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Abstract

Despite the number of NLP studies dedicated to thematic fit estimation, little attention has been
paid to the related task of composing and updating verb argument expectations. The few exceptions
have mostly modeled this phenomenon with structured distributional models, implicitly assuming a
similarly structured representation of events. Recent experimental evidence, however, suggests that
human processing system could also exploit an unstructured “bag-of-arguments” type of event rep-
resentation to predict upcoming input. In this paper, we re-implement a traditional structured model
and adapt it to compare the different hypotheses concerning the degree of structure in our event
knowledge, evaluating their relative performance in the task of the argument expectations update.

1 Introduction

An important trend of current research in linguistics and cognitive science aims at investigating the
mechanisms behind anticipatory processing in natural language (Kamide et al., 2003; DeLong et al.,
2005; Federmeier, 2007; Van Petten and Luka, 2012; Willems et al., 2015). It is, indeed, uncontroversial
that our cognitive system tries to predict incoming input on the basis of prior information, and this strat-
egy is probably crucial for dealing with the rapidity of linguistic interactions (Christiansen and Chater,
2016). By means of different experimental paradigms, several studies have focused on the role of event
knowledge in the activation of expectations on verb arguments (McRae et al., 1998, 2005; Hare et al.,
2009; Bicknell et al., 2010). During sentence processing, verbs (arrest) activate expectations on their
typical argument nouns (crook), and nouns do the same for other arguments frequently co-occurring in
the same events (cop-crook). The explanation proposed by these studies is that the human ability to antic-
ipate the incoming input depends on general knowledge about events and their typical participants. This
knowledge, stored in the semantic memory, ‘reacts’ to the linguistic stimulus: the more the processed
information is coherent with a prototypical event scenario, the easier for the comprehension system is
to constrain the range of the events potentially described by the sentence and to predict the upcoming
sentence arguments.

According to one of the most influential accounts of event-based prediction, the event representa-
tion includes both the thematic roles and the lexical meanings of the arguments, as well as the relations
between different roles. Therefore, there is the assumption of a structural distinction between the partic-
ipants filling the roles (Kim et al., 2016) (i.e. some arguments are good agents, other are good patients
etc.). Such an account has been challenged by the experimental evidence for a ‘bag-of-arguments’ mech-
anism of verb predictions, discussed by Chow et al. (2015). Their experiments with Event-Related Po-



tentials (ERPs) focused on the N400 component,1 whose amplitude is generally interpreted as reflecting
the predictability of a word in context (Kutas and Hillyard, 1984). One of their findings was that there is
no significant difference in the N400 amplitude at the target verb in sentences like (1a) and (1b) (normal
vs. role-reversed argument configuration):

(1) a. The restaurant owner forgot which customer the waitress had served during dinner yester-
day.

b. The restaurant owner forgot which waitress the customer had served during dinner yester-
day.

That is to say, even if different roles are assigned to customer and waitress in (1a) and (1b), this difference
seems to have no impact on the N400 amplitude.

Given the lack of influence of the structural roles, in order to circumscribe their hypothesis (which
we will henceforth refer to as the bag-of-arguments hypothesis), the authors set up another experiment,
in which they tested whether the predictions could be influenced also by other co-occurring words (i.e.,
not necessarily arguments; we will refer to this possibility as the bag-of-words hypothesis). In order to
carry out this test, they compared the amplitudes for sentences like (2a) and (2b) (argument substitution),
finding a significantly smaller N400 component for the first sentence type.

(2) a. The exterminator inquired which neighbor the landlord had evicted from the apartment
complex.

b. The neighbor inquired which exterminator the landlord had evicted from the apartment
complex.

Chow et al. (2015) concluded that only the event arguments can influence predictions about a verb, and
that arguments are represented in a sort of unstructured collection (i.e., bag-of-arguments). Therefore,
according to them, predictions would be sensitive to the meaning of the arguments, but not to their
structural roles, which are computed later. For example, the difference between typical agents and typical
patients, according to this account, would not be included in the representation of an event.

