A Type-Theoretical system for the FraCaS test suite:
Grammatical Framework meets Coq

Jean-Philippe Bernardy
University of Gothenburg
jean-philippe.bernardy@gu.se

Stergios Chatzikyriakidis
University of Gothenburg
stergios.chatzikyriakidis@gu.se

Abstract

We present a type-theoretical framework for formal semantics, which leverages two existing well
established tools: Grammatical Framework (GF) and Coq. The framework is the semantic equivalent
of GF’s resource grammars: every syntactic construction is mapped to a (compositional) semantics.
Our tool thus extends the standard GF grammar with a formal semantic backbone. We evaluated our
framework on 5 sections of the FraCasS test-suite (174 examples) and significantly improved on the
state of the art by 14 percentage points, obtaining 83% accuracy. Our semantics is free software and
available at this url: http://github.com/GU-CLASP/FraCoqg

1 Intro

Roughly put, Natural Language Inference (NLI) is the task of determining whether a Natural Language
(NL) hypothesis can be inferred from an NL premise. NLI is central within a theory of formal semantics
for Natural Language (NL), given that humans do not only have the ability to understand infinitely many
NL sentences, but can further reason about them. In effect, understanding a NL sentence amounts (among
others) to knowing what can be inferred or not from such a sentence.

Natural Language Inference has been also central in the field of computational semantics. As Cooper
et al. aptly put it ‘inferential ability is not only a central manifestation of semantic competence but is
in fact centrally constitutive of it’ (Cooper et al., 1996). A number of test suites have been proposed
throughout the years and different computational approaches have been put forth in order to deal with
NLI. The most well-known platforms are the FraCaS test suite (Cooper et al., 1996), the Pascal Recog-
nizing Textual Entailment tasks (RTE) (Dagan et al., 2006), and recently the Stanford Natural Language
Inference platform (SNLI) (Bowman et al., 2015). At least until a few years ago, a bipartite classification
of NLI accounts depending on whether a translation to an intermediate logical language was performed
or not existed. On the one hand, one got logical approaches where such a translation, usually to first-
order or even weaker logics like Natural Logic, is performed (Blackburn et al., 2006; Bos and Markert,
2005; Pulman, 2013; Mineshima et al., 2015) and on the other, approaches where this is not the case
(e.g. bag of words approaches or other approaches using various machine learning techniques) (Romano
et al., 2006; Glickmann et al., 2005; Hickl et al., 2005; MacCartney et al., 2008). Recently, Mineshima
et al. (2015) have argued that using higher order logic can significantly increase accuracy of systems
using logic, compared to those where weaker logics are used.

In this paper, we show how to construct a formal system for NLI that bridges the gap between two
well-studied systems, the Grammatical Framework (GF) (Ranta, 2011) on the one hand, and the proof
assistant Coq on the other. Concretely, we map the GF parse trees for NLI problems to Coq propositions.
The NLI solutions then become Coq proofs. We thus obtain a complete system which leverages GF
for parsing and Coq for reasoning. We evaluate against 5 sections of the FraCaS (almost half of it, 174

examples in total) and show that our approach can outperform the state of the art in logical approaches by
14 percentage points. The structure of the paper is as follows: in Section 2, we present the background
to our approach, GF, Type Theoretical (TT) semantics and the proof assistant Coq. In Section 3, we
describe the FraCoq system concentrating on the most important and linguistically relevant aspects of
the system. In Section 4, we first briefly present the FraCaS test suite. Then, we evaluate our system
against it and present the results. We further discuss the issue of proof automation. In Section 5 we
conclude and further point to future research directions.

2 Background: GF, TT semantics and Coq
21 GF

In GF, abstract syntax is comprised of: a) a number of syntactic categories, and b) a number of syntactic
construction functions, which provide the means to compose basic syntactic categories into more com-
plex ones. For example, the constructor AdjCN : AP — CN — CN expresses that one can append
an adjectival phrase to a common noun and obtain a new common noun. Additionally GF comes with a
library of mappings from abstract syntax to concrete natural language syntaxes. These mappings can be
inverted by GF, thus offering parsers from natural text into abstract syntax. Yet in this project we skip
the parsing phase and use the parse trees constructed by Ljunglof and Siverbo (2011), thereby avoiding
any syntactic ambiguity.

