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Abstract

To improve grammatical function la-
belling for German, we augment the la-
belling component of a neural dependency
parser with a decision history. We present
different ways to encode the history, using
different LSTM architectures, and show
that our models yield significant improve-
ments, resulting in a LAS for German that
is close to the best result from the SPMRL
2014 shared task (without the reranker).

1 Introduction

For languages with a non-configurational word
order and rich(er) morphology, such as German,
grammatical function (GF) labels are essential for
interpreting the meaning of a sentence. Case syn-
cretism in the German case paradigm makes GF
labelling a challenging task. See (1) for an exam-
ple where the nouns in the sentence are ambiguous
between different cases, which makes it hard for a
statistical parser to recover the correct reading.

(1) Telefonkarten bleibt nichts erspart.
phone cards o,/ Ace/ Dot TEMAINS NOthing yyp,/ Ace SPared.

“Phone cards are subjected to all kinds of abuse.”

We approach the problem of GF labelling as
a subtask of dependency parsing, where we first
generate unlabelled trees and, in the second step,
try to find the correct labels. This pipeline ar-
chitechture gives us more flexibility, allowing us
to use the labeller in combination with our parser,
but also to apply it to the unlabelled output of other
parsing systems without the need to change or re-
training the parsers.

The approach also makes it straightforward to
test different architectures for GF labelling. We
are especially interested in the influence of differ-
ent input structures representing different (surface
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versus structural) orders of the input. In particular,
we compare models where we present the unla-
belled tree in linear order with a model where we
encode the parser output as a tree. We show that all
models are able to learn GFs with a similar overall
LAS, but the model where the tree is encoded in
a breadth-first order outperforms all other models
on labelling core argument GFs.

2 Related Work

Grammatical function labelling is commonly in-
tegrated into syntactic parsing. Few studies have
adressed the issue as a separate classification task.
While most of them assign grammatical functions
on top of constituency trees (Blaheta and Char-
niak, 2000; Jijkoun and de Rijke, 2004; Chrupata
and van Genabith, 2006; Klenner, 2007; Seeker
et al., 2010), less work has tried to predict GF la-
bels for unlabelled dependency trees. One of them
is McDonald et al. (2006) who first generate the
unlabelled trees using a graph-based parser, and
then model the assignment of dependency labels
as a sequence labelling task.

Another approach has been proposed by Zhang
et al. (2017) who present a simple, yet efficient and
accurate parsing model that generates unlabelled
trees by identifying the most probable head for
each token in the input. Then, in a post-processing
step, they assign labels to each head-dependent
pair, using a two-layer rectifier network.

Dependency Parsing as Head Selection Our
labelling model is an extension of the parsing
model of Zhang et al. (2017). We use our own
implementation of the head-selection parser and
focus on the grammatical function labelling part.
The parser uses a bidirectional LSTM to extract a
dense, positional representation a; of the word w;
at position 7 in a sentence:
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hE = LSTME (23, hE ) (1)
hP = LSTM® (2, hE,,) )
a; = [hf;h)] 3)

x; is the input at position ¢, which is the concate-
nation of the word embeddings and the tag em-
beddings of word w;. An artificial root token wg
is added at the beginning of each sentence.

The unlabelled tree is then built by selecting the
most probable head for each word. The score of
word w; being the head of word w; is computed
by a single hidden layer neural network on their
representations a; and a;.

An additional classifier with two rectified hid-
den layers is used to predict dependency labels,
and is trained separately from the unlabeled pars-
ing component, in a pipeline architecture. The
classifier predictions are based on the represen-
tations of the head and the dependent, b; and b;,
which are the concatenation of the input and the
bidirectional LSTM-based representations:

“4)

Despite its simplicity and the lack of global op-
timisation, Zhang et al. (2017) report competitive
results for English, Czech, and German.

by = [z4; ai]

3 Labeling Dependencies with History

Although the labelling approach in Zhang et
al. (2017) is simple and efficient, looking at head
and dependent only when assigning the labels
comes with some disadvantages. First, some la-
bels are easier to predict when we also take con-
text into account, e.g. the parent and grandparent
nodes or the siblings of the head or dependent.

Consider, for example, the following sentence:
Is this the future of chamber music? and its syn-
tactic structure (figure 1). If we only consider the
nodes this and future, there is a chance that the
edge between them is labelled as det (determiner).
However, if we also look at the local context, we
know that node the to the left of future is more
likely to be the determiner, and thus this should be
assigned a different label.

Second, when looking at the parser output, we
notice some errors that are well-known from other
local parsing models, such as the assignment of
duplicate subjects for the same predicate. To ad-
dress this issue, we propose an extended labelling
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Figure 1: The dependency tree of the sentence Is
this the future of chamber music?

model that incorporates a decision history. To that
end, we design different LSTM architectures for
the labelling task and compare their performance
on German, Czech and English.

Label prediction as a sequence labelling task
Presenting the input to the labeller in sequential
surface order does not seem very intuitive when
we want to assign labels to a tree. This ap-
proach, however, was adapted by McDonald et
al. (2006). In their work, they consider all de-
pendents x;1, ..., 77 of a head x; and label those
edges (¢, 71), ..., (i, 7M) in a sequence.

