip-prop is (1) a response to empirical
evidence that single-vector sentence representations degrade with sentence length, and (2) a repre-
sentation that maintains a semantically useful level of granularity. We demonstrate the feasibility
of training skip-prop vectors, introducing a method adapted from skip-thought vectors, and compare
skip-prop with “one vector per sentence” and “one vector per token” approaches.

1 Introduction

The length and complexity of written natural language sentences is highly variable. Sentences from New
York Times (NYT) stories (August 1997), for example, contain on average 23 tokens, with a standard
deviation of 12. By information-theoretic measures, too, natural language sentences convey differing
amounts of information (Hale, 2003; Genzel and Charniak, 2002). It is natural to suppose, then, that
methods in computational linguistics that aim to learn fixed-size semantic representations of sentences,
i.e., with vectors of fixed dimension, may be limited in their expressiveness or efficiency. Indeed, on
many NLP tasks for which neural sentence embedding methods have been adapted, degraded perfor-
mance on longer input sentences is commonly observed: in machine translation (Cho et al., 2014),
question-answering (Kumar et al., 2016), and semantic role labeling (Zhou and Xu, 2015), for example.

Motivated by these observations, we introduce skip-prop vectors, a method for learning multi-vector
sentence representations following a “one vector per proposition” strategy. Our approach is based on
the skip-thought method of Kiros et al. (2015), which combines neural sequence-to-sequence models
(Sutskever et al., 2014) with a skip-gram-like training objective (Mikolov et al., 2013) to obtain general-
purpose sentence representations as a fixed-size vector. Skip-prop capitalizes on the idea that a complex
sentence may be represented in terms of the simpler sentences, or propositions, that constitute it.

2 Motivation

There are many potential motivations for taking a “one vector per proposition” approach to representing
the meaning of a sentence. As discussed in §1, it has been observed that NLP approaches that em-
bed an entire sentence into a single, fixed-size vector may degrade in performance on longer sentences.
One answer to this problem is to use finer-grained, multi-vector sentence representations that can grow
with sentence complexity. Indeed, most neural (or otherwise continuous-space) models of sentences
provide some finer-grained vector representations, most notably at the token level (i.e., standard RNN
implementations), sub-token level (Sennrich et al., 2016), character-level (Kim et al., 2016), and syntac-
tic constituent level (Dyer et al., 2016), and are often used in task-specific attention mechanisms. For
many tasks involving search or attention, however, such as open question-answering or document-level
analysis, preserving each such intermediate representation may be prohibitively expensive.



In comparison to other fine-grained, multi-vector representations, skip-prop offers two advantages:
(1) the number of propositions (and hence vectors) per sentence is relatively few, and (2) the proposition
is its own interpretable unit of meaning. Figs. 1 and 2 illustrate the granularity-expense tradeoff between
one-vector-per sentence, proposition, and token representations. One sentence on average corresponds to
3.5 propositions and 22.8 tokens.1 Which point in this tradeoff is optimal is likely a task-specific matter;
by training skip-prop vectors, however, we introduce a new point in this tradeoff scale.

Figure 1: Histogram shows typical NYT documents
contain more propositions than sentences, and many
more tokens than propositions. (Log scale x-axis.)

Figure 2: Scatter plot shows longer sentences contain
more propositions. Most sentences contain fewer than
50 tokens, and fewer than 8 propositions.

3 Background
Sequence-to-Sequence Models Sequence-to-sequence (seq-to-seq) models are a class of neural net-
works that compute the conditional probability of an output sequence given an input sequence, i.e.,
P (y1...yn|x1...xm). They have been applied to many tasks in NLP (Bahdanau et al., 2014; Vinyals et al.,
2015; McClosky et al., 2006), though here we train them to encode multi-vector sentence representations.

Typical seq-to-seq models consist of two recurrent neural networks (RNNs): an encoder and de-
coder, which iterate over the input and output sequences, respectively. The final hidden state of the
encoder RNN, hm, is passed as the initial state to the decoder RNN. Thus, the vector hm is a represen-
tation of the entire input, and the decoder computes the conditional distribution: P (y1...yn|x1...xm) =
P (y1...yn|hm) =

∏n
i=1 P (yi|y<i, hm). We train skip-prop with a multi-encoder, multi-decoder variant

of seq-to-seq (§4), borrowing aspects of the skip-thought vector model (Kiros et al., 2015).