2.2 TT semantics

In the tradition of formal semantics, we interpret abstract syntax into logic. The type of logics that
we are employing here have been dubbed as modern or rich type theories (MTTs) by researchers like
Luo (2012); Chatzikyriakidis and Luo (2014); Cooper et al. (2015) and are constructive TTs within
the tradition of Martin-L6f (1971); Martin-Lof (1984). There is a considerable body of work on doing
semantics using MTTs going back at least to Sundholm (1989) and Ranta (1994). Recent approaches
of this kind can be found in Luo (2012); Retoré (2013); Chatzikyriakidis and Luo (2014); Tanaka et al.
(2015); Cooper et al. (2015); Bekki and Mineshima (2017); Chatzikyriakidis and Luo (2017); Cooper
(2017); Grudzinska and Zawadowski (2017) among many others. Compared to simple type theories (e.g.
Church’s TT), MTTs have been claimed to offer a number of advantages. The most important of these
are summarized below:

1. Type many-sortedness. This usually refers to the possibility of using a more structured domain for
the monolithic domain of individuals (e) one finds in systems based on simple type-theory, e.g.
Montague Semantics (Montague, 1973). Even though we do not make use of this feature here, it
remains an attractive feature that brings fine-grainedness to semantic interpretations.

2. Dependent Typing. Here we mention two instances of dependent typing:

(a) Dependent sum types, or X-types, often written » . ., B[z] and which have product types
A x B as a special case when B does not depend on .

(b) Dependent product, II-types, often written ([[.. 4 B[x]), and which have arrow-types A — B
as a special case. Dependent II are very useful because they generalise function types and
universal quantification. Additionally they offer type polymorphism, a very useful feature
for semantic interpretation (see for example our treatment of VP based on II).

3. Proof-theoretical specification and support for effective reasoning. The latter is evident from the
fact that the most powerful interactive theorem provers (proof assistants) are based on type-theory.
That is, the machinery par excellence for reasoning with formal structures implement MTTs (for
example, the proof assistants Coq and Agda).

We will not delve here into further details: a complete discussion of MTTs for formal semantics is out of
the scope of this paper. We will instead introduce any relevant features in discussing the transition from
GF trees to semantic representations in Coq in the next section.

23 Coq

Coq is a proof assistant based on the calculus of inductive constructions (CiC), which is itself a lambda
calculus with dependent types. Coq is arguably one of the leading proof assistants. Indeed, it has
famously been instrumental in formalising a proof of the four-color theorem (Gonthier, 2008), a proof
of the odd order theorem (Gonthier et al., 2013), as well as developing CompCert, a formally verified
compiler for C (Leroy, 2013). Faithful to our actual development, our semantics will be presented in
Coq syntax. While the reader should turn to a proper textbook Bertot and Castéran (2013) for reference,
the main two features that we use are II types (in Coq syntax [[,., B[] is written forall (x:A),
B or (simply A — B when B does not depend on x) and record types, which generalise X-typed and
are encoded as (trivial) inductive types with a single constructor. In particular the type > ., B[z] is
encoded as follows:

Inductive Sigma: :=mkPair: forall (x:A)(y:B) = Sigma.

3 The FraCoq system

As already mentioned, we do not perform parsing, but use the existing treebank of Ljunglof and Siverbo
(2011). The bulk of the work is thus to take these trees to their type-theoretical counterparts.'

3.1 From GF trees to semantic representations in Coq

The structure of our semantic representation is the following:
1. Every GF syntactic category C'is mapped to a Coq Set, noted [C1].
2. GF Functional types are mapped compositionally : [A — B] = [4] — [B]
3. Every GF syntactic construction function f : X is mapped to a function [f] such that [f] : [X].
4. GF function applications are mapped compositionally: [[t(u)] = [¢]([u])-

Theorem 1 (Semantic interpretations are type sound). For every applicative expression e in GF, ife : X
then [e] : [X].

Proof. By induction over the GF typing relation, resting on the fact that the GF type-system is a subset
of that of Coq. O

We proceed and describe the details of the interpretation [-] for several key syntactic constructions.

Sentences As customary, we interpret sentences as propositions: [S] = Prop, or in Coq syntax:

Definition S :=

Consequently, checking entailment can be done by checking logical entailment of the interpreta-
tions. Namely, to verify that P entails H, we prove the proposition [P] — [H].

