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Abstract

We present an approach to non-factoid answer selection with a separate component based on
BiLSTM to determine the importance of segments in the input. In contrast to other recently proposed
attention-based models within the same area, we determine the importance while assuming the
independence of questions and candidate answers. Experimental results show the effectiveness of our
approach, which outperforms several state-of-the-art attention-based models on the recent non-factoid
answer selection datasets InsuranceQA v1 and v2. We show that it is possible to perform effective
importance weighting for answer selection without relying on the relatedness of questions and answers.
The source code of our experiments is publicly available.1

1 Introduction

Answer selection is an important subtask of question answering (QA) that enables choosing one final
answer from a list of candidate answers in regard to the input question (Feng et al., 2015; Wang and
Nyberg, 2015). QA itself can be divided into factoid QA, which enables the retrieval of facts, and non-
factoid QA, which enables finding of complex answer texts (e.g. descriptions, opinions, or explanations).
Answer selection for non-factoid QA is especially difficult because we usually deal with user-generated
content, for example questions and answers extracted from community question answering platforms
or FAQ websites. As a consequence, candidate answers are complex multi-sentence texts with detailed
information. Two examples are shown in Figures 2 and 3.

To deal with this challenge, recent approaches employ attention-based neural networks to focus on
segments within the candidate answer that are most related to the question (Tan et al., 2016; Wang et al.,
2016). For scoring, dense vector representations of the question and the candidate answer are learned
and the distance between the vectors is measured. With attention-based models, segments with a stronger
focus are treated as more important and have more influence on the resulting representations.

Using the relatedness between a candidate answer and the question to determine the importance is
intuitive for correct candidate answers because the most important segments of both texts are expected to
be strongly related. However, we also deal with a large number of incorrect candidate answers where the
most important segments are usually dissimilar to the question. In such cases, the relatedness does not
correlate with the actual importance. Thus, different methods for determining the importance could lead
to better representations, especially when dealing with incorrect candidate answers.

In this work, we therefore determine the importance of segments in questions and candidate answers
with a method that assumes the independence of both items. Our approach usesCNN andBiLSTM for
representation learning and employs a separate network component based onBiLSTM for importance
weighting. Our general concept is similar to self-attention mechanisms that have recently been integrated

1https://github.com/UKPLab/iwcs2017-answer-selection



to models for natural language inference and sentiment classification (Lin et al., 2017; Liu et al., 2016).
They however employ feedforward components to derive importance values and deal with classification
problems. In contrast, we directly compare learned representations with a similarity measure and derive
the importance using a separateBiLSTM, which was motivated by the effectiveness of stacked models in
answer selection (Tan et al., 2016; Wang and Nyberg, 2015).

We evaluate our approach on two non-factoid answer selection datasets that contain data from a
community question answering platform: InsuranceQA v1 and InsuranceQA v2. In comparison to other
state-of-the-art representation learning approaches with attention, our approach achieves the best results
and significantly outperforms various strong baselines. An additional evaluation on the factoid QA dataset
WikiQA demonstrates that our approach is well-suited for other scenarios that deal with shorter texts.
In general, we show that it is possible to perform effective importance weighting in non-factoid answer
selection without relying on the relatedness of questions and candidate answers.

2 Related Work

Earlier work in answer selection relies on handcrafted features based on semantic role annotations (Shen
and Lapata, 2007; Surdeanu et al., 2011), parse trees (Wang and Manning, 2010; Heilman and Smith,
2010), tree kernels (Moschitti et al., 2007; Severyn and Moschitti, 2012), discourse structures (Jansen
et al., 2014), and external resources (Yih et al., 2013).

More recently, researchers started using deep neural networks for answer selection. Yu et al. (2014),
for example, propose a convolutional bigram model to classify a candidate answer as correct or incorrect.
Similar but more enhanced, Severyn and Moschitti (2015) use aCNN with additional dense layers to
capture interactions between questions and candidate answers, a model that is also part of a combined
approach with tree kernels (Tymoshenko et al., 2016). And Wang and Nyberg (2015) incorporate stacked
BiLSTMs to learn a joint feature vector of a question and a candidate answer for classification.