In the last few years, a related issue has been debated in the field of distributional semantics, i.e.
whether there is any added value in using structured representations of linguistic contexts over bag-of-
words ones (e.g., contexts represented as co-occurrence windows). While structured models have been
shown to outperform the latter in a number of semantic tasks (Padó and Lapata, 2007; Baroni and Lenci,
2010; Levy and Goldberg, 2014), some bag-of-word models proved to be extremely competitive, at
least under certain parameter settings (Baroni et al., 2014). A recent paper by Lapesa and Evert (2017)
explicitly addressed the question of whether using structured distributional semantic models is worth
the effort, by comparing the performance of syntax-based and window-based distributional models on
four different tasks. The authors showed that, even after extensive parameter tuning, the former have a
significant advantage only in one task out of four (i.e., noun clustering). Interestingly, in the discussion
they leave open the question of whether their results can generalize to linguistically challenging task such
as the prediction of thematic fit ratings.

In this paper, we specifically investigate this point. The main questions we want to address are:
what are the implications of the bag-of-arguments hypothesis for current models of thematic fit? More
precisely, is it really necessary to have structured representations to carry out a thematic fit-related task,
such as the argument expectation update?

In order to answer our questions, we implemented three models of argument expectations, adapting
them to the above-mentioned hypotheses (i.e., structured and unstructured, the latter including both the
bag-of-arguments and the bag-of-words hypothesis), and we compared their performance in a binary
selection task.

1The N400, one of the most well-studied ERP components, is a negative-going deflection that peaks around 400 ms after
the presentation of a stimulus word.



2 Related Work

One of the most influential distributional model of thematic fit was introduced by Baroni and Lenci
(2010), who represented verb semantic roles with a prototype vector obtained by averaging the dependency-
based vectors of the words typically filling those roles (i.e. the typical fillers). Within the Distributional
Memory (DM) framework, which was based on syntactic dependencies, Baroni and Lenci used gram-
matical functions such as subject and object to approximate the thematic roles of agent and patient, and
they measured role typicality by means of a Local Mutual Information score (Evert, 2004) computed be-
tween verb, arguments and syntactic relations. The basic assumption is that the higher the distributional
similarity of a candidate argument with a role prototype, the higher its predictability as a filler for that
role will be. As a gold standard, the authors used the human-elicited thematic fit ratings collected by
McRae et al. (1998) and Padó (2007), and they evaluated the performance by measuring the correlation
between these ratings and the scores generated by the model (as already proposed by Erk et al. (2010)).

Lenci (2011) later extended this ‘structured-approach’ to account for the dynamic update of the
expectations on an argument, which depends on how other roles in the sentences are filled. For instance,
given the agent butcher the expected patient of the verb cut is likely to be meat, while given the agent
coiffeur the expected patient of the same verb is likely to be hair. By means of the same DM tensor,
this study tested an additive and a multiplicative model (Mitchell and Lapata, 2010) to compose the
distributional information coming from the agent and from the predicate of an agent-verb-patient triple
(e.g., butcher–cut–meat), generating a prototype vector which represents the expectations on the patient
filler, given the agent filler. The triples of the Bicknell dataset (Bicknell et al., 2010), which were used
for the first time to evaluate such a model, are still today, at the best of our knowledge, the only existing
gold standard for this type of task.

Although the ‘structured-approach’ to thematic fit was influential for a number of other works (Say-
eed and Demberg, 2014; Sayeed et al., 2015; Greenberg et al., 2015; Sayeed et al., 2016; Santus et al.,
2017), the task of modeling the update of the argument expectations has received relatively little atten-
tion. An exception is the work by Tilk et al. (2016), who trained a neural network on a role-labeled corpus
in order to optimize the distributional representation for thematic fit estimation. Their model was also
tested on the task of the composition and update of argument expectations, where it was able to achieve
a performance comparable to Lenci (2011) on the triples of the Bicknell dataset.2 Notice that both the
models of Lenci (2011) and Tilk et al. (2016) necessarily rely on the hypothesis that the arguments are
structurally distinct, since they are trained either on argument tuples containing fine-grained dependency
information, or on sentences labeled with semantic roles.