Common nouns We represent common nouns as customary in typed formal semantics, namely as pred-
icates over an abstract object type:

'One could use other systems to perform parsing, e.g. a CCG parser would be also suitable. Indeed, this is the parser used
by Mineshima et al. (2015) in their system. Perhaps the most important reason for choosing GF over another well-suited parser
was the existence of a GF treebank for FraCaS Ljunglof and Siverbo (2011).

Parameter object:
Definition CN:=object—

Another option would be to follow the common nouns as Types paradigm, an approach found
in Ranta (1994); Luo (2012); Chatzikyriakidis and Luo (2017) among others. This would allow
common nouns to be basic types and every common noun to be associated with a base type in a
type theoretic C'N universe. A subtyping relation could then be used to encode semantic relations
between the types. Indeed, this is the approach taken in Chatzikyriakidis and Luo (2014) in dealing
with inference in Coq. However, for the current task, the need for subtyping is not crucial. In
contrast it is needed to test whether an object belongs to a CN as a proposition, which is tricky to
encode compositionally we we simply have [CN] = Type, so a fully-fledged universe would be
required.”

Verb phrases Like common nouns, verb phrases are traditionally represented as predicates over the
subject. Here, we additionally parameterize over the noun of the subject (using II types). This
allows in particular for comparative copulas to know which class they refer to, which is often
needed in FraCas.

Definition VP :=forall (subjectClass :CN) (subject : object),

Adjectival phrases and adjectives Adjectives and adjectival phrases are represented as modifiers of
common nouns.

Definition A :=CN — CN.

The test suite further requires to refine adjectives as intersective, subsective, extensional subsec-
tive, privative and non-commital, as it is standard in the formal semantics literature (Kamp, 1975;
Partee, 2007, 2010). For a full discussion of adjectives and in general modification within a con-
structive setting, see Chatzikyriakidis and Luo (2017). For concision we show how to deal with
intersective and extensional subsective only.

An intersective adjective (Intersectived) is fully defined by a predicate over objects. The
adjectival meaning is the conjunction of such predicate and the bare noun (wkIntersectivea).
Additionally, to relieve the user from calling this semantic function in in many places, we declare
it as an implicit coercion.

Definition IntersectiveA :=object —

DefinitionwkIntersectiveA: IntersectiveA — A
;= fun acn (x:0bject) = a x A cn Xx.

CoercionwkIntersectiveA: IntersectiveA — A.

Extensional subsective adjectives are characterised by a noun-modifier a, and the property that if
two noun classes p and ¢ are extensionally equivalent, then a(q) implies a(p) (again, note the use
of a dependent type):

Inductive ExtensionalSubsectiveA: =
mkExtensionalSubsective:
forall (a:(object —) — (object —),
forall (ext : forall (p g:object —),
(forall x,px > gx)— (forall x,gx > px)— forall x,ap x — aqx),
ExtensionalSubsectiveA.

For example, a sentence like “John is a man” would be interpreted as a typing judgment in the common nouns as Types
paradigm, John : [Man]. Then, one would want some extra mechanism to turn this into a proposition in order to reason about
it in Coq. Indeed, this is feasible as shown in Chatzikyriakidis and Luo (2017) but this is something that we have not pursued
in this paper. Working on the common nouns as Types approach is left for future work, and we hope that results will shed light
on the theoretical advantages of the two approaches.

The adjectival semantics is that of a subsective adjective: the bare noun holds in conjunction with
the modified noun:

Definition apExtensionalSubsectiveA
: ExtensionalSubsectiveA — A
= fun acn (x:object) = let (aa,_):=a in
aacnxAcnx.
Coercion apExtensionalSubsectiveA:ExtensionalSubsectiveA — A.

In the same way we treated intersective adjectives, we add the semantics as a coercion for subsec-
tives as well. It should be stressed that it suffices to declare an adjective as extensional subsective
for Coq to remember the extensional property, even though it does not appear in the interpretation
as a coerced general adjective.

Adverbs Adverbs are similar to adjectives, except that they modify verbal predicates or propositions in-
stead of nouns. In the FraCaS test suite we only find VP adverbs (verbal predicates). Furthermore,
the test suite does not require the noun class to be passed to the adverb semantics, and thus we
omit it. A contrario, the test suite requires many adverbs to be veridical and covariant. Thus, as
for adjectives, we define a refined subclass to capture these properties.