Answer selection can also be formulated as a ranking task where we learn dense vector representations
of questions and candidate answers and measure the distance between them for scoring. Feng et al. (2015)
use such an approach and compare different models based onCNN with different similarity measures.
Based on that, models with attention mechanisms were proposed. Tan et al. (2016) apply an attentive
BiLSTM component that performs importance weighting before pooling based on the relatedness of
segments in the candidate answer to the question. Dos Santos et al. (2016) introduce a two-way attention
mechanism based on a learned measure of similarity between questions and candidate answers. And
Wang et al. (2016) propose novel ways to integrate attention inside and before aGRU.

In this work, we use a different method for importance weighting that determines the importance
of segments in the texts while assuming the independence of questions and candidate answers. This
is related to previous work in other areas of NLP that incorporate self-attention mechanisms. Within
natural language inference, Liu et al. (2016) derive the importance of each segment in a short text based
on the comparison to a average-pooled representation of the text itself. Parikh et al. (2016) determine
intra-attention with a feedforward component and combine the importance of nearby segments. And Lin
et al. (2017) propose a model that derives multiple attention vectors with matrix multiplications. Within
factoid QA, Li et al. (2016) weight the importance of each token in a question with a feedforward network
and perform sequence labeling.

In contrast to those, we apply this concept to answer selection, we directly compare vector representa-
tions of questions and candidate answers, and we use a separate BiLSTM for importance weighting.

3 Representation Learning for Answer Selection

We formulate answer selection as a ranking task. Given a question q and a pool A of candidate answers,
the goal is to re-rank A according to a scoring function that judges each candidate answer a ∈ A for
relevancy in regard to q. The best-ranked candidate answer is then selected. For scoring we learn dense
vector representations of q and a and calculate the similarity between those vectors.
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Figure 1: The network structure ofLW withBiLSTM to learn the unpooled representation (LWBiLSTM).
Numbers in parentheses refer to the related Equations.

Basic BiLSTM Model The best-performing models for representation learning in non-factoid answer
selection are usually based onBiLSTMs (Tan et al., 2016; Dos Santos et al., 2016). Thus, we build our
own approach on a variation of such model. To obtain a representation for an input text we apply anLSTM
on the concatenated d-dimensional word embeddings E ∈ Rl×d of the input text with length l in forward
direction and in backward direction. As a result, we obtain two matrices H→, H← ∈ Rl×c that contain
the state vectors of each recurrence (c is theLSTM cell size). We define the unpooled representation P as
the row-wise concatenation of both matrices and create a fixed-size dense vector representation r of the
question or candidate answer by applying 1-max pooling:

Pi = [H→i , H
←
i ] (1)

rj = max
1<i<l

(Pi,j) (2)

where P ∈ Rl×2·c and r ∈ R2·c.
We can also useCNN for learning text representations. In this case, P contains the values of all filter

operations applied on all n-grams in the input text and the dense vector representation r is calculated with
1-max pooling as before. Formal definitions can be found in (Feng et al., 2015; Dos Santos et al., 2016).

LSTM-Based Importance Weighting (LW) The basicBiLSTM model is often extended with different
attention mechanisms that utilize the relatedness between questions and candidate answers to focus on
the most relevant segments of the texts (Tan et al., 2016; Wang et al., 2016; Dos Santos et al., 2016).
In contrast, we perform importance weighting while assuming the independence of both items. As a
consequence, we do not rely on the relatedness to determine the importance.

Our approachLW is an extension to simple representation learning models and can be used instead
of 1-max pooling. We first create an encoding of the importance for each segment in the unpooled
representation P of a prior component (e.g. the basic BiLSTM) by applying an additional, separate
BiLSTM. We obtain the concatenated output states Q ∈ Rl×2·c of thisBiLSTM where the ith row Qi

contains the state vectors that encode the importance of the ith row in P . We then reduce each row Qi to
a scalar vi and apply softmax on the vector v to obtain scaled importance values that sum to 1.0:

vi = wᵀQi (3)

α = softmax (v) (4)



Dataset Train Valid Test Candidates Correct Answers Answer Length
Questions Questions Questions per Question per Question in Tokens

InsuranceQA v1 12,887 1,000 3,600 500.0 1.4 96.5
InsuranceQA v2 12,889 1,592 1,625 500.0 1.6 111.8
WikiQA 873 126 243 9.8 1.2 25.2

Table 1: Dataset statistics.

