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Abstract

Reference is a crucial property of language that allows us to connect linguistic expressions to the
world. Modeling it requires handling both continuous and discrete aspects of meaning. Data-driven
models excel at the former, but struggle with the latter, and the reverse is true for symbolic models.

This paper (a) introduces a concrete referential task to test both aspects, called cross-modal entity
tracking; (b) proposes a neural network architecture that uses external memory to build an entity
library inspired in the DRSs of DRT, with a mechanism to dynamically introduce new referents or
add information to referents that are already in the library.

Our model shows promise: it beats traditional neural network architectures on the task. However,
it is still outperformed by Memory Networks, another model with external memory.

1 Introduction

Language combines discrete and continuous facets, as exemplified by the phenomenon of reference (Frege,
1892; Abbott, 2010): When we refer to an object in the world with the noun phrase the mug I bought, we
use content words such as mug, which are notoriously fuzzy or vague in their meaning (Van Deemter,
2012; Murphy, 2002) and are best modeled through continuous means (Boleda and Herbelot, 2016).
Once the referent for the mug has been established, however, it becomes a linguistic entity that we can
manipulate in a largely discrete fashion, retrieving it and updating it with new information as needed
(Remember the mug I bought? My brother stole it! Kamp and Reyle, 1993). Put differently, managing
reference requires two distinct abilities:

1. The ability to categorize, that is, to recognize that different entities are equivalent with regard to
some concept of interest (e.g. two mugs, two instances of the “things to take on a camping trip”
category; Barsalou, 1983). This implies being able to aggregate seemingly diverse objects.

2. The ability to individuate, that is, to keep entities distinct even if they are similar with regard to
many attributes (e.g. two pieces of pink granite that were collected in different national parks). This
implies being able to keep seemingly similar things apart.

Data-driven, continuous models are very good at categorizing, but not at individuating, and the reverse
holds for symbolic models (Boleda and Herbelot, 2016). Our long-term research goal is to build a
continuous computational model of reference that emulates discrete referential mechanisms such as
those defined in DRT (Kamp and Reyle, 1993); here we present initial work towards that goal, with two
specific contributions.

Our first contribution is an experimental task (and associated dataset), cross-modal entity tracking,
that tests the ability of computational models to refer successfully in a setting where they are required
to both categorize and individuate entities. The task presents different entities (represented by pictures)



repeatedly, each time with a different, linguistically conveyed attribute (e.g. a given mug is presented
once with the attribute bought and once with stolen). The category label (“mug”) is not given at exposure
time. The task is to choose the picture of the entity that corresponds to a linguistic query that combines
category information with attribute information (e.g. simulating “the mug that was bought and stolen”),
among the set of all the entities presented in a given sequence. The sequences in each datapoint of our
dataset contain confounders that make the task challenging: Other entities with the same category but only
one matching attribute (e.g. a different mug that was bought and stored), and other entities with the same
attributes but a different category (e.g. a chair that was bought and stolen). Therefore, the task requires
models to 1) correctly categorize entities, recognizing which images belong to the category in the query
(something that is hard for symbolic models), 2) individuate and track them, being able to distinguish
among different entities based on visual and linguistic cues provided at different time steps (something
that is hard for continuous models).

In DRT terms (Kamp and Reyle, 1993), each entity exposure either introduces a new discourse referent
or updates the representation of an old referent with new information. To solve the task successfully, the
model needs to decide, for each incoming exposure, whether to aggregate it with a previously known
referent (in DRT, this means introducing an equation between two referents), or to treat it as a new referent.

Our second contribution is a neural network architecture with a module for referent representations:
DIstributed model of REference, DIRE. DIRE uses the concept of external memory from deep learning
(Joulin and Mikolov, 2015; Graves et al., 2016) to build an entity library for an exposure sequence
that conceptually corresponds to the set of DRT discourse referents, using similarity-based reasoning
on distributed representations to decide between aggregating and initializing entity representations. In
contrast to symbolic implementations of DRT (Bos, 2008), which manipulate discourse referents on the
basis of manually specified algorithms, DIRE learns to make these decisions directly from observing
reference acts using end-to-end training. We see our paper as a first, modest step in the direction of
data-driven learning of DRT-like behavior, and are of course still far from learning anything resembling a
fully fledged DRT system.