Outside the specific area of study of thematic fit modeling, Ettinger et al. (2016) successfully used a
type of unstructured representation for another sentence processing-related task, i.e. modeling N400 am-
plitudes with distributional spaces. The authors proposed a method based on word2vec (Mikolov et al.,
2013) to build vector representations of sentence context, and to quantify the relation of an upcoming
target word to the context. After training their word vectors on the Ukwac corpus (Baroni et al., 2009)
with the Skip-Gram architecture, they modeled the mental state of a comprehender at a certain point of a
sentence as the average of the vectors of the words in the sentence up to that point. The predictability of a
target word in a sentence was measured as the cosine similarity between its vector, and the context-vector
obtained by averaging the vectors of the preceding words. Ettinger and colleagues tested their method on
the sentences used in the ERP study by Federmeier and Kutas (1999), in which three different conditions
were defined, and they observed that the context-target similarity scores across conditions were follow-
ing the same pattern of the N400 amplitudes of the original experiment. Thus, this work shows how data
on N400 variations can be modeled even by means of vectors with minimal or no syntactic information.

2Chersoni et al. (2016) presented a research work testing a similar method on the Bicknell dataset. However, their model
does not really update argument expectations on the basis of other arguments, computing instead a global score of semantic
coherence for the entire event representation, on the basis of the mutual typicality between all the participants.



3 Experiments

Rationale. Baroni and Lenci (2010) computed the thematic fit for a candidate filler (e.g., policeman)
in an argument slot (e.g., agent) of an input lexical item (e.g., arrest) as the similarity score between the
vector of the candidate filler and a prototype of the typical slot filler, built by summing the vectors for
the top-k most typical fillers of input for slot (e.g., the typical agents for the arrest-event, such as cop,
officer, policewoman, etc.). In this model, syntactic relations were used to approximate verb-specific
semantic roles and to identify the most typical fillers. For example, the agent role is approximated by
the subject relation, so that the typical fillers for the agent slot are the typical subjects of the input
verb. Similarly, the patient role is approximated by the object relation, so that the typical fillers for the
patient slot are the typical objects of the input verb.

We propose an extension of the model by Lenci (2011) and we interpret thematic fit as the expectation
of an argument (i.e., what the prototype vector is meant to represent: EXslot(input)), claiming that the
update on expectations for a filler caused by new input (e.g. a verb combining with an agent) could be
modeled by means of a function f(x) that combines the prototypes built for every input:

EXslot(〈input1, input2〉) = f(EXslot1(input1), EXslot2(input2)) (1)

where the function f(x) is the sum or the pointwise multiplication between the prototype vectors. Once
the expectations are calculated, the filler fit for the slot of 〈input1, input2〉 can be computed by mea-
suring the similarity (e.g., by vector cosine) between the filler and the expectations. As an example,
if we want to estimate how likely is burglar as a patient of the policeman arrested the..., we build a
prototype out of the vectors of typical objects co-occurring with the subject policeman-n, then we do the
same for the vectors of typical objects of the verb arrest-v, and finally we combine the prototype vectors
through f(x), by either sum or multiplication. At this point, we can estimate the filler fit by calculating
the following similarity:

EXpatient(burglar|〈police, arrest〉) =
sim(burglar, f(EXcooc patient(policeman), EXpatient(arrest))) (2)

Since distributional similarity is used as a measure of the predictability of a filler for a certain role, we
expect that the thematic fit score of burglar for the patient slot of 〈policeman, arrested〉 will be much
higher than for singer-n. Indeed, burglars are more typical patients in this type of situation than singers
are. Notice that while in Lenci (2011) the update function modified the association scores between the
predicate and the fillers, in the present case f(x) directly composes the prototype vectors associated with
〈input1, input2〉.

Models. In our experiments, we compared three different distributional semantic models (henceforth
DSMs), all inspired by Lenci (2011): i) a structured model, which is similar to the one presented in
Lenci (2011) (DEPS); ii) a variation of this system, modeling the bag-of-arguments hypothesis (BOA);
iii) a baseline relying on the bag-of-words hypothesis (BOW). The key difference between our models is
to be found in the selection of the fillers (see Table 1):

• DEPS: Similarly to Lenci’s system, DEPS makes use of information on specific syntactic relations
to select role fillers: the agent-role prototypes will be built out of the most typical subjects, the
patient-role prototypes out of the most typical objects, and so on (see the last two rows of Table
1).3 This means that not only the semantic information is taken in consideration (e.g. policeman),
but also the thematic role of the filler (e.g. sbj:policeman, obj:policeman, etc.). Since dependencies

3Since the roles are approximated by syntactic relations identified by the parser (i.e. Malt-parser (Nivre and Hall, 2005)),
their accuracy is subordinate to the accuracy of the parser. Ideally, we would expect clean lists of fillers for the typical subjects
(agents) and objects (patients) of a verb, but – as it can be seen in Table 1 – this is not the case.