where w ∈ Rc are learned network parameters for the reduction operation, vi ∈ R is the (unscaled)
importance value of the ith segment in P , and α ∈ Rl is the resulting importance vector (or attention
vector). Applying softmax is important because we do not want more accumulated importance for
longer texts compared to shorter texts. Finally, we reduce P to a fixed-size dense vector representation r
according to our importance vector α:

rj =
l∑

i=1

αiPi,j (5)

In contrast to average pooling or 1-max pooling, this operation allows different segments in the input to
contribute to r with different strengths (having more or less influence on r). A visualization ofLW that
usesBiLSTM to learn the unpooled representation P is shown in Figure 1.

In general, we always use shared network weights to learn the unpooled representation P of questions
and candidate answers as it is more effective compared to using separate network weights (Feng et al.,
2015). Within the components ofLW we however use separate network weights, which allows the network
to learn different importance weighting behavior for questions and candidate answers. We analyze the
impact of this choice later in Section 5.

4 Experimental Setup

Training We define the loss L as follows:

L = max
(
0, m− s(rq, ra+) + s(rq, ra−)

)

where rq is the learned question representation, ra+ and ra− are learned representations of correct and
incorrect candidate answers, s is cosine similarity, and m is the desired margin between the similarities.
Because such triples are not pre-defined in our datasets, we construct them during training. For a pair of
question and correct answer we randomly sample 50 incorrect candidate answers from the whole training
set and select the candidate with the highest similarity according to our currently trained model.

Datasets We evaluate our models on the two recent non-factoid answer selection datasets InsuranceQA
v1 and InsuranceQA v2 (Feng et al., 2015). In general, both datasets contain more than 15,000 questions
and the candidate answers are long multi-sentence texts. Even though InsuranceQA v1 and v2 were
crawled from the same community question answering website, they model different setups due to a
different sampling strategy that was used to create the candidate answer pools. Whereas in InsuranceQA
v1 the pools were created randomly (plus the correct answers), the pools in InsuranceQA v2 were created
by querying a search engine to retrieve candidate answers that are lexically similar to the question.2

In addition, we also test our approaches on the factoid answer selection dataset WikiQA, which was
constructed by means of crowd-sourcing through the extraction of sentences from Wikipedia articles
(Yang et al., 2015). We use this dataset to test our models within the different scenario of factoid answer
selection that deals with significantly shorter texts. The dataset statistics are listed in Table 1.

2Since the correct answers were not separately inserted in InsuranceQA v2, the pools are not guaranteed to contain a correct
answer. We discard all questions without any correct answer in the associated pool of candidate answers.



Model Valid Test

AttentiveBiLSTM (Tan et al., 2016) 68.9 66,9
IABRNN (Wang et al., 2016) 69.1 67.0
APBiLSTM (Dos Santos et al., 2016) 68.4 69.1

CNN 60.5 58.3
BiLSTM 68.2 65.7
CNN+BiLSTM 68.5 67.3
BiLSTM+BiLSTM 67.5 66.3

LWCNN 70.0 67.9
LWBiLSTM 70.9 70.0*

Table 2: Experimental results on InsuranceQA v1
(accuracy). * = significant improvement against
our other models (p < 0.05, Wilcoxon test).3

Model Valid Test

APBiLSTM (reimplementation) 32.2 31.9

CNN 24.4 24.4
BiLSTM 32.4 31.1
CNN+BiLSTM 33.0 31.4
BiLSTM+BiLSTM 31.2 32.0

LWCNN 33.5 33.7
LWBiLSTM 35.4 36.9*

Table 3: Experimental results on InsuranceQA v2
(accuracy). * = significant improvement against
all other models (p < 0.05, Wilcoxon test).

Models and Baselines We evaluateLW withBiLSTM (LWBiLSTM) andCNN (LWCNN) to learn the
unpooled representations. As baselines we employ BiLSTM and CNN with 1-max pooling and the
stacked variantsCNN+BiLSTM andBiLSTM+BiLSTM, which use aBiLSTM with 1-max pooling
to process the unpooled representation P of the prior component.

A comparison against the stacked models is particularly important because they employ the same
components asLWCNN andLWBiLSTM, but use a different network structure.