2 Cross-modal Entity Tracking: Task and Data

Task. Imagine an office, with a desk where there are three mugs and other objects. Adam tells Barbara
that he just bought two of the mugs and he particularly likes the one on the right. Later they are in the
kitchen, and Adam, busy preparing coffee, asks Barbara: “Remember the mugs I bought? Could you
please bring the one I like?”. To pick the right mug from the office, Barbara must correctly categorize the
objects on the desk (identify which ones are mugs) and individuate them via their properties (singling out
the one Adam is asking for). Also, she must combine visual and linguistically conveyed properties of the
objects: Visual properties tell her which ones are mugs, the properties that Adam told her about help her
pick the right one. Our cross-modal entity tracking task emulates this kind of situation. Our current study
uses a simplified version of the task that allows us to carefully control all the variables involved.

We operationalize the task as one of pointing to real-life pictures of objects. Figure 1 shows a
simplified example. We sample six entities belonging to two categories (in the example, where only three
entities are shown, barkeepers and soldiers). Each entity is represented by one image (that is, barkeeper A
is always represented by the same image). We also sample different attributes, which are compatible with
both categories (in the example, “instructed”, “evaluated”, “amused”). In the exposure phase, we present
each entity (image) twice at different time steps, each time with one of the attributes. In this phase, the
category of the entity in the image is not given to the model, only the images are. At query time, we use a
linguistic query with one category (e.g., “barkeeper”) and two attributes (e.g., “instructed and evaluated”).
The task is to retrieve the image of the entity that corresponds to the query. To solve it, it is not enough to
rely on categorization or object labeling (in the actual task, there are always three entities belonging to
the category in the query), nor is it enough to rely on attribute information (there will always be three
entities for each attribute, and two for the combination of attributes in the query). Note that one important
simplification we make, with respect to a real-life scenario, is that an entity is always represented by the



exposure phase: images of individuals with one linguistic attribute 

query phase: select instructed and evaluated barkeeper

instruct evaluate instruct amuseinstruct evaluate

correct answer

Figure 1: Cross-modal tracking task (actual datapoints contain 12 exposures and 6 images to pick from).

very same image. The current setup is nevertheless already very challenging for current models, as the
experiments below will show. Indeed, to succeed in the task a model must correctly associate the category
in the query with images of the right object, it must develop a mechanism to index entities based on the
images representing them, and it must learn to correctly accumulate over time the different attributes to be
stored with each entity.

The task is related to coreference resolution (see Poesio et al., 2017, for a recent survey), but focuses
on identifying language-external objects from images rather than mentions of a referent in text; to Visual
Question Answering (Antol et al., 2015), but it cannot be solved with visual information alone; and to
Referring Expression Generation (Krahmer and Van Deemter, 2012), but involves identification rather
than generation.

Dataset. We have constructed a dataset for the task containing 40k sequences for training, 5k for
validation and 10k for testing.1 It is assembled on the basis of 2k object categories with 50 ImageNet2

images each, sampled from a larger dataset (Lazaridou et al., 2015). These are natural images, which
makes the task challenging. The object categories given in the queries are those specified in ImageNet.

We build a set of linguistic attributes for each object by first extracting the 500 most associated, and
thus plausible, syntactic neighbors for the category according to the DM resource (Baroni and Lenci,
2010). This excludes nonsensical combinations such as repair:dog. We further retain only (relatively)
abstract verbs taking the target item as direct object.3 This is because (a) concrete verbs are likely to have
strong visual correlates that could conflict with the image (cf. walk dog); and (b) referential expressions
routinely successfully mix concrete and abstract cues (e.g., the dog I own). We remove all verbs with a
score over 2.5 (on a 1–5 scale) in the concreteness norms of Brysbaert et al. (2014).