Target Fillers
BOW steal-v car-n, money-n, show-n, base-n, thief-n, good-n, item-n, property-n, someone-

n, horse-n, limelight-n, vehicle-n, attempt-n, cattle-n, food-n, wallet-n, bike-n,
identity-n, thunder-n, key-n

BOA steal-v show-n, money-n, car-n, base-n, food-n, thunder-n, march-n, limelight-n, horse-n,
idea-n, key-n, wallet-n, heart-n, property-n, jewel-n, identity-n, cattle-n, body-n,
purse-n, treasure-n

DEPS steal-v (agent) thief-n, someone-n, man-n, burglar-n, gang-n, money-n, robber-n, handbag-n,
criminal-n, wallet-n, computer-n, thou-n, horse-n, equipment-n, boy-n, crook-n,
disciple-n, cash-n, somebody-n, dog-n

DEPS steal-v (patient) show-n, money-n, car-n, base-n, food-n, thunder-n, march-n, limelight-n, horse-n,
idea-n, key-n, wallet-n, heart-n, property-n, identity-n, cattle-n, jewel-n, body-n,
purse-n, treasure-n

Table 1: Top-20 filler nouns for the word steal-v in our three models (for DEPS, we provide the fillers
for the agent and the patient slot, while in the other models there is no distinction).

are used to filter fillers entering in the role representation, this model is the closest one to theories
assuming structured event knowledge.

• BOA: Almost identical to the DEPS model, except for the fact that the most typical arguments are
not bound to a specific syntactic slot. Indeed, according to Chow et al. (2015), the arguments of a
verb like to serve (customer, waitress, tray, etc.) are represented like an unstructured collection. In
this type of model, thus, the top-k typical fillers will include all the strongly associated arguments,
abstracting away from the specific syntactic relation.

• BOW: In this baseline, the typical fillers are not arguments, but words typically co-occurring with
the targets in a window of fixed width (possibly having no syntactic relation to the targets).

Going back to the previous example, the core idea of the DEPS model is that processing a sen-
tence fragment like the policeman arrested the... leads to the activation only of the typical patients of
such events, since the event knowledge is assumed to be structured. Therefore, the predictability of an
argument is measured in terms of its similarity with the prototype built out of the activated patients.

On the other side, the BOA model assumes no distinction between the arguments (i.e., whether they
are agents, patients, locations or others), and consequently the sentence fragment above would activate
all the typical arguments of the verb arrest. This means that the predictability of an argument will be
equivalent to its similarity with the prototype of a generic argument of the verb.

Finally, the BOW baseline has no notion of structure at all, not even the underspecified argument
relation of the BOA model, and thus the prototypes of this model are just representations of the typical
neighbors of the target words. It should be recalled at this point that a bag-of-words account of prediction
was ruled out by the experimental results by Chow et al. (2015), since only arguments turned out to have
an impact. Nonetheless, since we have chosen a bag-of-words model with a very narrow window (i.e.,
two words on the left and right of the target), BOW could also capture indirectly syntactic information
(i.e., words frequently co-occurring with the targets within a narrow window are very likely to be also
syntactically related to them). Therefore, we expect it to be a reasonably strong baseline.

Corpus and DSMs. Distributional information is derived from the concatenation of the British National
Corpus (Leech, 1992) and of the Wacky (Baroni et al., 2009) corpus. Both were parsed with the Malt-
parser (Nivre and Hall, 2005). From this concatenation, we built a dependency-based DSMs, where the
tuples are weighted by means of Positive Local Mutual Information (PLMI, Evert (2004)). Given the co-
occurrence count Otrf of the target t, the syntactic relation r and the filler f , we computed the expected
countEtrf (i.e., the simple joint probability of indipendent variables, corresponding to the product of the
probabilities of the single events).4

4The DSM were built by means of the scripts of the DISSECT framework (Dinu et al., 2013)



The PLMI for each target-relation-filler tuple is computed as follows:

LMI(t, r, f) = log

(
Otrf

Etrf

)
∗Otrf (3)

PLMI(t, r, f) = max(LMI(t, r, f), 0) (4)

Our DSM contains 28,817 targets (i.e., all nouns and verbs with frequency above 1000 in the training
corpora), and all syntactic relations were included.5 We also built a window-based DSM to extract co-
occurrence information for the BOW model, counting only the co-occurrences between the nouns and
the verbs of the list above within a word window of width 2.