Neural Network Setup We performed grid search over several hyperparameter combinations and found
the optimal choices to be similar to hyperparameters of previous work. The cell size of allLSTMs is
141 (each direction), and the number of filters for allCNNs is 400 with size 3. The only exception is
CNN+BiLSTM with 282 filters and a cell size of 282. We use the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 4 · 10−4 and a margin m = 0.2. We initialize the word embeddings with
off-the-shelf 100-dimensional uncased GloVe embeddings (Pennington et al., 2014) and optimize them
further during training. Dropout of 0.3 was applied on the representations before comparison.

We chose different hyperparameters for WikiQA, which we do not list here due to space restrictions.
Details can be found in our public source code repository.

5 Experimental Results

InsuranceQA v1 Our evaluation on InsuranceQA v1 allows us to compare our approach against a
broad list of recently published attention-based models. Table 2 shows the results of our evaluation where
we measure the ratio of correctly selected answers (accuracy). We observe that by addingLW to either
CNN or BiLSTM we can significantly improve the answer selection performance by 9.6% and 4.3%
respectively. This clearly shows thatLW is effective and can be used to extend basic models to learn better
representations of questions and candidate answers. Additionally,LW models are more effective than
stacked models due to the different network structure that we use to explicitly learn importance weights.
Stacked models are less effective because they need to carry the full representation through all components.
Overall,LWBiLSTM significantly outperforms all our other tested models. LWBiLSTM also achieves the
best results compared to other state-of-the-art representation learning approaches with attention such as the
two-way attention modelAPBiLSTM, which derives attention from a learned measure of similarity between
questions and answers. This clearly shows that we can successfully perform importance weighting without
relying on the relatedness of questions and answers.

It is important to mention that Wang and Jiang (2017) very recently experimented with a novel
3We did not have access to the predictions of other top-performing approaches, hence, we report significance against our own

models. We note that the differences are however within the usual margins of this dataset.



Model MAP MRR

APCNN (Dos Santos et al., 2016) 0.6886 0.6957
ABCNN (Yin et al., 2016) 0.6921 0.7127
IABRNN (Wang et al., 2016) 0.7341 0.7418

CNN 0.6204 0.6365
BiLSTM 0.6174 0.6310
CNN+BiLSTM 0.6560 0.6737
BiLSTM+BiLSTM 0.6735 0.6789

LWCNN 0.7102 0.7240
LWBiLSTM 0.6941 0.7039

Table 4: Experimental results on WikiQA com-
pared to recent approaches with attention.

Model InsuranceQA WikiQA
V1 V2 MAP MRR

LWCNN / shared 67.8 34.0 0.6992 0.7112
LWCNN / sep. 67.9 33.7 0.7102 0.7240

LWBiLSTM / shared 68.5 36.1 0.6854 0.6954
LWBiLSTM / sep. 70.0 36.9 0.6941 0.7039

Table 5: Experimental results with shared vs. sepa-
rateLW weights.

method that achieves state-of-the-art results on the InsuranceQA v1 dataset.4 Instead of learning dense
vector representations, they classify pairs of questions and candidate answers with a compare-aggregate
model that performs comparisons on the word level, aggregates this information withCNN, and uses
additional layers to determine the classification result. Because their approach is not learning dense vector
representations, we did not directly compare against it. It would however be possible to use our approach
in their framework to compare segments of weighted unpooled representations.

InsuranceQA v2 The evaluation on InsuranceQA v2 allows us to compare our models within a more
realistic answer selection scenario due to the different creation of candidate answer pools. Because there
are no previously published results, we re-implemented Attentive Pooling withBiLSTM (APBiLSTM) as
proposed by Dos Santos et al. (2016) for a better comparison.5 We report the experimental results in Table
3. Similar to our previous findings,LW significantly improves the answer selection performance ofCNN
andBiLSTM. In contrast,APBiLSTM only achieves minor improvements againstBiLSTM. We expect
this to be an effect of the more realistic candidate answer pools where all incorrect candidates are lexically
similar to the question. Because APBiLSTM uses an explicitly learned measure of similarity between
questions and candidate answers to determine the importance, it assigns high scores to lexically similar
incorrect candidate answers. On the other hand, our experimental results suggest thatLW is not affected
by this issue. As a consequence, our best modelLWBiLSTM significantly outperforms all other approaches,
showing that importance weighting without relying on the relatedness of questions and answers is very
effective within the realistic answer selection scenario of InsuranceQA v2.