We then construct each sequence as follows. First, we sample two random categories, and three
random entities (distinct images) for each category (total: six entities). We then sample three attributes
compatible with both categories, giving us three attribute sets of size two (a1+a2, a1+a3, a2+a3) to
associate with the entities. We create a completely balanced set of exposures by randomly pairing up each
of the three entities of each category with each of the three attribute sets. Since this process gives us two
exposures for each entity (one with the first attribute, one with the second), it yields a sequence of twelve
exposures. The query is a random combination of a category and two attributes, guaranteed to match
exactly one entity.

3 The DIRE Model

The core novelty of our model, DIRE (for DIstributed model of REference), is a method to dynamically
construct an entity library, conceptually inspired in 1) the DRSs of DRT,4 and 2) Joulin and Mikolov

1Available at http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/dire.
2http://imagenet.stanford.edu
3We use the base form of verbs rather than the past participle for simplicity.
4DRSs represent many types of information; as explained above, here we focus on entity-related information.



Figure 2: Building the DIRE entity library.

(2015) and Graves et al. (2016), who simulate discrete memory-building operations in a differentiable
continuous setup.5 The model is a feed-forward network enhanced with a dynamic memory (the entity
library), as well as mechanisms to interact with it.

The entity library is updated after reading an input exposure by either creating a new entity slot for the
exposure, or adding the exposure contents to an existing entity slot. This decision is based on the similarity
between the current input and the entities already in the library. This generic mechanism (Section 3.1) can
be applied in any setting that accumulates information about entities over time. We explain how we use it
for our cross-modal tracking task in Section 3.2.

3.1 Building the DIRE Entity Library

Figure 2 depicts the entity library building mechanism. The input to the model is a set of subsequent
exposures x1, x2, . . . , xn which are represented by vectors u1,u2, . . . ,un. At the t-th exposure, the entity
library is updated to state Et as follows. The first exposure vector u1 is added to the entity library as is
(Equation 1). For ui>1, we obtain a similarity profile si by taking its dot product with the entity vectors in
the library (Equation 2; note that si has i− 1 dimensions):

E1 = uᵀ
1 (1)

si = Ei−1ui (2)

The maximum similarity to an existing entity, smax
i = max(si), cues whether xi is an instance of

an entity that has already been encountered before. We transform smax
i into poldi , the probability that

exposure xi corresponds to an “old” entity, as follows (with the scalar w, b parameters shared across all
exposures for i > 1):

poldi = σ(wsmax
i + b) (3)

The entity library is updated by “soft insertion” (Joulin and Mikolov, 2015) of the current exposure
vector ui into the library. Concretely, we add the vector to each entity in the library, weighted by the

5While we developed DIRE, Henaff et al. (2016) proposed a similar architecture; we leave a comparison to future work.



Figure 3: Querying the DIRE entity library.

probability that the current exposure is an instance of that entity. For the i − 1 existing entities, this
probability is obtained by distributing the poldi mass across them, according to their probability of being
the matching entity, conditional on the exposure being old. The latter probability is estimated by softmax-
normalizing the similarity profile si from above. The probability that xi is new is obviously 1− poldi . This
results in the following distribution, where ‖ stands for concatenation:

zi = poldi ∗ softmax(si)‖(1− poldi ) (4)

Note that zi has one value more than the current number of stored entities, expressing the probability
that the current exposure instantiates a new entity.

The entity library is then updated as:

Ui = ziu
ᵀ
i (5)

Ei = (Ei−1‖0) +Ui (6)

Thus, we insert a 0 vector of the same dimensionality as the ui vectors at the end of the library,
initializing a blank slot to store a new entity. As a consequence, the library in its end state will always
contain as many entity vectors as exposures. However, we expect those inserted for exposures of old
entities (that is, when poldi ≈ 1) to be near zero, and removable from the library along the lines of Graves
et al. (2016).

3.2 Cross-modal Entity Tracking with DIRE

We use DIRE for the cross-modal entity tracking task as follows (see Figure 3). Given pre-trained image
and verbal attribute representations, we first derive a multimodal representation ui for each exposure xi
and update the entity library as explained in Section 3.1. The linguistic query is mapped to the same
multimodal space where entities live, and the most relevant entity is retrieved. Finally, the images the
model has to choose from (candidate set) are also mapped to multimodal space, and the correct answer
is picked based on their similarity with the retrieved entity. We share the same V projection across all
images (in the exposures as well as in the candidate set at query time), a single A projection for the verbal
attributes (in the exposures and in the query), and a matrix C for the category name in the query. Details
on each of the steps follow.