Prototypes The prototypes of all models were built out of the vectors of the k most typical fillers for
each model type, and we tested 10, 20, 30, 40, and 50 as values of k.6

As in previous studies, PLMI values were used as typicality scores: in the DEPS model, the typicality
ranking of the fillers for a given role takes into account only the fillers occurring in the corresponding
syntactic slot (e.g. the subject for the agent, the object for the patient etc.), whereas in the BOA model the
typicality of a filler only depends on the PLMI score with the target, thus ignoring the type of syntactic re-
lation.7 As for the BOW baseline, the words used for building the prototype are simply co-occurring with
the targets within a word window of width 2, and such co-occurrences have been PLMI-weighted as well.

Compositional Functions. The compositional functions that we used to combine the prototypes are the
vector sum and the pointwise vector multiplication (Mitchell and Lapata, 2010). An important difference
between the compositional functions lies in the fact that, while the sum retains the dimensions that are
not shared by both prototype vectors, the multiplication sets them to zero those dimensions. This has an
obvious impact on the computation of the cosine, as it could drastically reduce the number of dimensions
on which the similarity score is computed.

Datasets and Evaluation. The models were tested on the datasets from the ERP experiments by Bicknell
et al. (2010) and Chow et al. (2015).

The Bicknell dataset was introduced to test the hypothesis that the typicality of a verb direct object
depends on the subject argument. With this purpose in mind, the authors selected 50 verbs, each paired
with two agent nouns that significantly changed the scenario evoked by the subject-verb combination.
They obtained typical patients for each agent-verb pair by means of production norms, and they used
such data to generate triples where the patient was congruent with the agent and with the verb. For each
congruent triple, an incongruent triple was generated as well, by combining each verb-congruent patient
pair with the other agent noun, in order to have items describing atypical situations.

The final dataset is composed by 100 plausible-implausibile triples, which were used to build the
sentences for a self-paced reading and for an ERP experiment. The subjects were presented with sentence
pairs such as:

• The journalist checked the spelling of the last report. (plausible)

• The mechanic checked the spelling of the last report. (implausible).

Bicknell et al. (2010) reported shorter reading times and smaller N400 amplitudes for the plausible
condition. The goal, for a thematic fit model of the argument expectations update, is to assign a higher

5We added the extra relation VERB, accounting for the link between typically co-occurring subjects and objects. An
analogous relation was already in Baroni and Lenci (2010).

6The choice of the parameter range is in line with previous NLP studies on thematic fit (Sayeed et al., 2015; Greenberg
et al., 2015).

7It goes without saying that using syntactic functions to identify the fillers of semantic roles is just an approximation.
Nonetheless, the good performances reported by syntax-based thematic fit estimation systems suggest that, at least for agents
and patients, such an approach is empirically justified.



cosine similarity score to the plausible triple, as in Lenci (2011). Moreover, Tilk et al. (2016) evaluated
their systems on two different versions of this task, since the triple pairs can be created by combining
either triples differing only for the agent, or triples differing only for the patient. Following the ter-
minology from this latter study, we will refer to Accuracy 1 meaning the accuracy of the models in
scoring differing-by-patient triples, and to Accuracy 2 meaning the accuracy in the classification of the
differing-by-agent ones.

We also turned into similar triples the 50 verb-arguments combinations of the role reversal experi-
ment by Chow et al. (2015), by creating triple pairs corresponding to the normal and to the role-reversed
condition. For example, the sentences in Example (1) were turned into the form: customer-n waitress-n
serve-v (normal) and waitress-n customer-n serve-v (role-reversed). Notice that we preserved the order
in which the experimental subjects saw the arguments and the verb, with the latter at the end. Conse-
quently, instead of composing the prototype vectors of the typical fillers of the patient role given an agent
and a predicate, as we did for the Bicknell dataset, we derive the expectation vector for the verb from the
composition of the prototypes of the typical predicates of the agent and of the patient.