Sentences to Propositions Our method of learning a “one vector per proposition” representation relies
on the use of PredPatt2, a publicly-available tool for predicate-argument analysis of sentences, run atop
Universal Dependency parses.3 PredPatt extracts predicate-argument structures, or propositions, from
sentences, including those arising from embedded clauses within the sentence. (See example in Fig. 3.)
Though formal accounts of what constitutes a proposition may vary (McGrath, 2014), here we refer to a
single extracted pattern as a proposition, comprising one fully-specified predicate-argument structure.

?a extracts ?b from ?c ?a extracts ?b from ?c
?a: PredPatt ?a: PredPatt
?b: predicates ?b: arguments
?c: text ?c: text

Figure 3: An analysis of the sentence “PredPatt extracts predicates and arguments from text.” Two propositions
are extracted (when option to resolve conjunctions is enabled).

1Note that a binary parse of a sentence with N tokens has N-1 non-leaf nodes.
2https://github.com/hltcoe/PredPatt (commit eb42a8e, run with all flags enabled)
3Our method for training skip-prop vectors is in principle extensible to any language with UD parsers.



Pat   ate   pie   and   jam     . Pat   ate   pie   and   jam    . Pat    ate    jam     . Pat    ate    pie      . 

Figure 4: Left to right, encoders for ST, STA, and SP models. Each vertical rectangle represents the LSTM hidden
state, h. Only shaded states are visible to the decoders. SP has one encoder per proposition.

Linearization We use a simple method to linearize each extracted proposition into a sequence of tokens
so that each may be encoded by a linear-chain RNN. Specifically, each argument variable (?a, ?b...) in
the predicate pattern is replaced with the argument it stands for. Thus, linearizing the extraction in Fig.
3 yields “PredPatt extracts predicates from text” and “PredPatt extracts arguments from text.”

4 Models

We compare skip-prop vectors (SP) with two other representations: skip-thought vectors (ST) as “one
vector per sentence,” and skip-thought vectors with attention (STA) as “one vector per token.” (Fig 4.)

These models’ architectures have many overlapping components, which we present in a unified fash-
ion, drawing distinctions across models as necessary. Each model is a variant of seq-to-seq (encoder-
decoder), trained on sentence tuples, (sl, sc, sr), where sentences sl and sr are the left (previous) and
right (next) context sentences of sentence sc in a text document, following the approach of Kiros et al.
(2015). The encoder (one or more RNNs) computes a representation of sc and passes it to a left RNN
decoder and a right RNN decoder, which compute P (sl|sc) and P (sr|sc), respectively. Together, the
two decoders determine the total loss of the network: −log(P (sl|sc)) + −log(P (sr|sc)). We refer to
this as the “skip-thought objective” (in contrast with the “autoencoder objective,” described below). The
gradient of each network parameter with respect to this loss is computed using backpropagation, and all
parameters are updated according to the Adam optimization algorithm for stochastic gradient descent.

For notation, we say sentences sl, sc, and sr consist of L, C, andR tokens, each. The tokens of sc are
w1
c , ..., w

C
c with corresponding embeddings x1c , ..., x

C
c . For skip-prop, sc is preprocessed with PredPatt

(§3), generating propositions π1, ..., πP . A proposition πp is a sequence of Cp tokens w1
p, ..., w

Cp
p .

Encoder Both skip-thought models (ST and STA) use the same encoder: one RNN with a long short-
term memory (LSTM) cell (Hochreiter and Schmidhuber, 1997). At time step t, the LSTM cell applies
its recurrent update equations to its previous state, (ct−1, ht−1), and an input, xt, to yield its new state,
(ct, ht). The final hidden state of the encoder, hC , represents the entire input sequence sc.

Skip-prop uses an identical LSTM architecture in its encoder; however, because skip-prop has P
input sequences (i.e., one per proposition πp, instead of just one for the full sentence sc), it uses P iden-
tical copies of this LSTM (with shared parameters) to encode each proposition. Thus, the P encoders
of skip-prop yield P final-state representations, hC1

1 , ..., hCP
P , to be passed to the decoders. An attention

mechanism is used in the skip-prop decoders to accommodate this variable number of vectors passed
from the encoder (see below). The dimensionality of h and x is 256 for all models.