Multimodal Mapping. Exposures are linearly mapped to a multimodal space combining visual and
linguistic information, building the ui vector by separately embedding each image vector ii and attribute



vector ai using a matrix V for images6 and a matrix A for linguistic attributes7 and adding up the
result (Equation 7). Storage takes place by feeding the ui vectors sequentially to the entity library (cf.
Section 3.1).

ui = Vii +Aai (7)

Query and Retrieval. To select the best entity match for the query, we compute a “soft retrieval”
operation inspired by Sukhbaatar et al. (2015). To query the entity library, we first map the query (a
linguistic referring expression, consisting of one noun and two attributes) to multimodal space. We embed
the attribute vectors aq1, aq2 with the matrix A learned during storage and the noun vector c with matrix C,
and we sum the result (Eq. 8). The query vector q lives in the same space as the entity vectors, which
enables similarity computations.

q = Cc+Aaq1 +Aaq2 (8)

We then retrieve the entity representation that matches the query, by first computing the similarity
of the mapped query q to each entity vector ei through a normalized dot product, g (Eq. 9), and then
using those similarities as weights to perform a “soft retrieval” of the entity that best matches the query,
summing up the vectors in the entity library multiplied by g (Eq. 10). Note that if only one entity is
significantly similar to the query (so that the corresponding entry in the similarity profile tends to 1, while
all other entries tend to 0), this is equivalent to retrieving that entity.

g = softmax(Enq) (9)

r = Eᵀ
ng (10)

Picking the Right Image. Finally, we use the retrieved entity representation, r, to pick among the k
images that represent the entities. We map the candidate image vectors d1 . . .dk to multimodal space
using the same visual matrix V as above. We compare the query with each of the images using a dot
product, again obtaining a similarity profile, that we softmax-normalize to obtain the final probability
distribution that will give us the candidate image, namely, the one corresponding to the argmax of the
probability distribution. Note that we need a probability distribution because we use a cross-entropy cost
function when training the model.

The whole architecture is differentiable, allowing end-to-end training by gradient descent; in particular,
the cross-modal mapping is learned as the model learns to refer.8 At the same time, it emulates discrete-
like operations like insertion and retrieval of entity representations, that, in frameworks such as DRT, are
performed entirely in symbolic terms, and are manually coded in the DRT system Boxer (Bos, 2008).
This has the advantage that the entity representations can be continuous, enabling their matching with
continuous representations of language as well as cross-modal reasoning (for instance, using cup for
something that a different speaker calls mug, or mixing visual and linguistically conveyed information).
The model is rather parsimonious, with parameters limited to three mapping matrices (V, A, C) and the
bias and weight terms for pold.

4 Experiments

Experimental details. Images are represented by 4096-dimensional vectors produced by passing images
through the pre-trained VGG 19-layer CNN of Simonyan and Zisserman (2015) (trained on the ILSVRC-
2012 data), and extracting the corresponding activations on the topmost fully connected layer.9 Linguistic

6Size v ×m, where v is the size of the image vector and m the multimodal dimensionality.
7Size t×m, where t is the size of the attribute vector. Both matrices, V and A, are learned.
8Note that the input vectors for images are only visual, and those for nouns and attributes are only textual.
9We use the MatConvNet toolkit, http://www.vlfeat.org/matconvnet.



Baseline Standard models DIRE MemN

Random 0.17 FF 0.27 1m 0.64 2m 0.65 1m-1h 0.59 2m-1h 0.67
RNN 0.28 1m-2h 0.67 2m-2h 0.69

1m-3h 0.30 2m-3h 0.30

Table 1: Tracking results (accuracy on test set).

representations are given by 400-dimensional cbow embeddings from Baroni et al. (2014), trained on
about 2.8 billion tokens of raw text. We map to a 1K-dimensional multimodal space. The parameters of
DIRE are estimated by stochastic gradient descent with 0.09 learning rate, 10 minibatch size, 0.5 dropout
probability, and maximally 150 epochs (here and below, hyperparameter values as in Baroni et al., 2017).