Definition ADV :=(object —) = (object —).
Definition Adv:=ADV.
Definition VeridicalAdv :=

{ adv: (object —) — (object —)
& (forall (x:object) (v:object —), (adv v) x = v x) *
(forall (vw:object —),

(forall x,vx —>wx)— forall (x:object),adv v x — adv w x)

1.

The plain adverbial semantics are recovered by extracting the adv component. Similarly to exten-
sional adjectives, veridical adverbs the additional properties are made available solely by declaring
lexical entries as belonging to the correct class. A coercion between Veridical Adv and Adv is
further defined (in effect we define veridical adverbs to be subtypes of adverbs). To give an exam-
ple, consider the veridical adverb on_time. This will have the entry:

Parameter on_time_Adv:VeridicalAdv.

Noun phrases and predeterminers The literature usually defines the semantics of noun-phrases as a
predicate over verb phrases:

Definition NPO :=VP —

Unfortunately, such a clean definition cannot work with GF’s abstract syntax. The main issue is
that predeterminers, which include “most”, “at least”, “all”, etc. are parsed as modifiers of noun
phrases: PredetNP : Predet - NP — NP. A moment of thought suffices to be convinced
that predicates over verb-phrases are too rigid to be “pre-determined” in this way. Therefore
the semantics that we use is a tuple of the components of noun-phrases: number, quantifier, and
common noun:

Inductive NP : :=mkNP : Num — Quant — CN — NP.

Predeterminers can then update the quantifier part of the NP. For example, the “all” and “most”
predeterminers replace the quantifier part by the corresponding quantifier:

Definition Predet := NP — NP.
Definitionall_Predet:Predet := fun np = let (num,gqIGNORED,cn) :=np
in mkNP num all_Quant cn.
Definitionmost_Predet : Predet := fun np = let (num,gIGNORED,cn) ;= np
in mkNP num MOST_Quant cn.

One may wonder if it is justified to simply ignore the quantifier in such a way. We answer posi-
tively, because in practice, a noun-phrase with a useful quantifier is never equipped with the “all”
predeterminer — in fact, in this case GF introduces a dummy indefinite article which must be
overwritten in the semantics.

Numerals, cardinals An important part of the NP is the number. Here we record as precisely as
possible the information given by the syntax; which can be a singular, a plural, a precise cardinality
or even the “more than” modifier.

Inductive Num: =
singular : Num \
plural : Num |
unknownNum : Num \
moreThan : Num — Num |
cardinal :nat — Num.

Generalised quantifiers and articles Generalised quantifiers turn a number and a common noun into a
(usual) noun-phrase (which we call N P0).

Definition Quant := Num — CN — NPO.

Certain quantifiers ignore the number, and are thus given usual definitions:

Definition all_Quant :Quant :=fun (num:Num) (cn :CN) (vp:VP) = forall %, ch Xx— Vp Cn X.

Some others, such as “at most” make essential use of the number:

Definition atMost_qguant : Quant
= fun num cn vp = interpAtMost num (CARD (fun x = cn x A vp cn x))

In the above, interpAtMost checks that the given number is less than the given cardinality.
The function CARD is a context-dependent abstract function which turns a predicate into a natural
number. We equip CARD with common-sense axioms of set cardinality, such as monotonicity:

Parameter CARD : (object —) — nat.
Variable CARD_monotonous: forall a b:CN, (forall x,a x — b x) — CARD a <= CARD b.

The CARD variable is used to interpret several other quantifiers, including “most’:

Definition MOST_Quant : Quant :=
fun num (cn: CN) (vp: VP) = CARD (fun x = cn x A vp cn x) >=MOSTPART (CARD cn).

where MOSTPART is another context-dependent abstract function from natural to natural. To sup-
port FraCas examples, it is sufficient to equip it with a monotonicity axiom:

Parameter MOSTPART: nat — nat.
Variable MOST_mono: forall x, MOSTPART x <= X.

As usual, articles are special cases of quantifiers. When a useful number is provided by the NP,
the indefinite article enforces it. Otherwise it generates an existential quantification.

Definition IndefArt:Quant:= fun (num:Num) (P:CN)= fun Q:VP= match numwith
cardinaln= CARD (funx =P xA QP x)=n |

moreThan n = interpAtLeast n (CARD (funx =P x A QP x)) |

= exists x,P xA QP x end

The definite article checks for plural noun phrases, in which case it implements definite plurals
(universal quantification). Otherwise, it looks up the object of discourse in an abstract environment,
which is a function which turns a common noun into an object: environment : CN — object.