Decoder The ST, STA, and SP models all use two LSTM-based decoders, with the same basic architecture
as the LSTM encoder (see above). In each model, the left and right decoders are identical (though with
separate parameters), so we sometimes drop the l and r subscripts. For clarity, dt denotes the decoder
hidden state, akin to ht in the encoder. For models ST and STA, the decoder’s hidden state is initialized as
the final hidden encoder state, i.e. d0 = hC ; in SP, d0 is a trainable parameter. The dimensionality of the
hidden decoder states d is the same as the encoder state for all models (256). Each decoder computes the
probability of an output sequence, i.e. sl or sr, conditioned on the encoder’s representation of sc (§3).
For the right-hand decoder, specifically,

P (yi|y<i, hm) = P (wt
r|w<t

r , hC) = P (wt
r|dt) = softmax(dTt Wd) (1)



Model Skip-Thought Obj. Autoencoder Obj.
train dev test train dev test

Skip-Thought (ST) 171.32 223.72 216.00 74.22 87.63 88.60
Skip-Thought w/ Attn. (STA) 152.89 204.51 199.16 2.04 2.20 2.22
Skip-Prop (SP) 169.29 213.01 206.29 29.69 41.42 43.21

Table 1: Average per-token perplexity, both with skip-thought and autoencoder objectives.

where Wd is an output vocabulary embedding matrix, also a trainable parameter.

Attention Mechanism The decoder described in the previous section is modified in the case of models
STA and SP with an attention mechanism. Our attention mechanism is adapted from Vinyals et al. (2015).
At each time step in the decoder, a weighted average over a set of vectors passed from the encoder is
dynamically computed. In STA, this set is all encoder hidden states h1...hC ; in SP, it is the final hidden
state of each encoder (one per proposition), i.e. hC1 . . . hCP

. The weighted average at decoder time t is
computed according to Vinyals et al. (2015):

ati = softmaxi(vTtanh(W1hi +W2dt)) (2) d′t = h1a
t
1 + h2a

t
2 + ...+ hCa

t
C (3)

where W1, W2, and v are learnable parameters. The resulting vector d′t is concatenated with dt to create
a new decoder output, though the hidden state as passed to the next time step remains unchanged. A re-
sult of this concatenation step, the output embedding matrix (Wd) in STA and SP is doubled in dimension.

Autoencoder Variant We train a second version of each model with an autoencoder-like objective in
place of the skip-thoughts objective. That is, rather than use two decoders to predict the left and right
context sentences, use a single decoder to predict the original sentence that was fed to the encoder (sc).
The autoencoder variant of each model is designated with the suffix -AUTO.

5 Experiments

Data All training, development, and test data consist of articles from the NYT portion of the Concretely
Annotated Gigaword corpus labeled “story” (Ferraro et al., 2014). Train is 100K random sentence triples
from Aug. 1997 NYT stories; development is 5K random sentence triples from Sept. 1997; and test is
5K random sentence triples from Oct. 1997. The vocabulary is approximately 39K tokens from Sept.
1997 NYT with minimum frequency of 15. Each model is trained for one epoch on the entire train set
using mini-batches of size 1. As described in §4, a sentence triple (sl, sc, sr) consists of a contiguous
set of three sentences from a news story: a “left,” “center,” and “right” sentence. For the qualitative
nearest-neighbor experiments, two datasets are used: (1) a 100K superset of the NYT development set
(Sept. 1997), and (2) all sentences from the SICK corpus (Marelli et al., 2014).

Results As a preliminary evaluation of skip-prop vectors, we present both quantitative and qualitative
results. These results show that (1) it is feasible to train skip-prop vectors with our proposed method, and
(2) some notion of semantic similarity over propositions is preserved in this representation.

Table 1 shows the perplexity attained by each model. Here, perplexity is computed either from
the two decoders’ predictions of the left and right context sentences (skip-thought objective), or one
decoder’s prediction of the original sentence (autoencoder objective). In all cases, the skip-prop models
score in between skip-thought and skip-thought with attention models. This is not surprising: the skip-
prop decoder has, on average, access to more vectors than the skip-thought decoder, but fewer than the
skip-thought with attention decoder.4 (See Figs. 4 and 1.) This kind of result supports the plausibility

4This result is particularly magnified under the autoencoder objective, where the skip-thought with attention model attains
very low perplexity by learning to attend to the token it needs to decode at each step.



of skip-prop vectors as a sentence representation that successfully trades off between the size and cost of
one-vector-per-sentence strategies (ST) and one-vector-per-token strategies (STA).