Since our best observed accuracy on this dataset is significantly lower than on InsuranceQA v1, we
tried to determine the actual usefulness of our approach. We manually labeled the first 100 incorrectly
selected answers ofBiLSTM andLWBiLSTM for correctness, where a candidate answer is correct if it
contains the information that was requested in the question. In the case ofLWBiLSTM, 50 answers were
labeled as correct, and forBiLSTM the number of correct labels is 44. The improvement ofLWBiLSTM is
often driven by a sharp question focus, which enables to better retrieve answers that contain the requested
information. These numbers indicate that the actual usefulness of our models is higher than the reported
accuracy scores. The primary issue is the number of missing labels in the dataset, which is a result of the
different sampling strategy and the lack of manual relevance annotations. We however did not notice any
particular consequences from this situation beyond under-estimating the model performance.

WikiQA Experiments on WikiQA allow us to test our proposed approach within a different scenario
that deals with considerably shorter texts. Following Yang et al. (2015), we measure MAP and MRR
within our evaluation. The results are listed in Table 4.

Similar to our results on both InsuranceQA datasets, the addition ofLW substantially improves the
answer selection performance. Neither the reduced length of the answers nor the significantly reduced

4They evaluated many different variations of their approach and achieve a maximum accuracy of 74.3%.
5Our re-implementation achieves similar results on InsuranceQA v1 as reported by (Dos Santos et al., 2016).



Figure 2: A visualization of the attention weights of LWBiLSTM and APBiLSTM for a question and a
correct answer. Red colors visualize the relative importance.

size of the training data has a noticeable influence on the performance. Compared to the stacked models,
the performance increase ofLW models is also considerable. Even though our best modelLWCNN does
not achieve state-of-the-art results on this dataset (the best results are currently achieved by Wang and
Jiang (2017) with 0.7433 MAP), we note that it performs on the same level as other top-performing
attention-based models. This suggests that our approach can be suitably applied to scenarios that are
different to non-factoid answer selection.

Separate vs. Shared LW Network Weights To measure the impact of our choice to use separateLW
parameters for questions and candidate answers, we re-ran all experiments with shared parameters and
provide a comparison in Table 5.

We observe that using separate LW parameters leads to improvements in 5 out of 6 cases, where
LWBiLSTM obtains the biggest gains of up to 1.5% accuracy. This suggests that learning separate parame-
ters for the importance weighting of questions and candidate answers can lead to better representations.
Even though this is intuitive because questions and answers are different types of texts, previous work has
shown that using separate network parameters usually results in performance declines (Feng et al., 2015).
However, since we still use shared parameters to learn the unpooled representations and only use separate
parameters inLW , our approach does not suffer from the same optimization issues.

6 Analysis

Importance Weights We qualitatively analyzed the importance weights ofLWBiLSTM andAPBiLSTM

using an end-to-end QA framework with attention visualization (Rücklé and Gurevych, 2017) and
configured it to use InsuranceQA v2. In general, we oberserved that for pairs of questions and correct
candidate answers, the most important segments determined byLWBiLSTM andAPBiLSTM are very similar.
An example is given in Figure 2. We also noticed two important attributes ofLW that contribute to the
previously reported improvements.

First, for incorrect candidate answers with high lexical similarity to the question,LWBiLSTM often
focusses on segments that happen to be unrelated and thus creates dissimilar representations (desired).
In contrast, APBiLSTM, by design, focusses on similar segments and creates similar representations
(undesired). An example is shown in Figure 3, where our approach strongly focusses on a segment within
the question that corresponds to the word when. This requires candidate answers to have a similar focus
in order to achieve a high score (e.g. by describing a date).6 Since this is not the case for the presented
incorrect candidate answer, the representations are dissimilar and the score is low. This allowsLW to
better handle incorrect candidate answers.

And second, we found thatLWBiLSTM very strongly focusses on few highly relevant segments that are
well-suited to describe the overall topic of the text. This leads to representations that are strongly based
on individual aspects and allows the model to filter out noise more effectively because irrelevant segments

6Our approach sometimes focusses on words indicative for the question type (wh-type words), but this is not always the case.
If an important noun is present in the question, LW most often focusses on that (e.g. fire, water, electricity).