Definition DefArt:Quant:= fun (num: Num) (P:CN)= fun Q:VP=- match numwith
plural = (forall x,P x = QP x) A QP (environment P) A P (environment P) |
_ = QP (environment P) A P (environment P) end.

Prepositions Prepositions are interpreted as values transforming simplified noun phrases (1) to predi-
cates. This transformation is veridical (2) and covariant (3). These three aspects are captured in
three fields of a record, as follows.

Definition NP1 :=(object —) —
Inductive Prep: =
mkPrep: forall

(prep:NP1 — (object —) — (object —), (» 1 *)
(forall (prepArg:NP1)(v:object —) (subject : object), (x 2 %)
prep prepArg v subject — v subject) —
(forall (prepArg:NP1) (v w:object —),
(forall x,vx —>wx)— forall x,prep prepArgv x — prep prepArgwx) (* 3 *)
— Prep.

Comparatives We interpret comparatives as functions from adjective and NP into an adjectival phrase.
We use the common noun (class) provided by the NP as a common reference class for the quality
(or adjective, denoted a below) under comparison. Note that we additionally obtain the class of
the object, but we ignore it. (Future work may want to unify those two classes).

Definition ComparA:A — NP — AP
= funanpcnx = apNP np (fun yCNy = (acny — a cn x)
A (not (a cn x) — not (a cn y))).
Definition ComparAsAs :A — NP — AP
= funanpcnx = apNP np (fun _classy = acnx< acny).

We define ‘as ... as’ as an equivalence of the quality a between the subject and the object. We
define ‘more ... than’ as an implication of the quality a in the appropriate direction, and the
converse implication in the opposite direction. Note that the treatment of comparatives does not
involve any reference to scales or degrees: this was not needed at least for the examples at hand,
even though many fine-grained treatments of comparatives take these into consideration.’

Relative clauses Relative clauses are interpreted as verb phrases and used intersectively when building
noun phrases:

Definition RS :=VP.
Definition RelNPa : NP — RS — NP
= funnp rs = let (num,q,cn) :=np
in mkNP num g (fun x = cn x A rs cn x).

4 Evaluation

4.1 The FraCas test suite

The FraCaS test suite is a test suite for natural language inference (NLI) (Cooper et al., 1996). It arose
out of the FraCas Consortium, a huge effort with the aim to develop a range of resources related to
computational semantics. The goal of the suite is to reflect what an adequate theory of NL inference
should be capable of capturing. It contains 346 NLI examples in the form of one or more premises
followed by a question along with an answer to that question. There are three potential answers to the
question: a) YES, indicating that the declarative sentence formed out of the question follows from the
premise(s), b) NO, indicating that the negation of the declarative sentence follows from the premise(s),

3For a first treatment in MTTs, the interested reader is directed to Chatzikyriakidis and Luo (2014, 2017).

and c¢) UNK, indicating that neither the declarative sentence nor its negation follow from the premise(s).
The suite is structured according to the semantic phenomena involved in the inference process for each
example, and contains 9 sections. As such, there are sections on quantifiers, adjectives, comparatives,
plurals etc. Some representative examples from the suite are shown below:*

(1) An Irishman won the Nobel prize for literature.
An Irishman won a Nobel prize.
Did an Irishman win a Nobel prize? [Yes, FraCaS 017]

(2) No delegate finished the report.
No delegate finished the report on time.
Did any delegate finished the report on time? [No, FraCaS 038]

3) Smith, Jones or Anderson signed the contract.
Jones signed the contract.
Did Jones sign the contract? [UNK, FraCaS 083]

The FraCaS test suite has considerable weaknesses, for example its small size as well as the artificial
nature of the examples.> However, FraCa$S covers a wide range of phenomena associated with NLI and
it remains possibly the best suite to test logical approaches as regards NLI.

4.2 Evaluating FraCoq against the FraCaS

We evaluated FraCoq against 5 sections of the FraCasS test suite, a total of 174 examples. We excluded
the sections where a whole lot of context-dependency has to be taken into consideration (sections on
anaphora, ellipsis and temporal reference), plus the very short section dubbed as ‘verbs’, including as-
pectual class and collective predication test cases.® We classify as YES if a proof can be constructed
from the premises to the hypothesis, NO if a proof of the negated hypothesis can be constructed and
UNK otherwise.’