Table 2 shows the qualitative results of a nearest neighbor search for both skip-thought and skip-prop
vectors. We use both in-domain and out-of-domain data: 100K sentences from our NYT development
set, and about 40K sentences from the SICK corpus (Marelli et al., 2014). Both query sentences are
a random sentence from NYT or SICK with a correct predicate-argument analysis. The corresponding
query propositions are each an extracted proposition from the query sentence.

The results in Table 2 suggest that skip-prop vectors provide a useful level of granularity for repre-
senting sentence meaning. For example, the NYT query sentence contains multiple salient propositions
(?a owns ?b, ?a will jettison ?b, etc.). While the skip-thought representation must pack all
of this information into a single vector, skip-prop vectors allow us to represent each proposition individ-
ually. Accordingly, in the corresponding NYT query proposition, we see that it is possible to isolate a
particular proposition of interest (?a owns ?b) and find nearest-neighbors of that proposition, without
regard to rest of the sentence’s content. This allows a more targeted search using skip-prop vectors.

NYT Query Sentence: H&R Block Inc. , which owns 80 percent of CompuServe , will jettison a business it ’s been trying to
unload for more than a year .
(ST) New Mexico would notify New York when they release convicted murderers into the Empire State ; New York would
notify New Mexico .
(ST-AUTO) IAI Balanced Fund is for investors who want a little bit of everything , Hoelting said .
(SP) The Air Line Pilots Association and US Airways management have been at odds over the labor contract since for more
than a year .
(SP-AUTO) H&R Block Inc. , which owns 80 percent of CompuServe , rose 11/16 to 40 7/8 .

NYT Query Proposition: H&R Block Inc. owns 80 percent of CompuServe
(SP) H&R Block Inc. , the Kansas City , Missouri , tax preparation company that owns 80 percent of CompuServe , will save
on taxes by minimizing its gain on the sale .
(SP-AUTO) Charterhouse owns 80 percent of HRC , while Accor owns the rest .

SICK Query Sentence: The woman with a black hat is wearing sunglasses
(ST) The blonde girl with the pink top is smiling and wearing funny glasses with a large nose attached
(ST-AUTO) the black and white dog is running outdoors
(SP) The man with brown hair is wearing sunglasses and is sitting listlessly at a table with cans of soda and other drinks
(SP-AUTO) The woman is sitting on a bench and is wearing a gray jacket and black pants

SICK Query Proposition: a hat is/are black
(SP) A dog and a black man are running through brown leaves [a man is/are black]
(SP-AUTO) A bride with a black veil is looking down [a veil is/are black]

Table 2: 1-best nearest-neighbor search over sentences and propositions, using vectors from trained skip-thought
(ST) and skip-prop (SP) encoders. Both training objectives, “skip-thought” and “autoencoder” (-AUTO) are com-
pared. Resulting nearest-neighbor propositions are shown within the full sentence they were extracted from; how-
ever, only the proposition’s predicate and arguments are represented in its vector. Scoring by cosine similarity.

6 Conclusion

In this paper, we have proposed skip-prop vectors, a multi-vector sentence representation that extends the
approach of skip-thought vectors (Kiros et al., 2015), to represent sentences according to a one-vector-
per-proposition strategy. We have discussed how skip-prop vectors offer a potential solution to the
observed issue of RNN performance degradation on longer sequences, allowing the sentence representa-
tion to grow roughly with its length or information content. We have also demonstrated how skip-prop
vectors offer a new trade-off point between one-vector-per-sentence and one-vector-per-token strategies,
balancing representation size (number of vectors) with performance (test perplexity), at a meaningful
level of granularity (the proposition). Test perplexity results indicate that the skip-prop representation is
feasible to train, while qualitative results suggest that skip-prop vectors capture some notion of meaning
at the proposition level. We believe that this set of attributes makes skip-prop vectors a potentially suit-
able representation for tasks like question-answering, summarization, or machine reading, and hope to
pursue such applications in future work.
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