As competitors, we train standard feed-forward (FF) and recurrent (RNN) networks which have no
external memory, using two 300-dimensional hidden layers and sigmoid nonlinearities. We also implement
the related Memory Network model (MemN; Sukhbaatar et al., 2015). Like DIRE, MemN controls a
memory structure, but stores each input exposure separately in the memory. At the same time, MemN can
perform multiple “hops” at query time. Each hop consists in soft-retrieving a vector from the memory,
where the probing vector is the sum of the input query vector and the vector retrieved in the previous
hop (null for the first hop). Conceptually, DIRE attempts to merge different instances of the same entity
at input processing time, whereas MemN stores each piece of input separately and aggregates relevant
information at query time. MemN can thus use the query to guide the search for relevant information. At
the same time, it does not optimize the way in which it stores information in memory. Another difference
with DIRE is that MemN uses two sets of mapping matrices: One to derive the vectors used at query
time, the other for the vectors used for retrieval. We employ the same hyperparameters for MemN (also
multimodal vector size) as for our model.

Results. Table 1 shows that DIRE outperforms the standard networks (FF and RNN) by a large margin,
confirming the importance of a discrete memory structure for reference tracking. If we make the MemN
architecture completely comparable to our model (with one matrix and one hop, MemN-1m-1h), our
model achieves higher results (0.64 for DIRE-1m, 0.59 for MemN-1m-1h), which indicates that the basic
architecture of the model holds promise. However, MemN outperforms DIRE when using two matrices,
two hops (0.67 MemN-2m-1h/MemN-1m-2h vs. 0.65 DIRE-2m), or both (0.69 MemN-2m-2h). For
MemN, this seems to be the upper bound, as increasing to three hops greatly harms results (see last row).

Further analysis suggests that DIRE successfully addresses the two challenges set out in the intro-
duction: (i) It learns to categorize: Only for 8% of the datapoints does the model pick an image of the
wrong category, and these are cases where confounders belong to visually similar or related categories to
the target (cottage-chalet, youngster-enthusiast, witch-potion). It is worth noting that the model learns
to categorize directly from reference acts: At exposure time, the image is not provided with a category
label, so the model needs to induce the category as part of solving the reference task. (ii) DIRE also
learns to individuate by combining visual and linguistically-conveyed information: The similarity of the
exposure to the query goes to near-zero when the attribute is wrong, even when the category is the same.
Together, these two properties make it able to ground linguistic expressions to entities represented in
images. However, the entity creation mechanism still needs to be fine-tuned, as currently DIRE creates a
new entity vector for nearly every exposure. More work is needed for this crucial part of the model.

5 Discussion

Providing a continuous model of reference that can emulate discrete reasoning about entities is an
ambitious research programme. We have reported on work in progress on such a model, DIRE, which,
unlike Memory Networks, and emulating formal approaches such as DRT within an end-to-end neural
architecture, is designed to make decisions as to how to store the information at input processing time,



in a way that aids further reasoning, namely, organizing it by entity. Results suggest that merging
complementary aspects of DIRE and MemN could be fruitful. We have also presented a new task,
cross-modal entity tracking, that tests the categorization and individuation capabilities of computational
models, and a challenging dataset for the task.

Our project is related to several areas of active research. Reference is a classic topic in philosophy of
language and linguistics (Frege, 1892; Abbott, 2010; Kamp and Reyle, 1993; Kamp, 2015); emulating
discrete aspects of language and reasoning through continuous means is a long-standing goal in artificial
intelligence (Smolensky, 1990; Joulin and Mikolov, 2015), and recent work focuses on reference (Baroni
et al., 2017; Herbelot, 2015; Herbelot and Vecchi, 2015); grounding language in perception (Chen and
Mooney, 2011; Bruni et al., 2012; Silberer et al., 2013), as well as reference and co-reference (Krahmer
and Van Deemter, 2012; Poesio et al., 2017) are important subjects in Computational Linguistics. Our
programme puts these different strands together.
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