Section #examples Ours MINE Nut Langpro
1 Quantifiers 75 .96 g7 .53 .93 (44)
2 Plurals 33 76 .67 52 73 (24)
3 Adjectives 22 .95 .68 .32 73 (12)
4 Comparatives 31 .56 48 45 -
5 Attitudes 13 .85 a7 .46 92 (9)
6 Total 174 (181) 0.83 0.69 0.50 0.85

The above result reveals a considerable improvement over earlier approaches in terms of accuracy.
Still there are some cases that present difficulties. For example, the section on comparatives was quite
challenging. Mostly, this was due to examples like the following, where one needs not only to provide
adequate semantics for more but also to make sure that the elliptical fragment is also correctly recon-
structed:

@ ITEL won more orders than APCOM.
ITEL won some orders.
Did ITEL win some orders? [Yes, FraCaS 233]

“The examples are taken from Bill Maccartney’s xml conversion of the suite. Note that in the xml conversion, the declarative
hypothesis formed out of the question is also included.

>These weaknesses have given rise to the creation of other NLI platforms, like RTE and SNLI. For more information on
these platforms the interested reader should consult Dagan et al. (2006) and Bowman et al. (2015) respectively. The discussion
on what type of NLI platform is better suited for computational semantics is out of the scope of this paper.

SHowever see the discussion in section 5 for relevant ideas for future research.

7“Qurs” refers to the approach presented in this paper, “MINE” refers to the approach in Mineshima et al. (2015), “NUT”
to the CCG system that utilizes the first-order automated theorem prover nutcracker described in Bos (2008), and “Langpro” to
the system presented in Abzianidze (2015).

Another example case concerns the semantics of definite plurals. The problem there is that definite
plurals sometimes give rise to a universal interpretation, and sometimes to an existential one. We have
used the universal interpretation for definite plurals, so the examples involving the existential interpre-
tation were not predicted correctly. The example below is a case where our system will find the proof,
contrary to what we would want:

®)) The inhabitants of Cambridge voted for a Labour MP.
very inhabitant of Cambridge voted for a Labour MP.
Did every inhabitant of Cambridge vote for a Labour MP? [UNK, FraCaS 094]

As can be seen from the table, our system outperforms both Mineshima et al. (2015) and the Nutcracker
system. We evaluate on 7 fewer examples than Mineshima et al. (2015), 174 instead of 181 (we have
not evaluated against the “verbs” section), and get an overall accuracy of 0.83 compared to 0.69 by Mi-
neshima et al. (2015), an overall improvement of 14 percentage points. Note that the Langpro system as
described in Abzianidze (2015) shows an accuracy of 0.85. However the system is only evaluated against
92 examples and the comparatives section, which was the most difficult part to cope with for all systems,
was not taken into consideration. If the comparatives section is taken out, our system shows an accuracy
of 0.88 for 143 examples.

4.3 Automation

One issue to be discussed is automation. So far, our proofs are not automated, which means that there are
anumber of steps (usually very few), that are needed in order to produce a proof. In the earlier approaches
using the proof-assistant Coq, i.e. Chatzikyriakidis and Luo (2014); Mineshima et al. (2015), the authors
use Coq’s tactical language LTAC to create macros of proof tactics that automate the proofs. However, we
believe that such automation says little of the system’s ability to provide a general automated procedure
for examples outside the ones tested. Indeed, one can trivially automate all the examples at hand by just
going through all the proof tactics or observe the tactics that are used in the proofs to create a macro
that will automate the proofs. Yet, can that macro of tactics generalize outside the suite? Unfortunately,
only to a limited extent: when exactly the same set of tactics yields a proof. For this reason, we have not
automated proof search to obtain the results presented in this paper. Yet if someone were to automate the
proof search for the examples looked at, in the same sense as Mineshima et al. (2015), this is not difficult
to do.

Another issue with automating the work is that this would make an unprincipled use of higher-
order logic (HOL): indeed, in HOL, there is no algorithm which can decide if a proposition has a proof
or not. This means that we must use heuristics both to search for proofs and to decide when to give
up searching. Fortunately, in FraCas, most problems have either obvious proofs or obviously lack a
proof. From a logical perspective, the most difficult inferences involve veridicality and covariance, yet
the premises involving those are sufficiently clear to guide the search in a clear direction. Still, due to
its heuristic nature the proof search necessarily contains a human component, which is problematic to
make a statement about the suitability of FraCoq outside FraCas from the percentages observed in the
above table. This issue compounds with the small size of FraCas and the lack of separation between
a development and a testing subset. (At the limit, one can construct a tool with 100% success rate by
simply using a lookup table.)