We argue, however, that it is not enough to know
the labels of the siblings, but that we also need
to consider nodes at different levels in the tree.
Therefore, when predicting the label for the cur-
rent node, we consider all label decisions in the
history, and feed them to a bidirectional LSTM.
Given a sequence of nodes S = (wy, ..., wy) and
their corresponding head (h1, ..., hy), at each re-
current step, we input the learned representation of
the head and the dependent:

hf“bl) — LSTM;, (b;, bh,, hf_(]lbl)) (5)
REOD — LSTME (b b 2) (6)

After that,

the concatenated hidden states
[hF(lbl)' p, BibD)
: ih;

5 | are projected to a softmax layer
to predict the label.

When presenting a tree as a sequence, we ex-
periment with two different input orders:

e BILSTM(L): Tree nodes are ordered ac-
cording to their surface order in the sentence
(linear order; figure 2).

e BILSTM(B): Tree nodes are ordered ac-
cording to a breadth-first traversal (BFS) of
the tree, starting from the root node. Here,
siblings are closer to each other in the history.
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Figure 2: The processing order of the sentence in figure 1 a) in the BILSTM(L) model (top) and b) in

the BILSTM(B) model (bottom).

Top-down tree LSTM Intuitively, it seems
more natural to present the input as a tree struc-
ture when trying to predict the dependency labels.
We do that by adopting the top-down tree LSTM
model (Zhang et al., 2016) that processes nodes
linked through dependency paths in a top-down
manner. To make it comparable to the previous
LSTM models, we only use one LSTM instead of
four, and do not stack LSTMs. The hidden state is
computed as follow:

hl(lbl) = treeLSTM(b;, h;—1) (7

After that, we proceed as we did for the BI-
LSTM models (see above). Note that the pro-
cessing order i is also the BFS order. We call this
model TREELSTM (figure 3).

4 Experiments

Our interest is focussed on German, but to put our
work in context, we follow Zhang et al. (2017) and
report results also for English, which has a config-
urational word order, and for Czech, which has a
free word order, rich morphology, and less ambi-
guity in the case paradigm than German.

For English, we use the Penn Treebank
(PTB) (Marcus et al., 1993) with standard train-
ing/dev/test splits. The POS tags are assigned
using the Stanford POS tagger (Toutanova et al.,
2003) with ten-way jackknifing, and constituency
trees are converted to Stanford basic dependen-
cies (De Marneffe et al., 2006). The German and
Czech data come from the CoNLL-X shared task
(Buchholz and Marsi, 2006) and our data split fol-
lows Zhang et al. (2017). As the CoNLL-X test-
sets are rather small (~ 360 sentences), we also

ROOT
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1 t I future 1
[TKEELS'['I\IHTREELS l'I\[]«[TImBLS’l'I\I] [TRF.F.LS'I ]\I]—) TREELSTM
1 B f 1 POBJ 1
Is this the of ?
NN
music
T

chamber
Figure 3: The processing order of the sentence in
figure 1 in the TREELSTM model.

train and test on the much larger German SPMRL
2014 shared task data (Seddah et al., 2014) (5,000
test sentences). For the SPMRL data we use the
predicted POS tags provided by the shared task or-
ganisers.

4.1 Setup

We test different labelling models on top of the un-
labelled trees produced by our re-implementation
of the parsing as head selection model (§2).

We first train the unlabelled parsing models
for the three languages. Unless stated other-
wise, all parameters are set according to Zhang et
al. (2017), and tag embedding size was set to 40
for all languages. Please note that we do not use
pre-trained embeddings in our experiments.

In the next step, we train four different labelling
models: the labeller of Zhang et al. (2017) that
uses a rectifier neural network with two hidden
layers (baseline), two bidirectional LSTM mod-
els (BILSTM(L) and BILSTM(B)), and one tree
LSTM model (TREELSTM) (§3).

The hidden layer dimension in all LSTM mod-
els was set to 200. The models were trained
for 10 epochs, and were optimized using Adam
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Model en [ deconrr |desprmRL desprvRL SB OA DA PD
UAS 93.35 89.70 93.09 91.29 #6,638 | #3,184 #568 | #1,045
Baseline 91.58 83.42 90.22 88.15 baseline 90.3 83.6 64.7 77.1
BILSTM(L) | 91.92* | 84.08* 90.87* 88.73* BILSTM(L) 91.4 85.3 67.7 80.0
BILSTM(B) | 91.91* | 83.80 90.97* 88.74* BILSTM(B) 91.9 85.4 69.3 80.5
TREELSTM | 91.92* | 83.82 90.89* 88.74* treeLSTM 91.2 85.1 68.6 79.8
DENSE 91.90 81.72 89.60 - desprrL AG PG oC oG
#2241 #388 | #3,652 #21

Table 1: Results for different labellers applied to baseline 91.3 80.0 90.1 0
BILSTM(L 91.3 81.6 90.5 16.0

the unlabelled parser output. The first row re- BILSTMEB% 015 824 907 370
ports UAS for the input to the labellers. The last treeL.STM 91.4 81.4 90.2 27.6

row (DENSE) shows the results from Zhang et al.
(2017). (*) indicates that the difference between
the model and the baseline is statistically signifi-
cant (p < .001).