The binary selection task is the same used with the Bicknell dataset, the only difference being that
the goal for our models is to assign higher scores to the triples in the standard argument configuration
(i.e., the expectation vector should be closer to the verb vector in the normal condition). Only the DEPS
results are reported for the Chow dataset, because unstructured models assign exactly the same score to
normal and role-reversed triples (independently of the order in which the prototypes of the head verb
for each argument are created, the combined prototype will be the same). This is, of course, consistent
with the report of the ERP experiment by Chow and colleagues, who found no differences in the N400
amplitudes elicited by the two sentence types.

The performance of the DEPS model on the Chow dataset is of particular interest, as the model has
the structural information that is lacking in the other two. If DEPS has to reproduce the N400 pattern
found by Chow and colleagues, the scores for the normal and for the role-reversed conditions should not
differ significantly.

4 Results

In Table 2 and 3, we report the results for the three model types on the Bicknell dataset for the two kinds
of prototype composition and k = 20. This latter value is the most common in the literature (Baroni and
Lenci, 2010; Greenberg et al., 2015), and the one that gave us the highest accuracy scores.

The DEPS model is almost always the best performing one on the Bicknell dataset, with the exception
of a single drop for the multiplicative model in the Accuracy 1 evaluation. The sum turned out to be the
most efficient combination function in the majority of the models, and a possible explanation is that
the application of multiplication to dependency-based prototype vectors led to sparsity problems. The
results obtained by the DEPS Sum model are the highest ones, and the Accuracy 2 score for k = 20
is extremely close to the best performance reported in Lenci (2011) (73%).8 The task of classifying
differing-by-patient triples turns out to be harder, as the accuracies are lower and none of the models is
significantly better than a random baseline (p-values were computed with the χ2 statistical test)9, whereas
the Accuracy 2 scores of both the Deps Sum Model and the Deps Multiplication Model have a significant
advantage (for both of them, p < 0.05).

We also carried out the Wilcoxon rank sum test on the scores generated by all models, and we found
that the DEPS-sum model is the only one that manages to assign significantly different scores to the
sentences in the two conditions (W = 5660, p < 0.05; for all the other models, p > 0.1) (see Figure 1).
The BOA model was found instead to be worst performing one, even lower than the BOW baseline, and
often the recorded accuracy scores are very close to a random baseline. Also, the differences between
conditions were far from significance in any of the versions of the model.

8The only result available for comparison in the literature is the one obtained by Lenci (2011) on the Accuracy 2 task, since
the evaluation of Tilk et al. (2016) was carried out on a way smaller subset of the Bicknell dataset (64 triples).

9Also the Accuracy 1 scores reported by Tilk et al. (2016) confirm the higher difficulty of this version of the task.



Model Sum Multiplication
BOW 59% 57%
BOA 53% 59%
DEPS 62% 56%

Table 2: Accuracy 1 on Bicknell (100% coverage) for k = 20

Model Sum Multiplication
BOW 60% 56%
BOA 58% 57%
DEPS 72% 68%

Table 3: Accuracy 2 on Bicknell (100% coverage) for k = 20

Figure 2 shows the performance variation of the Sum models on Bicknell dataset, while varying the
number of fillers used to build the prototype. At a glance, we can observe that DEPS models achieve
higher accuracies with fewer fillers. This is kind of expected, since the good performances of such models
are likely to be due to a more restrictive selection of the fillers. With higher values of k, the selection
of more weakly-related fillers is probably introducing noise in the prototype. On the other hand, BOA
models slightly improve when more fillers are used, but in general their performance is almost always
equivalent to BOW models. This indicates, in our view, that the underspecified dependency relation
of the BOA model is insufficient to build a precise representation of the expectations on an upcoming
argument, unless a larger number of fillers is taken into account. Moreover, even if typical arguments are
selected by virtue of a dependency relation, the absence of information on the dependency type makes
these models essentially equivalent to window-based ones. Finally, as for the difference between the
scores in the two conditions, the Wilcoxon rank sum test returns a significant difference only for the
DEPS Sum model with k = 10, 20 (in both cases, p < 0.05).