A related shortcoming is that we sometimes use specialised semantics for specific entries in the
lexicon — which may themselves trigger the need for more heuristics in proof search.

5 Conclusions and Future work

A first improvement to this work would be to address the issue of automation. We could take the unprin-
cipled approach outlined above. A more principled approach would be to define a decidable fragment of

the logic and only work within such fragment. Then, we would be able to concisely characterize how our
approach generalises. In the meantime, users of our framework must understand the semantics defined
above in order to grasp their scope.

Another area of improvement is at the GF level. An obvious advance would be to improve the syntax
of predeterminers, to make it more suitable for compositional semantics, as we have hinted at above.

Similarly, the GF syntax for “more than” makes it very hard to recover the elliptical component of
the phrase (see example (4) above). Indeed, in phrases such as “more orders than APCOM”, “more”
is often in a different syntactic subtree than “than APCOM”, which renders a compositional semantics
infeasible. (When “than APCOM?” is attached to the verb phrase the connection to “more” is not naturally
recoverable.) In cases where “than APCOM” is in the correct subtree, it is construed as an adjectival
phrase built from a prepositional phrase. Again, unsuitable for compositional semantics.

Lastly, a mid-term improvement to our work would be to support anaphora. A straightforward, if
tedious, way to do so would be to thread an environment of mentioned objects throughout phrases.

In summary, we have connected two well-defined systems based on type-theory by providing a re-
source semantics for GF. We have underlined how approaches based on higher-order (and to a lesser
extent even first-order) logic are inherently limited in how they generalize. Despite this limitation, we
have shown that it is possible to achieve very precise semantics for specific domains. This translates into
high accuracy for NLI, as exemplified by our results on the FraCas test suite. We hope that in the fu-
ture such approaches will be used in performing inference tasks on controlled natural language domains
and/or applications having such a component.

References

Abzianidze, L. (2015). A tableau prover for natural logic and language. In Proceedings of EMNLP2015,
pp. 2492-2502.

Bekki, D. and K. Mineshima (2017). Context-passing and underspecification in dependent type seman-
tics. In S. Chatzikyriakidis and Z. Luo (Eds.), Modern Perspectives in Type-Theoretical Semantics,
pp. 11-41. Springer.

Bertot, Y. and P. Castéran (2013). Interactive theorem proving and program development: Coq?Art: the
calculus of inductive constructions. Springer Science & Business Media.

Blackburn, P., J. Bos, M. Kohlhase, and H. d. Nivelle (2006). separate performative account of the
german right dislocation,. In Proc. of Sinn und Bedeutung 10.

Bos, J. (2008). Wide-coverage semantic analysis with boxer. In Proceedings of the 2008 Conference on
Semantics in Text Processing, pp. 277-286. Association for Computational Linguistics.

Bos, J. and K. Markert (2005). Recognising textual entailment with logical inference. In Proc. of the
2005 Conference on Empirical Methods in Natural Language Processing (EMNLP),, pp. 98—103.

Bowman, S. R., G. Angeli, C. Potts, and C. D. Manning (2015). A large annotated corpus for learning
natural language inference. In Proceedings of EMNLP, pp. 632—642.

Chatzikyriakidis, S. and Z. Luo (2014). Natural language inference in coq. Journal of Logic, Language
and Information 23(4), 441-480.

Chatzikyriakidis, S. and Z. Luo (2017). Adjectival and adverbial modification: The view from modern
type theories. Journal of Logic, Language and Information 26(1), 45-88.

Cooper, R. (2017). Adapting type theory with records for natural language semantics. In S. Chatzikyr-
iakidis and Z. Luo (Eds.), Modern Perspectives in Type-Theoretical Semantics, pp. 71-94. Springer
International Publishing.

Cooper, R., D. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jaspars, H. Kamp, D. Milward, M. Pinkal,
M. Poesio, and S. Pulman (1996). Using the framework. Technical report Ire 62-051r, The FraCaS
consortium. http://www.cogsci.ed.ac.uk/ fracas/.