(Kingma and Ba, 2015) with default parameters
(initial learning rate 0.001, first momentum coef-
ficient 0.9, second momentum coefficient 0.999).
We used L2 regularization with a coefficient of
10~3 and max-norm regularization with an upper
bound of 5.0. The dropout (Srivastava et al., 2014)
rate was set to 0.05 for the input connections, and
0.5 for the rest.

4.2 Results

Table 1 shows the unlabelled attachment score
(UAS) for the unlabelled trees and the labelled at-
tachment scores (LAS) for the different labellers
(excluding punctuation). All history-based la-
belling models perform significantly better than
the local baseline model,! but for English the im-
provements are smaller (0.3%) than for the non-
configurational languages (~0.7%).

While we tried to reimplement the model of
Zhang et al. (2017) following the details in the pa-
per, our reimplemented model yields higher scores
for German, compared to the results in the paper.
The scores for English are slightly lower since,
in contrast to Zhang et al. (2017), we do not use
pre-trained embeddings. When using our history-
based labellers, we get similar results for English
(91.9%) and higher results for both Czech (84.1%
vs. 81.7%) and German (91.0% vs. 89.6%) on the
same data without using pre-trained embeddings
or post-processing.

On the SPMRL 2014 shared task data, our re-
sults are only 0.3% lower than the ones of the
winning system (Bjorkelund et al., 2014) without
reranker (blended).? To further illustrate the ef-

'For significance testing, we use Bikel’s Random-
ized Parsing Evaluation Comparator (http://www.cis.
upenn.edu/~dbikel/software.html).

The shared task winner is a complex ensemble system
that generates a tree by blending the output of three parsers
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Table 2: LAS for core argument functions (Ger-
man SPMRL data), and frequency (#) of GF in the
testset (SB: subj, OA: acc.obj, DA: dat.obj, PD:
pred, AG: gen.attribute, PG: phrasal genitive, OC:
clausal obj, OG: gen.obj).

fectiveness of our models, we also ran our labeller
on the unlabelled output of the SPMRL 2014 win-
ning system and on unlabelled gold trees. On the
output of the blended system LAS slightly im-
proves from 88.62% to 88.76% (TREELSTM).?
When applied to unlabelled gold trees, the dis-
tance between our models and the baseline be-
comes larger and the best of our history-based
models (BILSTM(B), 97.38%) outperforms the
original labeller of Zhang et al. (2017) (96.15%)
by more than 1%.

We would like to emphasize that our history-
based LSTM labeller is practically simple and
computationally inexpensive (as compared to
global training or inference), so our model man-
ages to preserve simplicity while significantly im-
proving labelling performance.

4.3 Discussion

Most strikingly, all three models seem to perform
roughly the same, and the TREELSTM model fails
to outperform the other two models. However, in
comparison to the BILSTM models, the TREE-
LSTM model has a smaller number of parameters,
and the history only flows in one direction. The
tree model also has a shorter history chain since
nodes are linked by paths from the root (figure 3),
which might explain why it does not yield better
results than the linear LSTM models.

The overall results suggest that the order in
which the nodes are presented in the history does
not have any impact on the labelling results. How-
ever, when looking at results for individual core
argument functions (subject, direct object, etc.), a
(Mate, Turbo, BestFirst; see (Bjorkelund et al., 2014)).

3Following Bjorkelund et al. (2014), here we include
punctuation in the evaluation.



GF en cs | despvRrL

sb 3.1 34 3.9
dep-length dobj 2.5 *2.4 4.2

iobj 1.7 - 4.7

sb 4.6 32.5 34.2
left-head ratio | dobj 97.4 | *¥77.5 37.2

iobj 100.0 - 27.5

Table 3: Avg. dependency length and ratio of left
arcs vs. all (left + right) arc dependencies for args.
(* in the Czech data, Obj subsumes all types of
objects, not only direct objects)

more pronounced pattern emerges (table 2).* Here
we see the benefit of encoding the siblings close
to each other in the history: For all core argument
functions, the BILSTM(B) model outperforms the
other models.

To find out why the history-based models work
better for Czech and German than for English, we
compared the average dependency length as well
as the variability in head direction (how often e.g.
the head of a subject is positioned to the left, in
relation to the total number of subjects). Table 3
suggests that the success of the history-based mod-
els is not due to a better handling of long depen-
dencies but that they are better in dealing with the
uncertainty in head direction (also see Gulordava
and Merlo (2016)).

5 Conclusions

We have shown that GF labelling, which is of cru-
cial importance for languages like German, can be
improved by combining LSTM models with a de-
cision history. All our models outperform the orig-
inal labeller of Zhang et al. (2017) and give re-
sults in the same range as the best system from the
SPMRL-2014 shared task (without the reranker),
but with a much simpler model. Our results show
that the history is especially important for lan-
guages that show more word order variation. Here,
presenting the input in a structured BFS order not
only significantly outperforms the baseline, but
also yields improvements over the other LSTM
models on core grammatical functions.
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