Figure 3: A visualization of the attention weights of LWBiLSTM andAPBiLSTM for a question and an
incorrect candidate answer (with high lexical similarity). Red colors visualize the relative importance.

receive lower relative importance. We quantitatively analyzed this property by measuring the strength
of the importance weights for all answers in InsuranceQA v2. For each individual question/answer pair
(correct or incorrect) we determined the maximum values of the importance weights withLWBiLSTM

andAPBiLSTM. Interestingly,LWBiLSTM derives at least one importance weight greater or equal 0.10
within 77% of all answers, and one importance weight greater or equal 0.20 within 24% of all answers.7

APBiLSTM on the other hand does not apply such a strong focus (0% of cases; a very small number). As
a consequence,LW can better ignore irrelevant content because it strongly focusses on few important
segments within the relatively long texts found in InsuranceQA v2.

Error Analysis and Limitations The most common error we observed is related to important aspects
of the question that are not addressed in the selected answer. The question “What is a renters insurance
declaration page?”, for example, contains the aspects what (question type), renters insurance, and
declaration page. WhenLWBiLSTM fails, it usually selects an answer that differs in only one aspect. For
the previous question, our approach selects an answer that describes what the auto insurance declaration
page is (a similar topic). The reason is the inability ofLW to focus on all important aspects of the question
separately. This can also be observed in our previous example in Figure 2, where our approach focusses
on the aspects cover and water damage but ignores homeowners insurance. In this case our approach
would not be able to effectively differentiate between candidate answers that write about renters insurance
instead of homeowners insurance.

To tackle this issue, future work could add a separate classification step after ranking that discards any
top-ranked answers that do not cover all aspects of the question.

7 Conclusion

In this work, we presented an approach to non-factoid answer selection that determines the importance of
segments within questions and answers while assuming the independence of both items. Our experimental
results on the two non-factoid answer selection datasets InsuranceQA v1 and v2 show that our approach is
effective and substantially outperforms various strong baselines and different state-of-the-art attention-
based approaches. Our additional evaluation on WikiQA demonstrates that our proposed approach is
also suitable for different scenarios with shorter texts. We showed that it is possible to perform effective
importance weighting for answer selection without relying on the relatedness of questions and answers.

Acknowledgements

This work has been supported by the German Research Foundation as part of the QA-EduInf project (grant
GU 798/18-1 and grant RI 803/12-1). We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Tesla K40 GPU used for this research. Some calculations for this research were
conducted on the Lichtenberg high performance computer of the TU Darmstadt.

7Segments with a related importance weight of 0.10 have a high influence on the representation (10%).



References

Dos Santos, C., M. Tan, B. Xiang, and B. Zhou (2016). Attentive Pooling Networks. arXiv preprint.

Feng, M., B. Xiang, M. R. Glass, L. Wang, and B. Zhou (2015). Applying deep learning to answer
selection: A study and an open task. In 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), pp. 813–820.

Heilman, M. and A. N. Smith (2010). Tree edit models for recognizing textual entailments, paraphrases,
and answers to questions. In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pp. 1011–1019. Association
for Computational Linguistics.

Jansen, P., M. Surdeanu, and P. Clark (2014). Discourse complements lexical semantics for non-factoid
answer reranking. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 977–986. Association for Computational Linguistics.

Kingma, D. P. and J. L. Ba (2015). Adam: a Method for Stochastic Optimization. In 3rd International
Conference on Learning Representations (ICLR).

Li, P., W. Li, Z. He, X. Wang, Y. Cao, J. Zhou, and W. Xu (2016). Dataset and Neural Recurrent Sequence
Labeling Model for Open-Domain Factoid Question Answering. Arxiv preprint.

Lin, Z., M. Feng, C. N. Dos Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio (2017). A Structured
Self-attentive Sentence Embedding. 5th International Conference on Learning Representations (ICLR).

Liu, Y., C. Sun, L. Lin, and X. Wang (2016). Learning Natural Language Inference using Bidirectional
LSTM model and Inner-Attention. Arxiv preprint.

Moschitti, A., S. Quarteroni, R. Basili, and S. Manandhar (2007). Exploiting syntactic and shallow
semantic kernels for question answer classification. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics (ACL), pp. 776–783. Association for Computational
Linguistics.
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