Cooper, R., S. Dobnik, S. Larsson, and S. Lappin (2015). Probabilistic type theory and natural language
semantics. LiLT (Linguistic Issues in Language Technology) 10, 1-43.

Dagan, I., O. Glickman, and B. Magnini (2006). The pascal recognising textual entailment challenge.
In Machine learning challenges. evaluating predictive uncertainty, visual object classification, and
recognising tectual entailment, pp. 177-190. Springer.

Glickmann, O., I. Dagan, and M. Koppel (2005). Web based probabilistic textual entailment. In Pro-
ceedings of the PASCAL Challenges Workshop on Recognizing Textual Entailment.

Gonthier, G. (2008). Formal proof-the four-color theorem. Notices of the AMS 55(11), 1382-1393.

Gonthier, G., A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Le Roux, A. Mahboubi, R. OCon-
nor, S. O. Biha, et al. (2013). A machine-checked proof of the odd order theorem. In Interactive
Theorem Proving, pp. 163—-179. Springer.

Grudzifiska, J. and M. Zawadowski (2017). Generalized quantifiers on dependent types: A system
for anaphora. In S. Chatzikyriakidis and Z. Luo (Eds.), Modern Perspectives in Type-Theoretical
Semantics, pp. 95-131. Cham: Springer International Publishing.

Hickl, A., J. Williams, J. Bensley, K. Roberts, B. Rink, and Y. Shi (2005). Recognizing textual entailment
with 1CC’s groundhog system. In Proc. of Second PASCAL Challenges Workshop on Recognizing
Textual Entailment, pp. 80-85.

Kamp, H. (1975). Two theories about adjectives. In E. Keenan (Ed.), Formal Semantics of Natural
Language. Cambridge Univ Press.

Leroy, X. (2013). The compcert c¢ verified compiler: Documentation and users manual.
http://compcert.inria.fr/man/manual.pdf.

Ljunglof, P. and M. Siverbo (2011). A bilingual treebank for the FraCas test suite. Clt project report,
University of Gothenburg.

Luo, Z. (2012). Formal semantics in modern type theories with coercive subtyping. Linguistics and
Philosophy 35(6), 491-513.

MacCartney, B., M. Galley, and i. C.D. Manning (2008). A phrase-based alignment model for natural
language inference. In Proceedings of EMNLP-08, pp. 802-811.

Martin-Lof, P. (1971). An intuitionistic theory of types. manuscript.
Martin-Lof, P. (1984). Intuitionistic Type Theory. Bibliopolis.

Mineshima, K., Y. Miyao, and D. Bekki (2015). Higher-order logical inference with compositional
semantics. In Proceedings of EMNLP.

Montague, R. (1973). The proper treatment of quantification in ordinary english. In Approaches to
natural language, pp. 221-242. Springer.

Partee, B. (2007). Compositionality and Coercion in Semantics: The Dynamics of Adjective Meaning.
In Cognitive Foundations of Interpretation. Royal Netherlands Academy of Arts and Sciences.

Partee, B. (2010). Privative Adjectives: Subsective plus Coercion. In R. Bauerle, U. Reyle, and T. Zim-
mermann (Eds.), Presuppositions and Discourse: Essays Offered to Hans Kamp, Volume 21 of Cur-
rent Research in Semantics/Pragmatics Interface. Emerald Group Publishing Ltd.

Pulman, S. (2013). Second order inference in NL semantics. Talk given at the KCL Language and
Cognition seminar, London.

Ranta, A. (1994). Type-Theoretical Grammar. Oxford University Press.

Ranta, A. (2011). Grammatical framework: Programming with multilingual grammars. CSLI Publica-
tions.

Retoré, C. (2013). The montagovian generative lexicon Tyn: a type theoretical framework for natural
language semantics. In R. Matthes and A. Schubert (Eds.), Proc of TYPES2013.

Romano, L., M. Kuylekov, I. Szpektor, I. Dagan, and A. Lavelli (2006). Investigating a generic
paraphrase-based approach for relation extraction. In Proceedings of EACL 2006., pp. 409-416.

Sundholm, G. (1989). Constructive generalized quantifiers. Synthese 79(1), 1-12.

Tanaka, R., K. Mineshima, and D. Bekki (2015). Factivity and presupposition in dependent type seman-
tics. In Proceedings of TyTLeS, ESSLLI2015.