Concerning the performance of DEPS on the Chow dataset, it can be seen in Table 4 that the system
identifies the triple in the normal condition with a level of accuracy between 62% and 68%. The scores
are quite steady, independently from k, and again, the Sum models are generally performing better (but
never significantly better than a random baseline: for all parameter settings, p > 0.05).

Interestingly, after applying the Wilcoxon rank sum test, it turns out that the differences between the
assigned scores never differ significantly between the normal and the argument reversal condition (for
all values of k, p > 0.05; see also Figure 1). This result is coherent with the outcome of the role-reversal
experiment by Chow and colleagues, who found no difference between the N400 elicited by the two
sentence types. In other words, structural information does not help in predicting the upcoming verb.

k Sum Multiplication
10 68% 66%
20 62% 64%
30 64% 62%
40 64% 62%
50 66% 62%

Table 4: Accuracy on Chow (100% coverage) for the DEPS model for different values of k

In the same way as the unstructured representations used by Ettinger et al. (2016), our models show
that the distributional similarity between a target and its context (a structured one, in our case) can
accurately reflect the N400 amplitude patterns found in the experimental studies. Notice however that
only a model based on the notion of a structured event knowledge was able to mirror the patterns of
both the studies of Bicknell et al. (2010). Together with the better performance reported on the Bicknell
dataset for the binary classification task, these results suggest that the presence of structural information
is an advantage for distributional models of thematic fit.
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Figure 1: Cosine scores assigned by DEPS-sum model (k = 20) for the Bicknell dataset (left) and for
the Chow dataset (right).

Figure 2: Average of Accuracy 1 and Accuracy 2 on Bicknell dataset, for all the Sum models for different
values of k

5 Conclusions

In this paper, we addressed the question of whether structured information is necessary to model the
argument expectation update. With this purpose in mind, we have implemented a traditional system for
composing and updating thematic fit estimations (Lenci, 2011) and we adapted it to model both structured
and unstructured representations (the latter including both the bag-of-arguments and the bag-of-words
hypotheses). We compared the performance of these models on the binary selection task of the argument
expectation update and on their ability to replicate the experimental results from the studies by Bicknell
et al. (2010) and Chow et al. (2015).

Our results show that structured models perform better in a task of composing and updating argument
expectations, and can reproduce the ERP results reported for both datasets. On the other hand, the bag-
of-arguments model had lower scores in the classification task on the Bicknell dataset, and it was not
able to discriminate between the plausible and the implausible condition.

It should be recalled that the bag-of-arguments hypothesis was proposed to account for the results
of an experiment on initial verb predictions, where the participants could see the verb only at the end
(see Examples 1 and 2). In absence of any cue facilitating the mapping between arguments and syntactic
positions (consider also that the arguments in the dataset do not differ by animacy), it is reasonable to



hypothesize a delay in the assignment of the thematic roles. Moreover, as already pointed out by Kim
et al. (2016), the N400 component is generally not sensitive to the implausibility derived by thematic role
reassignments, but the presence of event knowledge violation in such cases can be signaled by other ERP
components.10 In sum, the idea of a structure in the event knowledge does not seem to be incompatible
with the findings of Chow and colleagues, since our structured DSMs replicated the lack of significant
differences between normal and role-reversed sentences. On the other side, models with no structural
information struggle in modeling the results of datasets where the items differ for their context-sensitive
argument typicality, like the one from Bicknell et al. (2010).11

The performance of the DEPS model also complies with the conclusions of Ettinger et al. (2016),
which showed how DSMs could be used to reproduce the N400 variations. Such a component is known
to be tied to the general semantic relatedness of a target word to its sentential context, and not to syntactic
anomalies.12 From this point of view, it is interesting that our structured models, despite their coherence
with the ERP results by Chow et al. (2015), are still able to distinguish the sentence in the normal
condition from the role-reversed one with an accuracy always above 60%. Future research could explore
in which measure thematic fit models can be sensitive to differences between syntactically-composed
representation. Finally, with reference to Lapesa and Evert (2017), our results make the expectation
update task a good candidate for being among those that clearly benefit from using fine-grained syntactic
information, as it seems to require knowledge about the relation types and about the interdependencies
between participants.

Future works might aim at comparing these model types on other NLP tasks, to check how many of
them effectively take advantage from structured representations. For the moment, we can conclude that
structure is an important added value for thematic fit models.
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